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Preface

There are some things that you, the reader of this preface, know to be
true, and others that you know to be false; yet, despite this extensive
knowledge that you have, there remain many things whose truth or
falsity is not known to you. We say that you are uncertain about them.
You are uncertain, to varying degrees, about everything in the future;
much of the past is hidden from you; and there is a lot of the present
about which you do not have full information. Uncertainty is every-
where and you cannot escape from it.

Truth and falsity are the subjects of logic, which has a long history
going back at least to classical Greece. The object of this book is to tell
you about work that has been done in the twentieth century about
uncertainty. We now know that uncertainty has to obey three rules and
that, once they are understood, uncertainty can be handled with almost
as much confidence as ordinary logic. Our aim is to tell you about these
rules, to explain to youwhy they are inevitable, and to help you use them
in simple cases. The object is not to make you an expert in uncertainty
but merely to equip you with enough skill, so that you can appreciate an
uncertain situation sufficiently well to see whether another person,
lawyer, politician, scientist, or journalist is talking sense, posing the
right questions, and obtaining sound answers.Wewant you to face up to
uncertainty, not hide it away under false concepts, but to understand it
and, moreover, to use the recent discoveries so that you can act in
the face of uncertainty more sensibly than would have been possible
without the skill. This is a book for the layman, for you, for everyone,
because all of us are surrounded by uncertainty.

However, there is a difficulty, the rules really need to bewritten in the
language of mathematics and most people have a distaste for mathe-
matics. It would have been possible for the book to have been written
entirely in English, or equally in Chinese, but the result would have been
cumbersome and, believe me, even harder to understand. The presenta-
tion cries out for the use of another language; that of mathematics. For
mathematics is essentially another language, rather a queer one, that is
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unfamiliar to us. However, you do not, for this book, need to understand
this language completely; only a small part of it will be required. It is
somewhat like an English speaker needing about six characters from
Chinese out of the many thousands that the language uses. This book
uses part of the language of mathematics, and this part is explained
carefully with, I hope, enough motivation for you to be convinced of its
advantages. There is almost no technical use of mathematics, and what
there is can be appreciated as easily as ordinary arithmetic.

There is one feature of our uncertain world that may either distress
or excite you, I hope the latter, in that it does not always behave like
common sense might suggest. The most striking example is Simpson’s
paradox, in Chapter 8, where a medical treatment appears to be bad for
both the men and the women, but good for all of us. We will apply the
ideas about uncertainty to the law, to science, to economics, and to
politics with sometimes surprising results.

The prologue tells something about how this book came to be
written. The final version owes a great deal to Jos�e Bernardo, Ian Evett,
and Tony O’Hagan who read a draft and made many constructive
proposals, almost all of which have been eagerly incorporated. In
addition, Jay Kadane read the draft with a keen, critical eye, made
valuable suggestions, and persuaded me not to ride too vigorously into
fields where I had more passion than sense. The final version is much
improved as a result of their kind efforts.

PREFACE TO THE REVISED EDITION

The principal change from the original edition is the inclusion of an
additional Chapter 14, describing the impact the ideas of this book have
on statistics, betting, and finance. The treatment of one problem (§§12.4
and 12.5) has been enlarged because of developments between the two
editions. Efron’s dice have been discussed because some readers have
queried an important assumption.Minor changes have beenmade in the
interests of clarity, several kindly suggested by Mervyn Stone. I would
like to thank my daughter, Rowan, for help with the logistics, without
which this new editionwould not have been possible; and SteveQuigley
at Wiley for persuading me to undertake the revision.
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Prologue

Almost all my professional life has been spent in academe as a
statistician. In my first appointment in Cambridge, I was required to
lecture for six hours each week during half of the year and personally to
supervise some students. Admittedly, the preparation of new lecture
courses took a lot of time, one occupying the whole of the 4 month
summer vacation, but these duties did not constitute a reasonable
workload. To fill the gap, one was expected to do exactly what I wanted
to do, conduct research. As I moved to become Professor and Head of
Department, first in Aberystwyth and then at University College
London, other duties, principally administrative, crowded in upon me
and there was less time for research. But still it got done, because I
wanted it to get done, often in conjunctionwith good, graduate students.

Research, at least in my case, consists of taking questions that
interest one and to which you feel you might, given enough time and
effort, be able to find an answer; working on them, producing an
answer, which often turns out to be quite different from the form
originally anticipated, and publishing the results for others to read.
There are many aspects to this creative work but the one to be
emphasized here is that the questions I chose to answer were selected
by me. There was no superior, as there would have been in industry,
posing me problems and expecting answers. There was no deadline to
be met. This was freedom of thought in its true sense, requiring little
more than a comfortable office, a good library, and, most important of
all, time in which to think deeply about what interested you. Good
answers produce rewards in promotion and more money but that is not
the real motivation, which comes instead from the excitement of the
chase, to explore where no one has been before, to think deeply, and to
come up with something that is genuinely new. And all this free from
the interference of others except those you wish to consult. That is true
academic freedom that dictators hate so much.

At least during the first 20 years of my researches, I do not recall
ever asking myself or being asked by others, whether what I was doing

xiii



was worthwhile. Society paid me a salary that provided a comfortable
living for myself and my family, giving me enough time to think and
write, yielding appreciation from the few people who bothered to read
my answers. I suppose if someone had asked me to justify my salary, I
should have mumbled something about the training in statistics I had
given to many students and the value of statistics in society. But
nobody did ask and my conscience did not bother me; it was the chase
that mattered. Later, however, as I began to sit on committees and come
into more contact with life outside the university, I did wonder about
the relevance to society of the answers I had given to questions I had
chosen and, more widely, about the value of statistical ideas and
methods produced by others. When I thought about this, the answers
were not terribly encouraging, for admittedly the discovery of the
harmful effects of smoking was mostly due to statistical analysis, and
statisticians had played an important role in the breeding of new plants
and animals, but I had had little to do with these activities and few had
attempted to use the answers my research had provided, let alone
succeeded. It had been a good life for me, but had it been a worthwhile
one from the viewpoint of society?

Research, especially in disciplines that use a lot of mathematics,
is a young person’s game and after early retirement I did little
research but began to read more widely and consider problems that
had not seriously entered into my comfortable research world. And
I made a discovery. There were people out there, like politicians,
journalists, financiers, lawyers, and managers, who were, in my
opinion, making mistakes; mistakes that could have been avoided
had they known the answers to the questions pondered in my ivory
tower. In other words, what I had been doing was not just an exercise
in pure thought, but appeared to have repercussions in the world that
could affect the activities of many people and ultimately all of us.
This is a phenomenon that has been observed repeatedly; namely that
if people are given the freedom and opportunity to use their reasoning
abilities to explore without any application in mind, what is termed
pure research, they often come up with results that are applicable.
Ivory towers can yield steel and concrete, produce food and shelter.
This book is an attempt to explain in terms that motivated, lay
persons can understand, some of the discoveries about uncertainty
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made in academe, and why they are of importance and value to them,
so that they might use the results in their lives. In a sense, it is a
justification for a life spent in academe.

The preceding paragraphs are too personal and for clarification
it is necessary to say something more about scientific research.
Research is carried out by individuals and often the best research
is the product of one person thinking deeply on their own. For
example, relativity is essentially the result of Einstein’s thoughts.
Yet, in a sense, the person is irrelevant, for most scientists feel that
if he had not discovered relativity, then someone else would; that
relativity is somehow “out there”waiting to be revealed, the revelation
necessarily being made by human beings but not necessarily by that
human being. This may not be true in the arts. For example, if
Shakespeare had not written his plays, it would not follow that
someone else would have produced equivalent writing. Science is
a collective activity, much more so than art, and although some
scientists stand out from the rest, the character of science depends
to only a very small extent on individuals and what little effect they
have disappears over time as their work is absorbed into the work of
others. There are two lessons to be learnt from this as far as this book is
concerned. First, my contribution to the results described herein is
very small and is swamped by thework of others. It is as if I hadmerely
added a brick or two to the whole building. Second, I have not thought
it advisable in a book addressed to a general audience to attribute ideas
to individuals. Our concern with individual scientists is often mis-
placed, because it is the collective wisdom that is important. The
situation is made worse by the fact that the ideas are often attributed
to the wrong individual. The ideas with which this work is usually
associated are termed Bayesian, after Thomas Bayes, who had hardly
anything to dowith them. Generally, there is Stigler’s law of eponymy
that says that a scientific notion is never attributed to the right person;
in particular, the law is not due to Stigler. Some scientists are named in
the book because results are universally named after them—Bayes
rule, for example, or de Finetti’s theorem.

Here is a book about uncertainty, showing how it might be
measured and used in your life, especially in decision making and
science. It tells the story of great discoveries made in the twentieth
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century that merit dispersal outside the narrow community where they
were developed. New ideas need new forms of exposition, so after a
collection, in Chapter 1, of examples of where uncertainty impinges on
our lives, Chapter 2 is concerned with certain stylistic questions,
including the thorny subject of mathematics; it is only in Chapter 3
that the discoveries really begin.
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CHAPTER1

Uncertainty

1.1 INTRODUCTION

There are some statements that you know to be true, others that you
know to be false, but with the majority of statements you do not know
whether they are true or false; we say that, for you, these statements are
uncertain. This book is about understanding uncertainty in this sense,
about handling it, and, above all, about helping you to live comfortably
with uncertainty so that you can better copewith it in your everyday life.

There are two comments that need to be made immediately. The
first arises from the fact that the set of statements that you know to be
true differs from my set, for you know things that I do not. Equally,
things that are uncertain for you may be known to me; but there is more
to it than that, for if we take a statement about which we are both
uncertain, you may have more confidence that it is true than I do; we
differ in our degrees of uncertainty. The upshot of these considerations
is that uncertainty is a personal matter; it is not the uncertainty but your
uncertainty. Admittedly, there are some situations where almost all
agree on the uncertainty but these are rare and confined to special
scenarios, for example, some aspects of gambling. Statements of
uncertainty are personalistic; they belong to the person making
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them and express a relationship between that person and the real world
about which a statement is being made. In particular, they are not
objective in the sense that they express a property that is the same for
all of us. It follows that throughout this book we will be referring to a
person, conveniently called “you”, whose uncertainty is being dis-
cussed; it may sometimes be appropriate for you, the reader, to
interpret it as referring to yourself but generally it applies to some
unidentified person, or group of persons expressing a common opinion.
You are uncertain about some aspect of the world and that uncertainty
does not refer solely to you, or solely to the world, but describes a
relationship between you and that world.

The second comment is to note that for any of us, for any “you”, the
number of statements about which you are uncertain is vastly in excess
of the number of statements for which their truth or falsity is known to
you; thus all statements about the future are uncertain to some degree.
Uncertainty is everywhere, so it is surprising that it is only in the
twentieth century that the concept has been systematically studied and,
as a result, better understood. Special types of uncertainty, like those
arising in gambling, had been investigated earlier but the understand-
ing of the broad notion, applicable to everyday life, is essentially a
modern phenomenon. Because uncertainty is everywhere and affects
everyone, a proper appreciation of it is vital for all persons, so this book
is addressed to everyone who is prepared to listen to a reasoned
argument about an ubiquitous concept. This book is for you, whoever
you are. We begin with a collection of examples of uncertainty
designed to demonstrate how varied, important, and numerous are
statements where you genuinely do not know the truth.

1.2 EXAMPLES

EXAMPLE 1. IT WILL RAIN TOMORROW

For all of us who live in climates with changeable weather, this statement is

uncertain. It has become almost a classic example of uncertainty because

weather is of interest, even importance, to many of us; because meteorolo-

gists have seriously studied the question of how to make forecasts like this;
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and because it is a statement whose uncertainty will be removed after

tomorrow has passed, so that it is possible to check on the quality of the

statement, a feature of which meteorologists are very conscious and which

will be discussed in §5.12. Notice too, that you can change the degree of

your uncertainty about rain by looking out of the window, by consulting a

barometer, or by switching on the TV, and we will see in Chapter 6 just how

this change may be effected.

A careful discussion here would require clarification of what is meant

by “rain”; will a trace suffice, or is at least 0.01 cm in the rain gauge needed

before rain can be said to have fallen? Which place is being referred to and

where will the gauge be placed? What is meant by “tomorrow”—from

midnight to midnight, or 24 hours from 7 A.M., as might be administratively

more convenient? In this chapter we deal with illustrative examples and can

be casual, but later, when more precision is introduced, these matters will

assume some importance, for example, when the skills of meteorologists in

predicting the weather are being assessed, or when the quality of mercy in a

court of law is described. Again we return to the point in §5.12.

EXAMPLE 2. THE CAPITAL OF LIBERIA IS
MONROVIA

The first example, being about the future, is uncertain for everyone living in

a variable climate, but with Liberia the personal nature of uncertainty is

immediately apparent, as many, but not all of us, are unsure about African

politics. Your ignorance could easily be removed by consulting a reference

source and, for this reason, such statements, commonly put in the form of a

question, are termed almanac questions. The game of Trivial Pursuit is built

around statements of this type and exploits the players’ uncertainties.

EXAMPLE 3. THE DEFENDANT IS GUILTY

This is uncertainty in a court of law, and “guilt” here refers to what truly

happened, not to the subsequent judgment of the court. Although Example 1

referred to the future and Example 2 to the present, this refers to the past.

In the two earlier examples, the truth or falsity of the statement will
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ultimately be revealed; here it will usually remain forever uncertain, though

the primary function of the court is, by the provision of evidence, to remove

much of that uncertainty with the court’s decision. The process of trial in a

court of law will be discussed in §§6.6 and 10.14.

EXAMPLE 4. THE ADDITION OF SELENIUM TO
YOUR DIET WILL REDUCE YOUR CHANCE OF
GETTING CANCER

This is typical of many medical statements of interest today; in another

example, selenium may be replaced by vitamin C and cancer by the

common cold. Generally a treatment is held to affect a condition. Some

medical statements you believe to be true because they are based on a

large body of evidence, whereas others you may consider false and just

quackery; but most are uncertain for you. They refer to topics that might

come within the purview of science, where a scientist might rephrase the

example in a less personal way as “selenium prevents cancer”. This last

statement is a scientific hypothesis, is uncertain, and could be tested in a

clinical trial, where the scientist would additionally be uncertain about

the number of cancers that the trial will expose. Contrary to much popular

belief, science is full of uncertainty and is discussed in Chapter 11.

Scientific experiments and the legal trial of Example 3 are both methods

for reducing uncertainty.

EXAMPLE 5. THE PRINCES IN THE TOWER WERE
MURDERED ON THE ORDERS OF RICHARD III

Richard III was the king of England and mystery surrounds the deaths of

two princes in the Tower of London during his reign. Much of what

happened in history is uncertain and this statement is typical in that it deals

with a specific incident whose truth is not completely known. The argu-

ments to be presented in this book are often thought to be restricted to topics

like gambling (Example 7), or perhaps science (Example 4), but not

relevant to cultural matters like history, art (Example 6), or the law

(Example 3). In fact, they have the potential to apply wherever uncertainty
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is present, which is everywhere. Admittedly historians are rarely explicit

about their doubts but one historian, in accord with the thesis to be

developed here, said that his probability, that the above statement about

the princes was true, was 98%.

EXAMPLE 6. MANY EIGHTEENTH CENTURY
PAINTERS USED LENSES AND MIRRORS

Until recently this was thought unlikely to be true but recent studies have

produced evidence that strongly supports the idea. Science and art are not

necessarily hostile; aside from optics and paint, they come together in the

uncertainty that is present in them both.

EXAMPLE 7. A CARD DRAWN FROM A WELL-
SHUFFLED PACK WILL BE AN ACE

This example is typical of those that were discussed in the first systematic

studies of uncertainty in the seventeenth century, in connection with

gambling, and differs from the previous ones in that the degree of

uncertainty has been measured and agreed by almost everyone. Because

there are four aces in a pack of 52 cards, the chance of an ace is 4 divided by

52, or 1 in 13. Alternatively expressed, since there is one ace for every 12

cards of other denominations, the odds are 12 to 1 against an ace. (“Odds”

and “chance” are here being used informally; their precise meaning will be

discussed in §3.8.) It is usual to refer to the chance but, once you accept the

common value, it becomes your chance. Some people associate personal

luck with cards, so that for them, their chance may not be 1 in 13.

EXAMPLE 8. THE HORSE, HIGH STREET, WILL
WIN THE 2:30 RACE

Horse racing is an activity where the uncertainty is openly recognized and

sometimes used to add to the excitement of the race by betting on the outcome.

Notice that if High Street is quoted at odds of 12 to 1, so that a stake of 1 dollar
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will yield 12 if High Street wins, this largely reflects the amount of money

placed on the horse, not any individual’s uncertainty; certainly not the

bookmaker’s, who expects to make a profit. Your own odds will help you

decide whether or not to bet at 12 to 1. The distinction between betting odds

and odds as belief is explored in §3.8. Betting is discussed in §14.5.

EXAMPLE 9. SHARES IN PHARMACEUTICAL
COMPANIES WILL RISE OVER THE NEXT MONTH

The buying and selling of stocks and shares are uncertain activities because

you do not know whether they will rise or fall in value. In some ways, the

stock exchange is like the race course (Example 8), but there is a difference

in that the odds are clearly displayed for each horse, whereas the quantita-

tive expression of doubt for the stock can only be inferred from its price

now and how it has moved in the past, together with general information

about the market. Gambling in the stock market differs from that at the

casino (Example 7) because the chances at the latter are generally agreed

whereas the existence of buyers and sellers of the same stock at the same

time testifies to lack of agreement.

EXAMPLE 10. INFLATION NEXT YEAR WILL BE
3.7%

Statements of this type, with their emphatic “will be”, often appear in the

media, or even in specialist publications, and are often called either

predictions or forecasts (as with the weather, Example 1). They are surely

uncertain but the confident nature of the statement tends to disguise this

and makes the 3.7% appear firm, whereas everyone, were they to think

about it, would realize that 3.8%, or even 4.5%, is a serious possibility.

The assertion can be improved by inserting “about” before the figure, but

this is still unsatisfactory because it does not indicate how much variation

from 3.7% is anticipated. In general, predictions or forecasts should be

avoided, because they have an air of spurious precision, and replaced by

claims of the form “inflation next year will most likely be between 3.1%

and 4.3%”, though even here “most likely” is imprecise. Exactly how

6 UNCERTAINTY



uncertainty statements about a quantity, here an inflation index, should be

made will be discussed in Chapter 9. Many people are reluctant to admit

uncertainty, at least explicitly.

EXAMPLE 11. THE PROPORTION OF HIV CASES
IN THE POPULATION CURRENTLY EXCEEDS 10%

At first glance this example appears similar to the previous one but notice

it is not an assertion about the future but one concerning the present, the

uncertainty arising partly because not every member of the population will

have been tested. It improves onExample 10 bymaking a claim about a range

of values, above 10%, rather than a single value. People are often surprised by

how little we know about the present, yet at the same time, do not want the

uncertainty removed because the only method of doing so involves an

invasion of privacy, here the testing for HIV. Uncertainty arising from an

inability to question the whole population is considered in Chapter 9.

EXAMPLE 12. IF AN ELECTION WERE TO BE HELD
TOMORROW, 48% WOULD VOTE DEMOCRAT

There are two main causes for the uncertainty here, both of which are

frequently commented upon and thought bymany tomake polls unsatisfactory.

The first is the recognition that in reaching the 48% figure the pollsters

only asked very few people, perhaps thousands in a population of millions;

the second is caused by people either not telling the truth or changing their

views between the question being posed and the action of voting. Methods

for handling the first issue have been developed, and the polling firms are

among the most sophisticated handlers of uncertainty in the world.

EXAMPLE 13. THERE WILL BE A SERIOUS
NUCLEAR ACCIDENT IN BRITAIN NEXT YEAR

The uncertainty here is generally admitted and discussed. Two important

features are the extreme seriousness of the statement if true, and the very
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small chance that it will be true. The balance between these two aspects is

not easy to resolve and is of very real concern in a society where people are

more comfortable with small risks of moderate chance like road accidents,

than with accidents of a nuclear type. Methods are developed to handle this

in §5.5.

EXAMPLE 14. JESUS WAS THE SON OF GOD

For at least some Christians, this statement is not uncertain, nor is it for

atheists, whereas for agnostics, it is uncertain. It is included here because

some people hold that the certainty felt by believers here is different in kind

from the certainty they feel about Monrovia being the capital of Liberia

(Example 2), at least after the almanac has been consulted, one being based

on faith, the other on facts. This is a sensible distinction, for it is

unsatisfactory to equate faith with checking an almanac. Nevertheless,

some of the ideas to be considered in this book may be relevant to

discussions concerning faiths.

Incidentally, it was said in the first sentence of the last paragraph that

the statement was “not uncertain”. The double negative is deliberate

because “certain” is an ambiguous word. It can mean “sure”, as would

be apt here, but it can also mean “particular”. Uncertain does not have this

ambiguity, “unsure” being a near synonym.

EXAMPLE 15. THE BRITISH SHOULD REDUCE
THE AMOUNT OF SATURATED FAT IN THEIR DIET

This example is similar to that concerning selenium (Example 4) but is

expressed in terms of a recommendation and comes with some authority

from a government via the Ministry of Health, who also explain the

reasoning, claiming it will reduce your chance of death from heart disease.

Nevertheless, there is some uncertainty about it if only because people in

some parts of France consume more saturated fat than some people

elsewhere, yet have a lower rate of death from heart disease. Chapter 10

considers the incorporation of uncertainty into action, where statements

like this one about fat can affect one’s actions and where other
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considerations, such as enjoyment of butter, cream, and cheese, need to be

balanced against possible health effects.

EXAMPLE 16. THE PLANTING OF GENETICALLY
MODIFIED (GM) CROPS WILL DAMAGE THE
ENVIRONMENT

Most people consider this statement uncertain, while others are so sure it is

true that they are prepared to take action to destroy any GM crops that are

planted. Indeed, some will go so far as to destroy those grown to provide

information about them and thereby remove, or at least reduce, the

uncertainty. Others recognize the value of GM rice in improving the diets

of some people in the third world. Issues concerning genetic modification

are complex because they can affect both our health and the environment

and also have economic consequences. The ideas to be developed in this

book are designed to fit uncertainties together and to combine them with

our objectives, thus providing some assistance in balancing the many

features of an issue to reach an acceptable conclusion. We have first to

develop concepts appropriate for a single uncertainty, but our real emphasis

has to be on combining uncertainties, and combining them with considera-

tions necessary to implement reasonable actions in the face of uncertainty.

EXAMPLE 17. THE FLIGHT WILL ARRIVE IN
LONDON TOMORROW MORNING

This is a typical, uncertain statement about transportation.Wheneverwe set off

on a journey from one place to another, whether on foot, by bicycle, car, bus,

train, boat or plane, there is uncertainty about whether we shall reach our

destination without mishap and on time, so that it becomes important to

compareuncertainties. It is sometimes said that travel by air is the safest formof

transport, which is true if the measurement is by number of fatal accidents per

thousand miles; unfortunately aviation accidents mostly occur at the start or

finish of the journey, so are concentrated into relatively short periods of time.

Takeoff is optional; landing is compulsory.What are needed are sensibleways

ofmeasuring and comparing uncertainties, and this is what we try to provide in
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this book. People repeatedly find it hard to compare one risk with another,

so that there is need for a way of assessing risks that will help us understand

how the risk of car travel compares with that of planes: how the risk from

Alzheimer’s disease compares with that from serious indulgence in sport-

ing activities. To achieve this it is necessary to measure uncertainty.

EXAMPLE 18. MRS. ANDERSON WAS
ANASTASIA, DAUGHTER OF THE LAST TSAR OF
RUSSIA

Mrs. Anderson was thought by some to be the daughter who others thought

had been killed in the revolution. This historical statement was, until

recently, uncertain, yet of so much interest that several books and a film

were devoted to the mystery. A few years ago I made a study of the available

evidence that led me to think that the statement was probably true, largely

because Mrs. Anderson knew things that it was unlikely anyone but the

Princess would have been expected to know. Later DNA evidence has

virtually removed the uncertainty, demonstrating not merely that she was

not the Princess, but establishing exactly who she was. The mystery having

been destroyed, people have lost interest in Anastasia, demonstrating that

uncertainty can sometimes be enjoyed.

EXAMPLE 19. THE SUN WILL RISE TOMORROW AT
THE TIME STATED

Technically this statement is uncertain for you, because it is possible that

some disturbance will affect our solar system; yet that possibility is so

remote that it is sensible for you to act as if you knew it to be true. We shall

have occasion later to return to the topic of statements that you believe to be

true without totally firm evidence. A relation of mine was sure of her age

but when, in her 50s, she needed a passport for the first time in her life and,

as a result, needed to get her birth certificate to establish her citizenship, she

was astounded to find she was a year younger than she had thought.

Statements of pure logic, like 2� 2¼ 4, are true, but little else has the

solidity of logic.
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EXAMPLE 20. THE SKULL IS 7 MILLION YEARS
OLD AND IS THAT OF A HOMINID

Even for palaeontologists, this is uncertain and there are different opinions

that arise, not because people can be quarrelsome, but because there are

understandable difficulties in fitting the pieces of fossil evidence together.

In the early stages of a study, even when conducted using sound, scientific

principles, there is, as discussed in Chapter 11, a lot of uncertainty. One

aspect has been discussed statistically, namely the assignment of dates, so

that a respectable body of evidence now exists for which the uncertainty has

been, if not removed, at least lessened.

1.3 SUPPRESSION OF UNCERTAINTY

The long list of examples demonstrates how common is the phenome-
non of uncertainty. Everything about the future is uncertain, as is most
of the past; even the present contains a lot of uncertainty, due to your
ignorance, and uncertainty is everywhere about you. Often the uncer-
tainty does not matter and you will be able to proceed as if tomorrow
will be just like today, where the sun will rise, the car will start, the
food will not be poisoned, the boss will be her usual self. Without this
certainty, without this assurance of continuity, life as we know it would
be impossible. Nevertheless, we all encounter situations where you
have to take cognizance of uncertainty and where decisions have to be
made without full knowledge of the facts, as in accepting a job offer or
buying a new house, or even on deciding whether to have a picnic.

Despite uncertainty being all about us, its presence is often denied.
In Britain, though not in the United States, the weather forecast will
state categorically that “it will rain” (Example 1) and then sometimes
look foolish when it does not. Economists will predict the rate of
inflation (Example 10) and then get it wrong, though because the time
scale is different from the meteorologist’s, we sometimes do not notice
the error. This is slightly unfair because, as mentioned in the example,
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economists are mending their ways and quoting intervals, thereby
recognizing the uncertainty. Newspapers can report an HIV rate
(Example 11) as if it were true, or cite the numbers at a demonstration
as fact even though the police and participants differ. Television
executives hang desperately onto audience ratings, largely ignoring
the errors present. People in the humanities rarely mention uncertainty
(Example 5). Even the best historians, who are meticulous with their
sources, can blur the borderline between facts and opinions. Lawyers
(Example 3) do admit uncertainty and use language like “beyond
reasonable doubt” or “the balance of probabilities”; nevertheless, at
the end of the trial the jury has to ignore the uncertainty and pronounce
the defendant “guilty” or not. Politicians are among the worst
examples of people who deny any uncertainty, distorting the true
scenario to make their view appear correct. There are places like the
casino (Example 7) or the race course (Example 8) where the uncer-
tainty is openly admitted and exploited to add to the excitement.

One reason for the suppression is clear: People do not like to be
unsure and instead prefer to have everything sharply defined. They like
to be told emphatically that the sun will shine, rather than to hear that
there might be the chance shower to spoil the picnic, so they embrace
the false confidence of some weather forecasts, though they are
annoyed when the forecast is incorrect. But if some uncertainty is
present, and we have seen that uncertainty is almost everywhere, it is
usually better to face up to it and include it in your thoughts and
actions, rather than suppress it. Recognition of the uncertainty in
investing in stocks, or taking out a pension contract, is valuable
because it helps to guard against things going wrong. Suppression
of uncertainty can cause trouble, as the law has found when it claims to
have removed the uncertainty by the jury announcing a verdict of
guilty. To go to appeal or have a case reviewed can be difficult, partly
because no one likes to admit they were wrong, but partly because the
uncertainty lay unrecognized. Scientists, who are more open about
uncertainty than most, still cling to their beloved theories and have
trouble in accepting the maverick worker, partly because they are
reluctant to entertain uncertainty. There is a clear and beautiful
example of the misplaced dislike of uncertainty in the Ellsberg paradox
discussed in §9.11.
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Part of the thesis of this book is that, instead of neglecting or,
worse still, suppressing uncertainty, it is better to recognize its
presence everywhere, bringing it out into the open and discussing
the concept. Previously this has not been done, partly because it is no
use exposing something if, when you have done so, you do not know
how to handle it, like opening a Pandora’s box of misery. The past and
present neglect and suppression therefore have sense behind them, but
recently a change has taken place and the purpose of this book is to tell
you about it. What has changed is that we now know how to handle
uncertainty; we know what the rules are in Pandora’s box. Beginning
with the study of uncertainty in games of chance, the net has widened
to the appreciation that the simple rules discovered there, and they
are truly simple, just controlled addition and multiplication, apply
beyond gambling to every uncertain situation, so that you can handle
beliefs nearly as assuredly as facts. Early sailors had difficulty going
out of the sight of land but when the rules of navigation became better
understood, with the use of the stars and accurate clocks, voyages
across oceans became practicable. Today we travel the seas, the air,
and even space, because of our understanding of the rules; so I
contend that now the rules of uncertainty have been understood,
we no longer need to neglect or suppress it but can live comfortably
even when we do not know.

1.4 THE REMOVAL OF UNCERTAINTY

If uncertainty is such a common feature of our lives, and yet we do not
like it, the obvious thing to do is to remove it. In the case of the capital
of Liberia (Example 2), this is easily done; one just goes to an almanac
and checks that indeed Monrovia is the capital, though it would be as
well to bear in mind that the almanac may be out of date or even wrong,
or that an error can be made in consulting it, so that some uncertainty
remains, but at least the uncertainty will be lessened. The removal of
uncertainty is not usually as easy as it is with almanac questions. The
court of law is a place where a serious attempt is made to reduce, if not
remove, uncertainty. Some places use an adversarial approach, which
allows both sides to present facts that they think are relevant, in the
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hope that the jury will feel convinced one way or the other about the
defendant’s guilt. Both these examples show that the usual way to
remove or reduce uncertainty is by the production of facts; these are
statements that are essentially free of uncertainty, like the almanac, or
are much more likely to be accepted as true than the original statement.
A major task of this book is to show exactly how this reduction takes
place. The legal process is considered in §10.14.

The adversarial method is not the only way to obtain and process
facts. Scientists collect data and perform experiments, which are
assembled to infer general rules that are often deterministic and
involve little uncertainty, like Newton’s laws of motion. Careful
measurements of the motions of the heavenly bodies led eventually
to accurate calculation of their orbits so that, for example, an eclipse
ceased to be uncertain but could be predicted with great accuracy.
Scientific facts differ from legal facts in that they are repeatable,
whereas legal evidence is not. If a scientist reports the results of an
experiment, then it is an essential feature of the scientific method that
other scientists be able to repeat the experiment and obtain the same
result, whereas the witness’s statement that he was with the defendant
at the time of the crime is not capable of repetition. The repeatability
aspect of science, with its consequent removal of almost all uncer-
tainty, often leads people to think that all science is objective, as it
virtually is after there has been a lot of confirmatory repetition, but
active science is full of uncertainty, as healthy disagreement between
scientists testifies. Science is discussed in Chapter 11.

One of our examples (Example 14) differs in style from the rest in
that the agnostic’s uncertainty about Jesus being the son of God is
difficult to change since no further facts about Jesus are likely to be
obtained. The most plausible way to change is to accept the statement
as an article of faith, essentially removing the uncertainty altogether.
This would ordinarily be done in connection with other features of the
faith, rather than by facts. This is not to say religions do not themselves
change in response to facts. The Catholic Church moved from thinking
of the Earth as the center of our part of the universe, to a view that
centered on the Sun; this in response to astronomical data.

Whether the ideas presented in this book, and especially the three
basic rules, apply to faiths is debatable. The wisest advice is perhaps
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that offered by Oliver Cromwell to the Church of Scotland, “believe it
possible you may be mistaken”. Acceptance of this advice would
lessen tensions between different faiths. Cromwell’s rule for proba-
bility is discussed in §6.8.

1.5 THE USES OF UNCERTAINTY

So far the emphasis has been on our dislike of uncertainty and
methods taken to avoid the phenomenon, yet there are situations in
which you actually enjoy the uncertainty and without it life would
be duller. Examples are provided by mysteries where you do not
know the solution, as with Mrs. Anderson in Example 18; once the
mystery has been cleared up, the story loses its interest. A difference
between a puzzle and, say, uncertainty about your health lies in
the fact that the consequences that could flow from the removal of
the uncertainty are not experienced by you in the first case, but will
be in the second. Once you know she was not Anastasia, you shrug
your shoulders and pass onto the next puzzle; once you are diag-
nosed as having cancer you have to live with the unpleasantness. So
perhaps it is not that we dislike uncertainty; rather we are concerned
about possible outcomes. Perhaps it is not the uncertainty about the
rain (Example 1) that concerns us but rather the thought of the
spoiled picnic.

Yet this cannot be the whole story, as there are uncertainties that
many of us enjoy, where we do have to experience the results, some
of which may, if we overindulge, be most unpleasant. The obvious
ones are gambling with cards (Example 7) or betting on the horses
(Example 8). Here we can, and often do, lose our money, yet we
gamble because of the excitement found in the activity. Our study
will reveal how this enjoyment, quite apart from monetary consider-
ations, can be combined with the rules mentioned earlier to provide a
reasoned account of gambling.

Here is a serious example of the benefits of uncertainty. In
Chapter 8 we shall discuss clinical trials, that is, experiments in
which patients are given a treatment or a drug to investigate whether
it improves their health. In order to assess the drug’s effectiveness,
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it is necessary to take other, similar patients and give them a placebo,
something that is outwardly like the drug but in fact contains only
some innocuous material. Comparing the changes in the patients on
the drug with those receiving the placebo, it is possible to measure the
value of the drug. In order that the conclusions from a trial be reliable,
it has to be conducted with care and one precaution is to ensure that
the patients do not know whether they are receiving the drug or the
placebo. To anticipate a term to be introduced in §3.2, the patients on
the drug are selected at random from a pool of patients, so that every
participant in the trial is uncertain about what they are taking. It is also
desirable to ensure that the clinician conducting the trial is equally
uncertain, as we shall seewhen discussing Simpson’s paradox in §8.2.
Many experiments today actively encourage an element of uncer-
tainty, by selecting at random, in order to make the results more
reliable than they would be were it not present.

There is another merit of uncertainty that appears whenever a
competitive element is present, as in sport or the conduct of war. If you
are competing against an opponent, then it is to your advantage to
increase their uncertainty, for example, by creating the impression
that you are about to do one thing when you intend to do another. There
will be little in this book about the bluffing aspect of uncertainty
because we are concerned with a single person, the “you” of the
language introduced in §1.7, and there are real difficulties in extending
the calculus to two “yous” that are in competition. A famous, simple
example of this is the prisoner’s dilemma, mentioned in §5.11. We
develop a calculus for “you”; there does not exist an entirely satisfac-
tory calculus for two or more competitors and, in my view, this
omission presents a serious, unsolved problem.

Notice that in the competitive situation it is not so much that you
want your opponent to be uncertain, or even wrong, but that you want
to have information that they do not have. You know when you are
going to attack, they do not. It is your information that matters,
information to be kept from them. Information is power, which is
why politicians, when in power, hate the open government that they
espoused when in opposition. One of our principal tasks will be to see
how information can be used to your advantage. The concept of
information within the calculus is treated in §6.12.
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1.6 THE CALCULUS OF UNCERTAINTY

In this book uncertainty is recognized and accepted as an important
part of our lives. No attempt is made to disguise or deny it; rather it is
brought out into the open and we learn to handle it as confidently as we
do those features about which we are sure. We learn to calculate with
uncertainty, much as a card-player calculates the situations in a game
of bridge. Indeed, the rules of calculation are essentially those that
operate in cards or roulette.

In most circumstances that operate in cards, more than one feature
is uncertain and the various uncertainties need to be combined.
Similarly, a juror hearing witnesses will be uncertain about their
veracity and need to meld it with the doubts concerning the defend-
ant’s guilt. A scientist performing an experiment may be uncertain
about the pressure used, the purity of the material, as well as about the
theory under investigation. In reacting to the offer of a job, you will be
uncertain about the move involved, the nature of the work, and many
other features. A doctor will need to combine appreciation of the
uncertain symptoms in order to reach an overall diagnosis. In every one
of these cases, many uncertainties have to be amalgamated to produce
the overall judgment, so that a central task is for us to see how to put
several uncertainties together.

There are things that combine very easily: numbers. Addition and
multiplication are so easy that even a computer can perform them, a
computer being only as wise as its programmer. One day we may have
artificial intelligence but today most computers can only perform the
logic they have been taught. If then, we could measure uncertainty, in
the sense of attaching numbers to the statements, just as we did above
with the ace drawn from the pack of cards, then the combination would
present fewer difficulties and involve only the rules of arithmetic. This
will be done; we will measure uncertainty, and then develop the three
wonderful rules of combination. It is in the appreciation of the rules,
and the ability to use them, that the strength of this book resides. We
shall calculate with uncertainties and the machinery to do this is called
the calculus of uncertainty.

Scientists already use statistical methods, developed from these
rules, to help them interpret their data. It will be sometime before

1.6 THE CALCULUS OF UNCERTAINTY 17



jurors have their computer with them to assess the uncertain guilt, but
the beginning of the idea can be seen in the treatment of forensic
science in §6.6. One day the historian will calculate the odds against
Richard III being the culprit (Example 5) rather than plucking a
number out of the air as the historian quoted might have done.

It is an unfortunate fact of life that many people, especially those
working in the arts or the media, have a strong dislike of numbers and
are unhappy using them. Although there is likely to be genuine
variation in the ease with which numbers are handled, my personal
belief is that almost all can be taught to manipulate with figures and,
just as important, appreciate the power that such a facility can bring.
Here we shall calculate but I have tried to expound the mechanics in a
simple manner. All that I ask is a willingness on the reader’s part to
cooperate by showing some motivation to learn, genuinely to want to
understand uncertainty.

1.7 BELIEFS

We have seen that uncertainty involves a statement, whose truth is
contemplated by a person. It is now convenient to introduce the
standard language that is used in the calculus of uncertainty. Instead
of “statement”, we refer to an “event”, thus the event of rain tomorrow
or the event of selenium affecting cancer. Sometimes “event” will
seem a strange nomenclature, as when referring to the event that
Monrovia is the capital of Liberia, but it is usually apt and experience
has shown that it is useful as a standard term. Thus an event is uncertain
for you if you do not know whether it is true or not.

We also need to have a term for the person facing the uncertainty
for, as we have seen, one person’s uncertainty can be different from
another’s. As already mentioned, the term “you” will be used and we
will talk about your uncertainty for the event. In many cases you, the
reader, can think of it as a reference to yourself, while in others it may
be better to think of someone else.

A term is needed to describe what it is that you feel about the
event. The phrase usually employed is “degree of belief”; and we will
talk about your degree of belief in the truth of the event, so that you
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have the highest belief when you think it is true, and least when false.
Belief is a useful word because it does emphasize that the uncertainty
we are talking about is a relationship between you, on the one hand,
and an event, on the other. Belief does not reside entirely with you
because it refers to the world external to you. Belief is not a property
of that world because your degree of belief may reasonably be
different from mine. Rather belief expresses a relationship between
you and the world, in particular between you and an event in that
world. The word that will be used to measure the strength of your
belief is probability, so that we talk about your probability that an
event is true, or more succinctly, your probability for the event. One
of the greatest experts on probability, having written a two-volume
work on the topic, calling it simply Theory of Probability, wanted an
aphorism to include in his preface that would encapsulate the basic
concept expressed therein. He chose:

Probability does not exist.

It was intended to shock, for having written 675 pages on a topic, it did
not seem sensible to say the topic did not exist. But having brought it to
your attention by the shock, its meaning becomes apparent; probability
does not exist as a property of the world in the way that distance does,
for distance between two points, properly measured, is the same for all
of us, it is objective, whereas probability depends on the person
looking at the world, on you, as well as on the event, that aspect of
the world under consideration. Throughout this book we will refer to
your probability, though the use of the probability is so common in the
literature that I may have slipped into the false usage unintentionally.

Our task in this book is to measure beliefs through probability, to
see how they combine and how they change with new information.
This book is therefore about your beliefs in events. It is not about
what those beliefs should be, instead it is solely about how those
beliefs should be organized; how they need to relate, one to another.
An analogy will prove useful, provided it is recognized that it is only
an analogy and cannot prove anything but is merely suggestive.
Suppose that this was a book about geometry, then it would contain
results about the shapes of figures, for example, that the angles of a

1.7 BELIEFS 19



plane triangle add to 180 degrees, but it would not tell you what the
angles have to be. In fact they can be anything, provided they are
positive and add to 180 degrees. It is the same with the beliefs
described here, where there will be results, analogous to the sum of
the angles of a triangle being 180 degrees, that provide rules that
beliefs must obey. We shall say little about what the individual beliefs
might be, just as little is said about the individual angles. If you have
high belief that the Earth is flat, then there is nothing in our rules to
say you are wrong, merely that you are unusual, just as a triangle with
one angle only a fraction of a degree is unusual. We claim that the
rules provided are universal and should not be broken, but that they
can incorporate a wide range of disparate opinions.

Before writing these words, I had heard an argument on the radio
between a representative of a multinational corporation and another
from an environmental organization. The arguments presented in this
book have little to say about who is correct but they have a lot to say
about whether either of the participants had organized their beliefs
sensibly. It is my hope that correct organization, combined with
additional information, will help in bringing the speakers together.

1.8 DECISION ANALYSIS

We all have beliefs and in this book we try to show how they should be
organized, but not what they should be. There is, however, a basic
question that we need to answer:

What is the point of having beliefs and why should we organize our
opinions?

The answer is that we have beliefs in order to use them to improve
the way in which we run our lives. If you believe that it will rain
tomorrow, you will act on this and not go on with the picnic, but go for
an indoor entertainment instead. Action is not essential for beliefs and
most of us will not be influenced in our actions by our beliefs
concerning the Princes in the Tower (Example 5), but if action is
contemplated, as with the picnic, then our beliefs should be capable of
being used to decide what the action should be.
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This attitude toward beliefs is pragmatic in the sense that it assesses
them by how they perform as a guide to action, and it leads from the
sole consideration of your attitude toward an uncertain world, to how
you are to behave in that world. Some hold that belief is inseparable
from action, while we prefer to develop the calculus of belief first, and
then extend it to embrace action. The relationship here is asymmetric:
actions require beliefs, but beliefs do not necessitate action.

The topic that deals with the use of beliefs in action is called
“decision analysis”, and it analyzes how you might decide between
different courses of action, without saying what the decisions should
be, only how they should be organized. The passage from belief to
action will introduce a new concept that needs to be blended with the
beliefs in order to produce a recommended action. Example 13
supplies an illustration, where the seriousness of the nuclear accident
needs to be blended with the small belief that it will happen, in order to
decide whether to build more nuclear power plants. The subject is
covered in Chapter 10.

In summary, this book is about your approach to uncertainty, how
your beliefs should be organized, and how they need to be used in
deciding what to do. Before we embark on the program, it is necessary
to comment on the method used to tackle these problems. These
commentaries form the content of the next chapter and only in
Chapter 3 will the development proper begin.
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CHAPTER2

Stylistic Questions

2.1 REASON

The approach adopted, at least at the beginning of this book, is based
firmly on reason, the wonderful facility that human beings possess,
enabling them to comprehend and manipulate the world about them;
and only later will emotional and spiritual aspects of uncertainty be
considered. “Reason centers attention on the faculty for order, sense,
and rationality in thought” says Webster’s dictionary, going on to note
that “reason is logic; its principle is consistency: it requires that
conclusions shall contain nothing not already given in their premises”.
A contrasting concept is emotion “the argument which is not an
argument, but an appeal to the emotions”.

The program that will be adopted is to state some properties of
uncertainty that seem simple and obvious, the premises mentioned in
the second quotation above, and from them to deduce by reasoning
other, more complicated properties that can be usefully applied. As an
example of a premise, suppose you think it is more likely to rain
tomorrow than that your train today will be late; also that the latter
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event is more likely than that your car will break down on traveling to
the railway station; then it is necessary that you think rain is more
likely than the breakdown. The references to rain, trains, and accidents
are not important; the essential concept is contained in an abstraction.
Recalling our use of “you”, “event”, and “belief” as described in § 1.7,
the premise is that if you have stronger belief in eventA than in event B;
and, at the same time, stronger belief in event B than in event C, then
necessarily you have stronger belief in A than in C, the exact meanings
of A, B, and C being irrelevant. Starting from abstract premises like
this, pure reasoning in the form of logic will be used to deduce other
properties of uncertainty that can then be applied to concrete situations
to give useful results. Thus, abstract A becomes “rain”, B refers to the
train, and C refers to the breakdown. This premise is discussed in some
detail in §12.10.

There are two points to be made about the premises. Firstly, they
are intended to be elementary, straightforward, and obvious, so that
no justification is needed and, after reasonable reflection, you will
be able to accept them. Secondly, they should be judged in con-
junction with the results that flow from them by pure reasoning. It is
the package of premises and results that counts, more than the
individual items, for if one of the premises is false, then all the
consequences are suspect. If you, the reader, find one of the
premises unacceptable, as you might that given above, then I would
ask you to bear with it and follow through the argument to see where
reason takes you; and only then to reach a final judgment. I know of
no conclusion that follows by pure reason from the premises
adopted here, which appears unsound. Although we shall meet
conclusions that at first surprise, further reflection suggests that
they are correct and that our common sense is faulty. Indeed, one of
the merits of our approach is that it does produce results that conflict
with common sense and yet, on careful consideration, are seen to be
sound. In other words, it is possible to improve on common sense.
The whole package will be termed a calculus, a method of calcu-
lating with beliefs.

There is an additional reason for thinking that the conclusions are
sound, which rests on the fact that different sets of premises lead to the
same conclusions. For example, the premise cited above can be
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avoided and replaced by another that some find more acceptable,
without altering the whole structure. Though only one line of argument
will be used in this book, mention will be made of other approaches,
the important result being that all lead to the same calculus. It is like
several people starting out from different places but finding that all
roads lead to Rome. The metaphor is a happy one since one of the
leaders in developing a proper understanding of uncertainty, Bruno de
Finetti, was a professor in Rome and stood in an election there. Other
writers have used premises that do not lead to Rome, while others have
dispensed with premises and suggested a calculus that differs from
ours. Some of these will be considered from §5.7 onward, but for the
moment I ask you to go along, at least temporarily, with the premises
and the logic, to see where they lead and how you feel about the
construction as a whole. Remember that Newton’s premises, his
laws of motion, might appear to be abstract, but when they enable
the time of an eclipse at a site to be predicted years in advance, they
become real.

People are often very good at raising objections to even simple,
direct statements. This is no doubt, on occasions, a useful ability, but
objections alone are worthless; they must be accompanied by con-
structive ideas, for otherwise we are left with the miasma that
uncertainty presents to us. For many years, I, and many others, had
used a premise that appeared eminently sensible and led to apparently
excellent results, only to have three colleagues come along with a
demonstration that the premise led to an unacceptable conclusion but,
at the same time, they showed how a change in the premise avoided the
unsound result. This was good, constructive criticism. Our psychology
makes us reluctant to admit errors, especially when the errors destroy
some of our cherished results, but it has to be done and the amended
results are strengthened bymy colleagues’ perspicacity. So if you think
one of the premises used in this book is unsound, be constructive and
not merely destructive.

The role of reasoning in appreciating uncertainty has been empha-
sized because reasoning does not play an important role in some books,
so that ours will appear different in some regards from others. To
appreciate some of the lines of argument taken here, let us look at the
lack of reason in other places.
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2.2 UNREASON

Literature

Reasoning, quite sensibly, plays but a small role in literature. Some
literature has the straightforward aim of telling a tale, of entertaining,
and save for detective novels, few make a pretence of reasoning. Other
literature tries, often successfully, to develop insights into the way
people and society behave and, to use a term that will occur later, are
essentially descriptive. Because people, either individually or collect-
ively, do not use much reasoning, so neither does the description. For
example, there is little reasoning in Othello’s behavior as he lets his
emotions reign with disastrous results. No criticism of Shakespeare is
implied here for he does provide us with insights into the workings of
the human mind.

Advertising

Whatever reasoning goes on in advertising agencies (and much of it
must be good to judge from the effectiveness of the results), the final
product is lacking in reason. An advertisement for beer will develop a
macho image or a catchy phrase but will fail to mention the way the
product is made or the effects that over-consumption might have. The
advertisements for lotteries concentrate on the jackpot and fail to
mention either the tax element or the profits, let alone the odds. The
barrage of advertising that surrounds us does not encourage the faculty
of reason; indeed, much of it is deliberately designed to suppress
reason, as in the encouragement we receive to eat junk food. Many
advertisements persuade us to buy the product, not by reasoning about
its qualities but by associating it with an image that we regard
favorably. Thus a car that might be attractive to a man has a beautiful
woman in the advertisement but makes no mention of its cost. This
method of inveigling you into a purchase is unfortunate but a more
serious consequence of the continual repetition of this form of
persuasion may cause you to abandon reason generally. For instance,
you may be led to vote for one party in an election, in preference to
another, because its image seemed more attractive, rather than because
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its policies were better. Spin overcomes substance and bad thinking
drives out the good. It is sensible to claim that some advertising makes
a contribution to the ills of society, by driving out logical approaches
and thereby increasing the possibilities for serious errors.

Politics

In a democratic society with opposing parties, there is an element of
conflict because the parties use different premises and the reasoning
that flows from them, though these features are often not spelt out
honestly. In their simplest form, seen in Europe, these are the premises
of capitalism, with its emphasis on the individual: and in opposition,
those of socialism with social considerations to the fore. The effect of
the existence of at least two sets of arguments means that much of the
political process consists in one party trying to convince the other that
it is wrong, conviction gets involved with emotion so that the discus-
sion becomes emotional and reason is displaced. This is in addition to
the element of conflict mentioned in §1.5. The lack of reasoning is
more recently emphasized by the use of spin.

Law

Good law is good reasoning but, in court, where the adversary system
is used, emotion sometimes replaces reason. A lawyer, needing to
show that the conclusions of this book, as applied to forensic science,
were unsound and being unable to do so, resorted to defaming the
scientist by referring to the more disreputable aspects of gambling,
thereby using emotions to overcome the lack of reason.

Television

Most television programs are for entertainment and cannot be
expected to deal with reason. But there are “serious” programs,
such as those devoted to science, where reason, which is at the basis
of scientific thinking, might be expected to be present, though
sometimes it is not. The dominant view is that science must be
presented as entertainment, the screen must be full of pretty images,
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and the scene must shift with great frequency lest the viewer becomes
bored; graphs of considerable ingenuity, and in bright colors, are
presented without any hint as to what the axes are. This travesty of
science arises because the programs are being viewed as entertain-
ment and are primarily developed by entertainers who are not
familiar with the scientific mode of thought. Of course science needs
to be presented in an interesting way, but the entertainment level
should always be subservient to the reasoning.

In Western societies today, and certainly those of Britain and the
United States with which I am familiar, there is a tendency to disparage
reason and place an emphasis on emotions, as we have seen in
literature and advertising. One reason for this is the lack of balance
between what C.P. Snow called the two cultures, of the arts and
science, one predominately emotional, the other mainly logical.
Both cultures are valuable and there is no suggestion that one is right,
the other wrong, but rather that the balance has shifted too far toward
emotional appeals. We will return to this point in §2.8, but in the
meantime, I would ask readers to be prepared for a surfeit of reason
when they have been used to one of emotion.

2.3 FACTS

Although this book is about your not knowing the truth about events,
there are some events that you do know to be true, or would accept as
true were you to have the information. You know that the capital of
Liberia is Monrovia, or will know when you have consulted the
almanac. You know your age, though recall my relative in §1.2;
you know that the Sun is 93 million miles from the Earth, on average;
you may know that Denmark voted to join the European Union. Such
events will be termed facts. While philosophers will sensibly debate
exactly what are facts, some suggesting only logical truths, like two
plus two equals four, most of us will recognize a fact when we
encounter one. It is not surprising that in talking about uncertainty
we should lean heavily on facts, just as the court of law does when
interrogating witnesses. Facts form a sort of bedrock on which we can
build the shifting sands of uncertainty.
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Yet many people do not like facts. This is especially true when the
facts go counter to the opinions they hold. There are many examples of
governments that have tried to suppress facts that speak against their
policies. There is an old adage: “do not bother me with facts, my mind
is made up”. We have all experienced discomfort when we have to
admit as true a fact that conflicts with our opinions, yet would embrace
a truth that supports it. A newspaper editor had the right idea when he
remarked that “facts are sacred, comment is free”. It is this view that
will be adopted here and we will study how facts ought to be used to
influence our beliefs, which are free.

The development here will be based firmly on reason and much of
the reasoning will be with facts, because it is the observation of facts
that is a major feature in changing your beliefs about events that are
uncertain for you and therefore not facts. Thus, you are uncertain about
rain tomorrow, so before retiring you look out of the window and see
storm clouds gathering, a fact that changes your belief about
tomorrow’s rain.

2.4 EMOTION

Although this book will be firmly based on reason and facts, an
approach that consists entirely in logical development from premises
and the incorporation of facts will be boring and, worse still, irrelevant
to a real world that has a richness that owes much to other things
beyond reason. Consider these two features, boredom and irrelevance.

It need not be true that reasoning is boring, for if it is accompanied
by illustrations that interest the reader, then the ideas can leap into life
and have a reality that reason alone lacks. I cannot say how well this
has been done here, but concepts like Simpson’s paradox in §8.2 seem
to most people to be full of interest and lead to a valuable under-
standing of how some apparently sensible conclusions from facts can
be erroneous.

The charge of irrelevance is more serious and to treat beliefs and
decision making without reference to emotion would mean that the
ideas would be irrelevant to a world that is rightly full of emotion, and
would regard us as nothing more than calculators. Fortunately the
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charge of irrelevance can easily be rebutted, for the path of pure reason
leads to a surprise.

There will come a point in the development of the calculus of
uncertainty (§10.7) where pure reason will insist that something new
has to be introduced and where beliefs alone call out for extra ideas. An
additional concept has to be included, a concept to which we are led by
pure reason. When we try to interpret this new idea, we see that it deals
with emotion. At the funeral service for Princess Diana in Westminster
Abbey, there was some music by Verdi, followed by some by Elton
John, as a result of which I felt uplifted by the magnificent singing in
the glorious building, only to have it shattered by the sound produced
by a pop star. It was tempting to say that I believe Verdi is better than
John, but this is not true in the same sense that I believe it will rain
tomorrow, for the rainfall can be measured, whereas there is no clear,
impersonal meaning to Verdi’s offering being better than John’s. No,
my preference for Verdi over John is just that, a preference, and my
feelings expressed themselves with emotion, not reason. So it is with
our reasoned development about uncertainty. The calculations we need
to do cry out for preferences, in addition to beliefs, that depend on
emotion, not on reason alone. It would be good to establish a reasoned
relationship between Verdi and John (it sounds better if the Italian’s
name is translated and we use John’s real name, and contrast Joe Green
with Reggie Dwight), but it cannot be done and I must be content with
my preferences and let Dwight ruin the occasion, just as Green may
have spoilt it for others.

What the reasoned approach reveals is that emotional considera-
tions must be considered and that, just as we measure belief, so we
need to measure our preferences. Emotion is included, not because we
feel it desirable, but because reason demands it. The motive for
measuring emotional preferences is exactly the same as that advanced
for the measurement of belief in §1.6 and enlarged upon later in §3.1.
Your beliefs will be measured by probabilities; your preferences by the
rather unemotional word, utility, so that my utility for Verdi exceeds
that for John, both concepts being personal. We shall not abandon that
element of life that provides so much interest but incorporate it into our
reason; indeed, incorporate it in a way that makes the two fit together
like pieces in a good jigsaw—sometimes so well that they cannot
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easily be separated. One example has already been met in §1.5 when it
was pointed out that when gambling, people take into account the
excitement of the gamble in addition to the monetary experiences, here
expressed by saying that their utility depends on cash and thrill. Utility
is the emotion pleading to be let into the house of pure reason and
thereby enriching it.

2.5 NORMATIVE AND DESCRIPTIVE APPROACHES

The claim is therefore made that the approach to uncertainty developed
here incorporates many aspects of human endeavor; and this despite
the strict adherence to reason. It enables you to both incorporate your
beliefs and include your emotional and spiritual preferences. It does
not tell you what to believe nor what to enjoy but merely says how you
should organize your beliefs and preferences in a reasoned way,
leading to a reasoned action. It is for all: for atheist and believer,
for manager and hedonist, for introvert and extrovert. It is for everyone.
Yet there is something that it is not.

In society people believe and act in ways that have been recorded in
literature and studied by psychologists and sociologists. What emerges
from these studies is a description of the way people act and believe.
Literature is mainly a description as when Shakespeare describes what
Othello did and thought in reaction to Iago. Psychologists describe
peoples’ actions through observations and experiments, proceeding to
explain the results in general terms. Advertising agencies have
exploited the way people behave to present their products. All these
approaches start from the observation of people and how they behave
in reaction to circumstances, some behavior seeming, on reflection, to
be sensible; others, in contrast, to be perverse or even stupid.

The approach here is somewhat the reverse, in that we begin by
considering what is sensible in very straightforward circumstances,
the premises already referred to, and then use reason to extend
simple sense to more complicated scenarios. We use reason to
provide what is termed a normative or prescriptive approach, where
the methods of organizing beliefs provide a norm or a prescription
against which the descriptive material can be contrasted. If, in this
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contrast, of prescriptive and descriptive, the normative view is found
to be wanting, then it must be abandoned. I know of no case where
the normative view can unequivocally be held to be poor in compari-
son with what happens in the description of reality. Often one needs
care in applying the norm, but it can either be made to fit, as with
behavior over gambling, or the actuality can be seen to be wrong, as
with Ellsberg’s paradox in §9.11.

Here is an example of a clash between descriptive and normative
modes. We shall discuss the scientific method in Chapter 11 within
the framework of probabilities and utilities, going on to discover how
scientists ought to analyze their experimental results. But if we look
at the way the scientists actually behave, we shall find that although
they generally do fit into the normative framework, at least approxi-
mately, there are many occasions when they do not. Real scientists
do not always behave like the normative scientist. Some of the
criticisms that have been leveled against science have aspects of the
descriptive viewpoint and are irrelevant for the normative attitude.
Scientists are human beings, not mere calculators, and all we claim
is that they can be assisted by the methods described here; not that
they must use only these methods. Genius does not operate accord-
ing to rules.

A claim for the normative method is that, if implemented, it should
result in better decisions. For example, scientists sometimes use
methods for assessing the uncertainty of their hypotheses that can
be shown to be unsound, like the tail-area significance tests described
in §§11.10 and 14.4. Scientists ought, according to the normative
viewpoint, to assess their hypotheses according to a result named after
its discoverer, Bayes, and were they to do so, their analyses would, we
claim, be more efficient. The normative analysis describes some
aspects of how one ought to behave, not how one does behave.

The normative theory is sometimes criticized because it does not
describe how theworld actually works. It has been said that some of the
results are without value because people do not, or even could not,
obey them. To that, my reply is how could people obey the normative
conclusions when they are not aware of them and, even if they were,
have received no training in their use. People cannot calculate without
training in arithmetic or in the use of calculators. Why should they be
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able to use the normative ideas here presented without instruction?
Many psychological studies of human decision making are as
irrelevant to logical decision making as would be a similar study of
people doing multiplication who have received no training in
arithmetic.

One field in which the distinction between normative and descrip-
tive approaches has been recognized is economics. Important parts of
this discipline are based upon the prescription that people base their
behavior on rational expectation, a notion that will be extended and
formulated precisely in the concept of maximization of expected utility
(MEU) in §10.4. However, there is much evidence that people are not
rational, in the economist’s sense; nor do they take into account
expectation, in the precise interpretation of that word. As a result
economic theory often does not correspond with what happens in the
market. Some would argue that we need descriptive economics.
I would argue that all should be taught about probability, utility,
and MEU and act accordingly.

The fact that the normative and descriptive results are so often
different is most encouraging, for suppose they were typically the
same, then all the arguments in this book, all the probabilities and
utilities, would merely serve to show you were right all along and
my only reward would be to give a boost to your confidence. That
the normative and descriptive results are different, and when they
are the normative is better, suggests that the tools for handling
uncertainty here developed would, if used, be of benefit to
society.

2.6 SIMPLICITY

The analysis will begin by making some assumptions, or premises, that
may seem to you to be too simple, and therefore unacceptable, or at
best only approximations. This aim for simplicity is deliberate, for
simple things have considerable advantages over the complicated.
There are people who rejoice in the complicated saying, quite cor-
rectly, that the real world is complicated and that it is unreasonable to
treat it as if it was simple. They enjoy the involved because it is so hard
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for anyone to demonstrate that what they are saying can be wrong,
whereas in a simple argument, fallacies are more easily exposed. Yet it
is easy to show by example that they can be wrong through being
complicated.

Consider our solar system with its planets, sun, moons, asteroids,
and comets. It is truly complicated for one planet has life on it, another
is hot, another has rings, and they appear to move across the sky in
complicated ways. Yet forget life and heat and other complications and
think of planets as point masses, surely a gross simplification. Newton
was able to show that if this were done it was possible to account for
the movements by means of a few simple laws, which were so
successful that today we can foretell an eclipse with great accuracy
and even evaluate the tides. Our claim is that the rules that will be
developed here for uncertainty are, in this respect, just like Newton’s.
Our rules are few in number (three), simple and capable of great
development, and they deal with uncertainty in the way that Newton
dealt with motion.

There are two great merits to simplicity. The first is that if an idea is
simple it is much easier to develop it, and produce new results, than is
possible with complications. To return to Newton again, from his
simple ideas it was possible for him, and other scientists, to predict
many phenomena in the physical world, which, when checked against
reality, were seen to be correct. Contrast this with the complicated
ideas of others that were incapable of being extended to other situa-
tions. The second advantage of simplicity is that of ease of communi-
cation, for simple concepts presented by one person are more easily
understood by another than are complicated ones. It is no good having
a simple idea from which, because of its simplicity, many ideas flow, if
they are found to disagree with reality. It is an interesting observation,
one sensibly discussed by philosophers, why nature does often appear
to us to be so simple. Quantum electrodynamics, with its few premises,
explains all of physics except the nucleus and gravitation. The genetic
code holds promise of explaining a lot of biology. Simplicity, always
checked against facts, is a wonderfully successful idea, so if our
description of uncertainty at first feels too simple, even na€ıve, please
bear with us and see what happens. I hope that you will not be
disappointed.
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2.7 MATHEMATICS

Anyone taking this volume off the shelves of a bookstore and flipping
through the pages will see some mathematical symbols, which may
frighten them and lead to their replacing it on the shelves unread and
unpurchased. Perhaps there should be a health warning attached—
“Danger, this book contains mathematics”. This would be a pity for it
would better read—“The germ of mathematics contained herein is
harmless”. There is some mathematics here, so let me try to explain
why and of what it consists, for it really is harmless, indeed it is
positively therapeutic.

For reasons that mathematicians find hard to understand, many
people have an aversion to math, castigating it as boring or irrelevant,
escaping from instruction in it as soon as possible. The blindness of the
humanities tomathematics is unfortunate butmust be recognized, hence
the words of explanation that follow. The first aspect of mathematics
should cause no real problem; it is just another language and is no more
formidable than any foreign language. Because our discourse is limited
to uncertainty, only a small part of the language will be needed, such as
might be contained in a simple phrase book for tourists and the
translation, from the English language to the mathematical, thereby
eased. When, later on, we write pðAjBÞ, it is merely a translation into
mathematical language of the English phrase: “your probability that the
defendant committed the crime, given the evidence that has been
presented in court”. (For the moment, let us not concern ourselves
with how the translation is effected.) One advantage of themathematical
form is apparent, it is much shorter; indeed, it is a shorthand.

A second aspect of mathematics is its ability to deal with abstrac-
tions. Many people have difficulty in handling general concepts,
preferring to think in terms of special cases. Thus, when I remark
to someone that “smoking is a cause of lung cancer”, they are quite
likely to reply that their uncle smoked like a chimney and lived to 85,
failing to notice that their single case weighs but little against the tens
of thousands in the trials that led to the generalization. Mathematics
handles generalizations with ease. We have already done a little
mathematics, perhaps without you even noticing it, for when
in §2.1 a possible premise was described, it was put in the form
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“if you have stronger belief in event A than in event B and, at the same
time, stronger belief in event B than in event C, then necessarily you
have stronger belief in A than in C ”. There is the abstraction, for A, B,
and C can be any events satisfying the first two conditions, the premise
asserting that they must necessarily satisfy the third. We had an
example with A dealing with rain, B with the train, and C with
your car, but the principle expressed in the premise is general and
therein lies the abstraction. The only real novelty is the use of capital
letters, which provide the required generality. The same idea holds with
pðAjBÞ above, for A and B are two events, in the “translation” A is the
defendant’s guilt,B the evidence; but wewant to talk about probabilities
generally and this can be done using letters. The use of pðjÞ will be
discussed later. Onemajor reason whywe usemathematics is to achieve
this abstraction, to be able to talk about any uncertainty without
restriction to a topic like weather or guilt. Mathematics is a language
of abstract ideas, which is perhaps why some people find it difficult, but
it can be enlivened by examples, which is partly why we began with so
many in Chapter 1. Of course the abstraction is enhanced if it can be
applied, and it is amazing how many abstract concepts developed by
mathematicians without any reference to reality, have proved to be
relevant to the real world. I have just read an article about whales, which
uses the concept of a Borel field, an abstract idea developed by a French
mathematician. My knowledge of whaling is not sufficient to judge its
usefulness, but at least the Whaling Commission thought it so by
publishing the article in its journal.

Language and abstraction are the two key aspects of mathematics
that are used here, and my hope is that they will be of little trouble to
you, but there is a third aspect that could be the cause of great
difficulties. Having got the language and the symbols for the general-
ity, the mathematician uses an enormous battery of devices to manip-
ulate the language, thereby creating new results. This is the technical
side of the subject and one that the general reader cannot be expected to
handle, sowhat is to be done? The procedure adopted here is to give the
technical procedure whenever I feel that it is simple, which it fortu-
nately is in most of the problems that will be met, but merely to
indicate the new results in more difficult cases. Why not, do I hear you
say, omit all the technical problems? The reason is that, in my opinion,
it helps enormously to know why something is true, rather than being
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told it is true, for why should you believe me? Never believe anything
on the authority of a single person but seek confirmation—and reason
is the best confirmation. For example, we shall meet Bayes rule, one of
the most important results in our appreciation of the uncertain world,
fit to rank with those of Einstein or Newton in the physical world.
I want to convince you that what the rule says must be correct; it has
got to be that way. The best way to convince you is to prove it to you,
and that is what will be done in §6.3.

If we are going together into technicalities, we need a little
preparation, so the final section of this chapter, §2.9, contains what
little preparatory mathematics I feel you need to know before reading
what follows. At least you need to have the translation from English,
and essentially §2.9 provides the phrase book you require before
entering the foreign country of the mathematician. So come and
explore this strange country. Mathematics is a universal language
because it deals with reason, which is common to all of us, unlike
religion or literature. I can speak to a Pakistani statistician almost as
easily as to my British colleagues simply because we share pðAjBÞ.

2.8 WRITING

The primary purpose of this book is to convey information about
uncertainty to you, the reader, and the book should mainly be judged
by how well you understand the concepts on completion of your
reading. Sound content and elegant clarity are my objectives. As a
result, this book differs in style from much modern writing, where the
conveying of information does not have high priority, and style matters
as much as content. The differences in objectives between science
writing and much of modern literature call for a few comments on
style. Writing is a linear procedure in that it effectively occupies a
single line from first word to last, only physical necessity breaking it
up into separate lines and pages. The clearest expression of this
linearity used to be found in the early days of computers where the
information was fed in on a tape, an unbroken sequence of symbols.
This linearity is a nuisance when reason is employed because reason-
ing is not linear but has connections both backwards and forwards,
connections that can be described on tape only by special devices, such
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as “go to”. Consequently, this book has been divided into sections, so
that it is possible to refer back and forth to the text that is related to the
matter under immediate discussion. The unfortunate result of this is
that the reader cannot turn over the pages in sequence but must
necessarily search other pages to experience the complete argument.
Each section is numbered in the form a.b, where a is the number of the
chapter and b that of the section in that chapter. Thus, you are now
reading section (denoted by§) 2.8, being the eighth section in Chapter 2.

A writer is often urged to avoid repetition of words or phrases in
order, correctly, to improve the style. Unfortunately, when reason is
employed it is not just confusing to do this, it is blatantly wrong.
A journalist recently remarked that a quarter of the people in one place
supported an idea, whereas 40% did in another. Presumably she was
trying to avoid too much use of percentages but the juxtaposition of the
fractional system with the decimal one results in confusion for the
reader. Another writer mentioned a person, weighing 18 stone, who had
gone to summer camp and lost ten kilos. The use of two different scales
and two typographies is ridiculous. An example that will bother us
involves the uses of thewords “probable”, “likely”, “chance” andwords
derived from them. The three are nearly synonymous but in our study
they will be given precise meanings that make, for example, probability
different from likelihood. So if probability is meant, then it has to be
repeated and the variation to likelihood would change the meaning.
Doubtless you have already experienced overuse of “uncertainty” but
there are no synonyms in theEnglish language, except, soFowler tells us,
“whin”, “furze”, and “gorse”, soprecision implies repetition, sorry.After
the mathematics in the next section, our preparations will be complete
and we will be ready to go on our journey into the uncertain world.

2.9 MATHEMATICS TUTORIAL

Everyone knows a little mathematics, even if it is only arithmetic, with
its basic operations of addition þ, subtraction �, multiplication �,
division �, and equality ¼, with their associated symbols. Thus

5þ 3 ¼ 8;
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saying that five added to three, on the left-hand side of the equality,
equals eight, on the right, and from which it follows that

5 ¼ 8� 3;

or, reading backwards, the subtraction of three from eight equals five.
The displayed equalities are translations of the English phrases that
follow them. Also

5� 3 ¼ 15;

saying that five multiplied by three equals fifteen, with the conse-
quence that

5 ¼ 15� 3;

or the division of fifteen by three equals five. Notice that the second
arithmetic equality above follows from the first by subtracting three
from each side, for if there are two equal things and the same operation
is applied to both sides, the results are also equal: on the left the þ3 is
omitted, on the right�3 is included. Similarly the fourth follows from
the third by dividing each side by three: on the left �3 is omitted, on
the right �3 is included. Operations like these, in which we do the
same thing to both sides of an equality, yielding another equality, will
find frequent use throughout this book.

Arithmetic becomes more mathematical when we use symbols to
replace the numbers. You already appreciate that “three” and “3” are
two representations of the same thing; in mathematics other symbols
may be used and, for example, letters of an alphabet may be employed
but with the difference that a, for example, may be used for any
number. Thus, you know

5þ 3 ¼ 3þ 5;

because the order in which numbers are taken to be added does not
matter. We could equivalently write

aþ b ¼ bþ a;
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where a replaces 5 and b replaces 3. However, the last equality is much
more powerful than that involving the mere addition of 3 and 5
because it holds for any pair of numbers a and b; it says that if
you add b to a, you get the same result as adding a to b. Here we have
an example of the abstraction mentioned in §2.7 that enables one to
make general statements, here about any pair of numbers, in a form
convenient for manipulation; in particular, when we introduce prob-
ability, it will be possible to make general statements about probabil-
ity. Incidentally, if you feel that aþ b ¼ bþ a is trivial and obvious,
notice that it is not true that a� b ¼ b� a, nor a� b ¼ b� a. As an
example ofmanipulation with letters in place of numbers, consider the
statement

aþ b ¼ c;

which says that the number a, when added to b, yields c. This is not true
for any numbers, but if it is true, then

a ¼ c� b;

on subtracting b from both sides of the equality. (Compare the case
5þ 3 ¼ 8 above.) We will follow the mathematical style and refer to
“equation” rather than “equality”, that word being used in more
informal contexts. Notice that the symbols a, b, c, are printed in italics
so that there is a clear distinction between a cow and a cows. The Greek
alphabet will be used in addition to the Roman, but the Greek will be
explained when needed.

We shall follow the standard, mathematical practice and not
normally use the arithmetical symbols � for multiplication, nor �
for division. For multiplication, no symbol is used, the two numbers
being run together; thus ab replaces a� b. This could not be done
with the numeric description where 23 could mean 2� 3 or twenty-
three, but it is useful and economical when the representation is by
letter. If a number is multiplied by itself, aa, we abbreviate to a2, the
index 2 indicating two a’s in the multiplication. a2 is called the
square of a. If a2¼ b, then a is called the square root of b. Thus
3� 3¼ 9, so that 9 is the square of 3, and 3 is the square root of 9. We
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often write
p
b for the square root of b though the notation b1=2 is

preferred because the superscripts add: b1=2 � b1=2 ¼ b1=2þ1=2 ¼ b.
For division, a� b is replaced by a/b, using the solidus / instead of�.
The solidus is called “forward slash” in computer terminology. a is
termed the numerator and b the denominator. Sometimes it is typo-
graphically more convenient to rotate the solidus to the horizontal

and, in so doing, carry the denominator with it, so that a/b becomes
a

b
.

If a ¼ 1, then 1/b is called the reciprocal of b. One half is the
reciprocal of 2. There is one other mathematical convention we will
need, that involving brackets, usually round ones ( ), which are
needed to distinguish, for example,

a=bþ c from a=ðbþ cÞ:

The first expression means take the number a, divide it by b and add
the result to c; the second says add b to c and divide a by the result. Try
it with some numbers: where

10=2þ 3 ¼ 8;

yet

10=ð2þ 3Þ ¼ 2:

Generally operations within brackets, here addition, take precedence
over those outside, here division. Most pocket calculators use brack-
ets, though the better ones use the superior reverse-Polish notation,
which avoids them.

There is one result involving brackets, that we shall frequently use,
which says

aðbþ cÞ ¼ abþ ac:

In words, if two numbers, b and c, are added and the result multiplied
by a, the final result is the same as multiplying a by b, then
multiplying a by c, and adding the products together. Try it with
some numbers

6ð2þ 3Þ ¼ 6� 5 ¼ 30;
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or alternatively,

6� 2þ 6� 3 ¼ 12þ 18 ¼ 30:

Be careful though, this works for multiplication but not division,
where a/(bþ c) is not a/bþ a/c. Multiplication being harder than
addition, a(bþ c) is easier to evaluate than abþ ac.

There are two other symbols we need,> and<, signs of inequality.
If a and b are two numbers, we write a> b to mean that a is larger than
b, as 5> 3. The symbol is easy to understand and remember because it
is larger on the left and smaller on the right, where it reduces to a single
point, just as a on the left is larger than b on the right. Similarly a< b
means that a is smaller than b. Clearly if a> b, then b< a. If a and b are
any two numbers, then one, and only one, of the following three
statements must be true: a< b, a¼ b, or a> b. If both a> b and b> c,
then necessarily a> c. The reader may like to explore the similarity
between this result and the premise described in the second paragraph
of §2.1; lower-case letters replace the upper-case there and > replaces
“is believed more strongly than”. If a is positive, we may write a> 0. If
a> b, then a� b> 0.

We often want to use several quantities and, rather than using
different letters like a, b, c, it is often convenient to number them.
Thus, we write a1, a2, a3, the numbering being presented through
subscripts. Subscripts are much used. Often we want to employ several
quantitieswithout sayinghowmany thereare, inwhichcasewemightsay
there are nof them,without specifying thevalue ofn, 3 in the example. In
thatcase, thequantitiesare listedasa1,a2, . . . an,where thedots indicate
the omitted values between the second, a2, and the last an. It is purely a
convention to write the first two and the last, filling the gap with dots.

Some other conventions will be used. Often it will be useful to
display a statement of equality, usually called an equation, by writing it
in isolation, centered on a line, as has been done above with

aðbþ cÞ ¼ abþ ac: (2.1)

Often it is necessary to refer to the equation later in the text, so it is
numbered in round brackets at the end of the line. We can then, as here,
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refer to Equation (2.1). The reference is an example of the nonlinearity
mentioned in the last section. Equation (a.b) means equation b of
chapter a; thus, here (2.1) is the first equation in this, the second
chapter. There are two arithmetical conventions that will be used.
A number is given to two, say, significant figures when other figures
are ignored. Thus, 0.2316 becomes 0.23, or 2.316 becomes 2.3. People
often fail to understand the difference between 0.3 and 0.30; the latter
is given to two significant figures and the second 0 is just as significant
as any other digit. A decimal is given to two, say, decimal places if only
the first two are provided. Thus, 0.2316 becomes 0.23 and 0.02316
becomes 0.02 to two decimal places.

That is all the mathematics you need to start you off; so please try it
and see the advantages that it brings. If, in glancing through the book,
your eye catches the formulae in §14.4, do not be put off. They are only
there for people who sensibly want to verify my calculations.
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CHAPTER3

Probability

3.1 MEASUREMENT

In this chapter the systematic study of uncertainty begins. Recall that
there is a person “you”, contemplating an “event”, and it is desired to
express your uncertainty about that event, which uncertainty is called
your “belief” that the event is true. The tool to be used is reason (§2.1)
or rationality, based on a few fundamental premises and emphasizing
simplicity (§2.6). The first task is to measure the intensity of your
belief in the truth of the event; to attach to each event a number that
describes your attitude to the statement. Many people object to the
assignment of numbers, seeing it as an oversimplification of what is
rightly a complicated situation. So let us be quite clear why we choose
to measure and what the measurement will accomplish. One field in
which numbers are used, despite being highly criticized by profes-
sionals, is wine-tasting, where a bottle of wine is given a score out of
100, called the Parker score after its inventor, the result being that a
winewith a high score such as 96 commands a higher price than a mere
90. Some experts properly object that a single number cannot possibly
capture all the nuances that are to be found in that most delectable of
liquids. Nevertheless, numbers do have a role to play in wine-tasting,
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where a collection of different wines is tasted by a group of experts, the
object being to compare the wines, which naturally vary; variation, as
we shall see in §9.1, gives rise to uncertainty. In addition to the wines
being different, so are the tasters, and in a properly conducted tasting, it
is desirable to sort out the two types of variation and any interaction
between wines and tasters, such as tasters of one nationality preferring
wines of their own country. If tasting results in comments like “a touch
of blackcurrant to a background of coffee with undertones of figs”,
sensible comparisons are almost impossible. A useful procedure is for
each taster to score each wine, the usual method employing a score out
of 20 devised at the University of California at Davis. It is then possible
by standard statistical methods to make valuable judgments both about
the wines and their tasters.

The point here is that, whether it is the Parker or Davis score that is
employed, the basic function is to compare wines and tasters. Whether
a wine with an average score of 19 is truly better than one with an
average of 16, will depend on the variation found in the tasting. (Notice
that there are uncertainties here, but wine tasters do not always mention
them.) What is not true is that the scores for different wines are
combined in any way; a Chablis at 17 is not diluted with a claret at 15
to make a mixture at 16. The numbers are there only for comparison;
17 is bigger than 15. The situation is different with uncertainty where,
in any but the simplest scenario, you have to consider several uncer-
tainties and necessarily need to combine them to produce an overall
assessment. A doctor has several beliefs about aspects of the patient,
which need to be put together to provide a belief about the treatment. It
is this combination that makes measurement of uncertainty different
from that of wine, where only comparison is required. Now numbers
combine very easily and in two distinct ways, by addition and by multi-
plication, so it is surely sensible to exploit these two simple procedures
by associating numbers with your beliefs. How else is the doctor to
combine beliefs about the various symptoms presented by the patient?

We aim to measure separate uncertainties in order to combine them
into an overall uncertainty, so that all your beliefs come together in a
sensible set of beliefs. In this chapter, only one event will be discussed
and the combination aspect will scarcely appear, so bear with mewhile
we investigate the process of measurement itself for a single event,
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beginning with some remarks about measurement in general. A reader
who is unconvinced may like to look at §6.4, which concerns the
uncertainty of someone who has just been tested for cancer. Without
numbers, it is hard to see how to persuade the person of the soundness
of the conclusion reached there.

Take the familiar concept of a distance between two points, where a
commonly used measure is the foot. What does it mean to say that the
distance is one foot? All it means is that somewhere there is a metal bar
with two thin marks on it. The distance between these two marks is
called a foot, and to say that the width of a table is one foot means only
that, were the table and the bar placed together, the former would sit
exactly between the two marks. In other words, there is a standard, a
metal bar, and all measurements of distance refer to a comparison with
this standard. Nowadays the bar is being replaced by the wavelength of
krypton light and any distance is compared with the number of waves
of krypton light it could contain. The key idea is that all measurements
ultimately consist of comparison with a standard with the result that
there are no absolutes in the world of measurement. Temperature was
based on the twin standards of freezing and boiling water. Time is
based on the oscillation of a crystal, and so on. Our first task is
therefore to develop a standard for uncertainty.

Before doing this, one other feature of measurement needs to be
noticed. There is no suggestion that, in order to measure the width
of the table, we have to get hold of some krypton light; or that to
measure temperature, we need some water. The direct comparison
with the standard is not required. In the case of distance, we use a
convenient device, like a tape measure, that has itself been com-
pared with the standard or some copy of it. The measurement of
distances on the Earth’s surface, needed for the production of maps,
was, before the use of satellites, based on the measurement of
angles, not distances, in the process known as triangulation, and
the standard remains a conceptual tool, not a practical one. So do
not be surprised if you cannot use our standard for uncertainty, any
more than you need krypton light to determine your height. It will
be necessary to produce the equivalent of tape measures and
triangulation, so that belief can be measured in reality and not
just conceptually.
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In what follows, extensive references will be made to gambles and
there are many people who understandably have strong, moral objec-
tions to gambling. The function of this paragraph is to assure such
sensible folk that their views need not hinder the development here
presented. A gamble, in our terminology, refers to a situation in which
there is an event, uncertain for you, and where it is necessary for you to
consider both what will happen were it true, and also were it false.
Webster’s dictionary expresses our meaning succinctly in the defini-
tion of a gamble as “an act . . . having an element of... uncertainty”.
Think of playing the game of Trivial Pursuit and being asked for the
capital of Liberia, with the trivial outcomes of an advance on the board
or of the move passing to your opponents. Your response is, in
Webster’s sense and ours, a gamble. The examples of §1.2 show
how common is uncertainty and therefore how common are gambles in
our sense. We begin by contemplating the act, mentioned by Webster,
and it is only later, when decision analysis is developed in Chapter 10,
that action, following on from this contemplation, is considered. In
§14.5 we have a little to say about gambling, in the sense of monetary
affairs in connection with activities such as horse racing, and will see
that the moral objections mentioned above can easily be accommo-
dated using an appropriate utility function.

3.2 RANDOMNESS

The simplest form of uncertainty arises with gambles involving
physical objects such as playing cards or roulette wheels, as we
saw in Example 7 of §1.2. The standard to be used is therefore based
on a simple type of gamble. Take an urn containing 100 balls that, for
the moment, are as similar as modern mass-production methods can
make them. There is no significance in 100; any reasonably large
number would do and a mathematician would take n balls, where n
stands for any number, but we try to avoid unnecessary math. An urn is
an opaque container with a narrow neck, so that you cannot see into the
urn but can reach into it for a ball, which can then be withdrawn but not
seen until it is entirely out of the urn.
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Suppose that the balls are numbered consecutively from 1 to 100,
with the numbers painted on the balls, and imagine that you are to
withdraw one ball from the urn. In some cases you might feel that
every ball, and therefore every number, had the same chance of being
drawn as every other; that is, all numbers from 1 to 100 had the same
uncertainty. To put it another way, suppose that you were offered a
prize of 10 dollars were number 37 to be withdrawn; otherwise you
were to receive nothing. Suppose that there was a similar offer, but for
the number 53. Then if you are indifferent between these two gambles,
in the sense that you cannot choose between them, you think that 37 is
as uncertain as 53. Here your feeling of uncertainty is being translated
into action, namely an expressed indifference between two gambles,
but notice that the outcomes are the same in both gambles, namely
10 dollars or nothing, only the circumstances of winning or losing
differ. We shall discuss later in Chapter 10 the different types of
gambles, where the outcomes differ radically and where additional
problems arise.

There are circumstances where you would not exhibit such indif-
ference. You might feel that the person offering the gamble on 37 was
honest, and that on 53 a crook, or you might think that 37 is your lucky
number and was more likely to appear than 53. Or you might think that
the balls with two digits painted on themweighed more than those with
just one, so would sink to the bottom of the urn, thereby making the
single-digit balls more likely to be taken. There are many occasions on
which you might have preferences for some balls over others, but you
can imagine circumstances where you would truly be indifferent
between all 100 numbers. It might be quite hard to achieve this
indifference, but then it is difficult to make the standard meter bar
for distance, and even more difficult to keep it constant in length. The
difficulties are less with krypton light, which is partly why it has
replaced the bar.

If you think that each number from 1 to 100 has the same chance of
being drawn; or if a prize contingent on any one number is as valuable
as the same prize contingent on any other, then we say that you think
the ball is taken at random, or simply, random. More formally, if your
belief in the event of ball 37 being drawn is equal to your belief in the
event of ball 53, and similarly for any pair of distinct numbers from 1 to
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100, then you are said to believe that the ball is drawn at random. This
formal definition avoids the word “chance”, which will be given a
specific meaning in §7.8, and embraces only the three concepts, “you”,
“event”, and “belief”.

The concept of randomness has many practical uses. In the British
National Lottery, there are 49 balls and great care is taken to make a
machine that will deliver a ball in such a way that each has the same
chance of appearing; that is, to arise at random. You may not believe
that the lottery is random and that 23 is lucky for you; all we ask is that
you can imagine a lottery that is random for you. Randomness is not
confined to lotteries, thus, with the balls replaced by people, not in an
urn but in a population, it is useful to select people at random when
assessing some feature of the population such as intention to vote. We
mentioned in §1.5, and will see again in §8.5, how difficulties in
comparing two methods can be avoided by designing some features of
an experiment at random, such as when patients are randomly assigned
to treatments. Computer scientists have gone to a great deal of trouble
to make machines that generate numbers at random.Many processes in
nature appear to act randomly, in that almost all scientists describe
their beliefs about the processes through randomness, in the sense used
here. The decay of radioactive elements and the transfer of genes are
two examples. There is a strong element of randomness in scientific
appreciation of both the physical and the biological worlds and our
withdrawal of a ball from the urn at random, although an ideal, is
achievable and useful.

3.3 A STANDARD FOR PROBABILITY

We have an urn containing 100 balls, from which one ball is to be
drawn at random. Imagine that the numbers, introduced merely for the
purpose of explaining the random concept, are removed from the balls
but instead that 30 of them are colored red and the remaining 70 are left
without color as white, the removal or the coloring not affecting the
randomness of the draw. The value 30 is arbitrary; a mathematician
would have r red, and n� r white, balls. Consider the event that the
withdrawn ball is red. Until you inspect the color of the ball, or even
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before the ball is removed, this event is uncertain for you. You do not
know whether the withdrawn ball will be red or white but, knowing the
constitution of the urn, have a belief that it will be red, rather than
white.

We now make the first of the premises, the simple, obvious
assumptions upon which the reasoned approach is based, and measure
your belief that the random withdrawal of a ball from an urn with 100
balls, of which 30 are red, will result in a red ball, as the fraction 30/100
(recall the mathematical notation explained in §2.9) of red balls, and
call it your probability of a red ball being drawn. Alternatively
expressed, your belief that a red ball will be withdrawn is measured
by your probability, 30/100. Sometimes the fraction is replaced by a
percentage, here 30%, and another possibility is to use the decimal
system and write 0.3, though, as explained in §2.8, it pays to stay with
one system throughout a discussion. There is nothing special in the
numbers, 30 and 100; whatever is the fraction of red balls, that is your
probability.

Reflection shows that probability is a reasonable measure of your
belief in the event of a red ball being taken. Were there more than
30 red balls, the event would be more likely to occur, and your
probability would increase; a smaller number would lessen the prob-
ability. If all the balls were red, the event would be certain and your
probability would take its highest possible value, one; all white, and the
impossible event has the lowest value, zero. Notice that all these values
are only reasonable if you think that the ball is drawn at random. If
the red balls were sticky from the application of the paint, and the
unpainted, white ones, not, then the event of being red might be more
likely to occur and the value of 0.3 would be too low.

In view of its fundamental importance, the definition is repeated
with more precision. If you think that a ball is to be withdrawn at
random from an urn containing only red and white balls, then your
probability that the withdrawn ball will be red is defined to be the
fraction of all the balls in the urn that are red.

The simple idea extends to other circumstances. If a die is thrown,
the probability of a five is 1/6, corresponding to an urn with six balls of
which only one is red. In European roulette, the probability of red is
18/37, there being 37 slots of which only 18 are red. In a pack of
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playing cards, the probability of a spade is 13/52, or 1/4, and of an ace,
4/52¼ 1/13. These considerations are for a die that you judge to be
balanced and fairly thrown, a roulette wheel that is not rigged and a
pack that has been fairly shuffled, these restrictions corresponding to
what has been termed random.

The first stage in the measurement of uncertainty has now been
accomplished; we have a standard. The urn is our equivalent of the
metal bar for distance, perhaps to be replaced by some improvement in
the light of experience, as light is used for distance. Other standards
have been suggested but will not be considered here. The next stage is
to compare any uncertain event with the standard.

3.4 PROBABILITY

Consider any event that is uncertain for you. It is convenient to fix
ideas and take the event of rain tomorrow (Example 1 of §1.2), but the
discussion that follows applies to any uncertain event. Alongside that
event, consider a second event that is also uncertain for you, namely,
the withdrawal at random of a red ball from an urn containing 100
balls, of which some are red, the rest white. For the moment, the
number of red balls is not stated. Were there no red balls, you would
have higher belief in the event of rain than in the impossible extraction
of a red ball. At the other extreme, were all the balls red, you would
have lower belief in rain than in the inevitable extraction of a red ball.
Now imagine the number of red balls increasing steadily from 0 to 100.
As this happens, you have an increasing belief that a red ball will be
withdrawn. Since your belief in red was less than your belief in rain at
the beginning, yet was higher at the end with all balls red, there must be
an intermediate number of red balls in the urn such that your beliefs in
rain and in the withdrawal of a red ball are the same. This value must
be unique, because if there were two values, then they would have the
same beliefs, being equal to that for rain tomorrow, which is nonsense
as you have greater belief in red with the higher fraction. So there are
two uncertain events in which you have the same belief: rain tomorrow
and the withdrawal of a red ball. But you have measured the uncer-
tainty of one, the redness of the ball; therefore, this must be the
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uncertainty of the other, rain. We now make a very important
definition:

Your probability of the uncertain event of rain tomorrow is the
fraction of red balls in an urn fromwhich the withdrawal of a red ball at
random is an event of the same uncertainty for you as that of the event
of rain.

This definition applies to any uncertain event, not just to that about
the weather. To measure your belief in the truth of a specific uncertain
event, you are invited to compare that event with the standard,
adjusting the number of red balls in the urn until you have the
same beliefs in the event and in the standard. Your probability for
the event is then the resulting fraction of red balls.

Some minor comments now follow before passing to issues of
more substance. The choice of 100 balls was arbitrary. As it stands,
every probability is a fraction out of 100. This is usually adequate, but
any value between 0 and 1 can be obtained by increasing the total
number of balls. When, as with a nuclear accident (Example 13 of
§1.2) the probability is very low, perhaps less than 1/100, yet not zero,
the number of balls needs to be increased. As we have said, a
mathematician would have r red, n�r white, balls and the probability
would be r/n.

The following point may mean nothing to some readers, but some
others will be aware of the frequency theory of probability, and for
them it is necessary to issue a warning: there is no repetition in the
definition. The ball is to be taken once, and once only, and the long run
frequency of red balls in repeated drawings is irrelevant. After its
withdrawal, the urn and its contents can go up in smoke for all that it
matters. Repetition does play an important role in the study of
probability (see §7.3) but not here in the basic definition.

Some writers deny the existence, or worth, of probability. We have
to disagree with them, feeling convinced by the measuring techniques
just proposed. Others accept the concept of probability but distinguish
between cases where the probability is known, and those where it is
unknown, the probability in the latter case being called ambiguous. For
example, the probability of a coin falling heads is unambiguous at 1/2,
whereas the probability of your candidate winning the election is
ambiguous. (Rather than referring to “the” probability, we would
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prefer “your” probability.) In the descriptive mode, the distinction is
important because, as Ellsberg’s paradox (§9.11) shows, people make
different choices depending solely on whether the probability is
ambiguous or not. In the normative mode adopted here, the distinction
is one of measurement, an ambiguous probability being harder to
measure than one with no ambiguity. The paradox disappears in the
normative view, though your action may depend on how good your
measurement processes are. As will be seen in Chapter 13, they are not
as good as one would wish.

3.5 COHERENCE

In the last section, we took a standard, or rather a collection of
standards depending on the numbers of red balls, and compared
any uncertain event with a standard, arranging the numbers such
that you had the same beliefs in the event and in the standard. In
this way, you have a probability for any uncertain event.

You immediately, and correctly, respond, “I can’t do it”. You might
be able to say that the number of red balls must be at least 17 out of a
100 and not more than 25, but to get closer than that is impossible for
most uncertain events, even simple ones such as rain tomorrow. A
whole system has been developed on the basis of lower (17/100) and
upper (25/100) probabilities, both of which go against the idea of
simplicity and confuse the concept of measurement with the practice
of measurement. Recall the metal bar for length; you cannot take the
table to the institution where the bar is held and effect the comparison.
It is the same with uncertainty, as it is with distance; the standard is a
conceptual comparison, not an operational one. We put it to you that
you cannot escape from the conclusion that, as in the last section, some
number of red balls must exist to make the two events match for you.
Yes, the number is hard to determine, but it must be there. Another way
of expressing the distinction between the concept and the practice is to
admit that reasoning persuades you that there must exist, for a given
uncertain event, a unique number of red balls that you ought to be able
to find, but that, in practice you find it hard to determine it. Our
definition of probability provides a norm to which you aim; only
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measurement problems hinder you from exactly behaving like the
norm. Nevertheless, it is an objective toward which you ought to aim.

When it comes to distance, you would use a tape measure for the
table, though even there, marked in fractions of inches, you might have
trouble getting an accuracy beyond the fraction. With other distances,
more sophisticated devices are used. Some, such as those used to
determine distances on the Earth’s surface between places far apart,
are very elaborate and have only been developed in the last century,
despite the concept of distance being made rigorous by the Greeks. So
please do not be impatient at your inability, for we do not as yet have a
really good measuring device suitable for all circumstances. Never-
theless, you are entitled to wonder how such an apparently impossible
task can be accomplished. How can you measure your belief in
practice? Much of the rest of this book will be devoted to this problem.
For the moment, let me try to give you a taste of one solution by means
of an example.

Suppose you meet a stranger. Take the event that they were born on
March 4 in some year. You are uncertain about this event but the
comparison with the urn is easy and most of you would announce a
probability of 1/365, ignoring leap years and any minor variations in
the birth rate during the year. And this would hold for any date except
February 29. The urn would contain 365 balls, each with a different
date, and a ball drawn at random. Now pass to another event that is
uncertain for you. Suppose there are 23 unrelated strangers and
consider the uncertain event that, among the 23, there are at least
two of them who share the same day for the celebration of their births.
It does not matter which day, only that they share a day. Now you have
real difficulty in effecting the comparison with the urn. However, there
exist methods, analogous to the use of a tape measure with length, that
demonstrate that your probability of a match of birthdays is very close
to 1/2. These methods rely on the use of the rules of the calculus of
probability to be developed in later chapters. Once you have settled on
1/365 for one person, and on the fact that the 23 are unrelated, the value
of 1/2 for the match is inevitable. You have no choice. That is, from 23
judgments of probability, one for each person, made by comparison
with the standard, you can deduce the value of 1/2 in a case where the
standard was not easily available. The deduction will be given in §5.5.
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The principle illustrated here is called coherence. A formal defi-
nition of coherence appears in §5.4. The value of 1/2 coheres with the
values of 1/365. Coherence is the most important tool that we have
today for the measurement of uncertainty, in that it enables you to pass
from simple, measurable events to more complicated ones. Coherence
plays a role in probability similar to the role that Euclidean geometry
plays in the measurement of distance. In triangulation, the angles and a
single distance, measured by the surveyor, are manipulated according
to geometrical rules to give the distance, just as the values of 1/365 are
manipulated according to the rules of probability to give 1/2. Some
writers use the term “consistent”, rather than “coherent”, but it will not
be adopted here. The birthday example was a diversion; let us return to
the definition of probability in §3.4.

3.6 BELIEF

The definition of probability holds, in principle, for any event, the
numerical value depending not only on the event but also on you. Your
uncertainty for rain tomorrow need not be the same as that of the
meteorologist, or of any other person. Probability describes a relation-
ship between you and the world, or that part of the world involved in
the event (see §1.7). It is sometimes said to be subjective, depending
on the subject, you, making the belief statement. Unfortunately,
subjectivity has connotations of sloppy thinking, as contrasted with
objectivity. We shall therefore use the other common term, personal,
depending on the person, you, expressing the probability. Throughout
this book, probability expresses a relationship between a person, you,
and the real world. It is not solely a feature of your mind; it is not a
value possessed by an event but expresses a relationship between you
and the event and is a basic tool in your understanding of the world.
There are many uncertainties upon which most people agree, such as
the 1/365 for the birthday in the last section, though there is no
complete agreement here. I once met a lady at a dinner party who,
during the course of the evening, in which birth dates had not been
mentioned, turned to me and said, “you are an Aries”. She had a
probability greater than 1/365 for dates with that sign, a value
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presumably based on her observation of my conversation. She is
entitled to her view and considered alone, it is not ridiculous although
in combination with other beliefs she might hold, she may be
incoherent. Note: I am not an Aries.

Similarly, there are events over which there is a lot of disagreement.
Thus, the nuclear protester and the nuclear engineer may not agree
over the probability of a nuclear accident. One of the matters to be
studied in §§6.9 and 11.6 is how agreement between them might
be reached, essentially both by obtaining more information and by
exposing incoherence.

Probability therefore depends both on the event and on you. There
is equally something that it should not depend on—the quality of the
event for you. Consider two uncertain events: a nuclear accident and
winning a lottery. The occurrence of the first is unpleasant, that of the
second highly desirable. These two considerations are not supposed to
influence you in your expressions of belief in the two events through
probability. This is important, so let us spell it out.

We suppose that you possess a basic notion of belief in the truth of
an uncertain event that does not depend on the quality of the event.
Expressed differently, you are able to separate in your mind how
plausible the event is from how desirable it is. We shall see in Chapter
10 that plausibility and desirability come together when we make a
decision, and strictly it is not necessary to separate the two. Never-
theless, experience seems to show that people prefer to isolate the two
concepts, appreciating the advantages gained from the separation, so
this view is taken here.

To reinforce this point, consider another method that has been
suggested for comparing your uncertainty of an event with the
standard. In comparing the nuclear accident with the extraction of a
red ball from an urn in order to assess your probability for the former,
suppose that you were invited to think about two gambles. In the first,
you win $100 if the accident occurs; in the second, you win the same
amount if the ball is red. The suggestion is that you choose the number
of red balls in the urn so that you feel the two gambles are equivalent.
The comparison is totally different from our proposal because the
winning of $100 would be trivial if there were an accident and you
might not be alive to receive it, whereas the red ball would not affect
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you and the prize could be enjoyed. In other words, this comparability
confuses the plausibility of the accident with its desirability, or here,
horror. Gambling for reward is not our basis for the system and where it
was mentioned in §3.2, the rewards were exactly the same in all the
gambles considered, so desirability did not enter. Some aspects of
gambling are raised in §14.5.

3.7 COMPLEMENTARY EVENT

Consider the event of rain tomorrow (Example 1 of §1.2). Associated
with this event is another event that it will not rain tomorrow; when the
former is true, the latter is false and vice versa. Generally, for any
event, the event that is true when the first is false, and false when it is
true, is called the event that is complementary to the first. Just as we
have discussed your belief in the event, expressed through a probabil-
ity, so we could discuss your probability for the complementary event.
How are these two probabilities related? This is easily answered by
comparison with the withdrawal of a red ball from an urn. The event
complementary to the removal of a red ball is that of a white one. The
probability of red is the fraction of red balls in the urn and similarly, the
probability of white is the fraction of white balls. But these two
fractions always add to one, for there are no other colors of ball in the
urn; if 30 are red out of 100, then 70 are white. Hence, the standard
event and its complement have probabilities that add to one. It follows
by the comparison of any event with the urn that this will hold
generally. If your belief in the truth of an event matches the withdrawal
of a red ball, your belief in the falsity matches with a white ball. Stated
formally, it means the following:

Your probability of the complementary event is one minus your
probability of the original event. If your probability of rain tomorrow is
0.3, then your probability of no rain tomorrow is 0.7.

This is our first example of a rule of probability; a rule that enables
you to calculate with beliefs and is the first stage in developing a
calculus of beliefs. Since calculation is involved, it is convenient to
introduce a simple piece of mathematics, effectively rewriting the
above statement in another language.
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Instead of using the word “event”, it is often useful to use a
capital letter of the Roman alphabet. E is the natural one to use,
being the initial letter of event, and thereby acting as a mnemonic.
Later it will be necessary to talk about several events and use
different letters to distinguish them, thus E, F, G, and so on. When
we want to state a general rule about events, it is not necessary to
spell out the meaning of E, which can stand for any event; whereas
in an application of the rule, we can still use E, but then it will refer
to the special event in the application. Your probability for the event
E is written p(E). Here the lower-case letter p replaces probability
and the brackets encompass the event, so that in a sense they replace
“of ” in the English language equivalent. Some writers use P or Pr or
prob but we will use the simple form p. Notice that p always means
probability, whereas E, F, G, and so on refer to different events and
p(E) is simply a translation of the phrase “your probability for the
event E”. It might be thought that reference should also be made to
“you” but since we will only be talking about a single person, this
will not be necessary, see §3.6.

Let us have a bit of practice. If R is the event of rain tomorrow, then
the statement that your probability of rain is 0.3 becomes p(R)¼ 0.3. If
C is the event of a coincidence of birthdays with 23 people (see §3.5),
then p(C)¼ 1/2 to a good approximation. Notice that R is an event, r a
number of balls, and mathematicians make much more use of a
distinction between upper- and lower-case than does standard English.
If E is any event, then the event that is complementary to E is written
Ec, the raised c standing for “complement” and again, the initial letter
acting as a mnemonic. Complement being such a common concept,
many notations besides the raised c are in use.

With this mathematical language, the rule of probability stated
above can be written as follows:

pðEcÞ ¼ 1� pðEÞ;

this being a mathematical translation of the English sentence “The
probability of the complementary event is equal to one minus the
probability of the event”. Mathematics has the advantage of brevity
and, with some practice, has the benefit of increased clarity. Notice that
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in stating the rule, we have not said what the event E is since the
statement is true for any event.

Let us perform our first piece of mathematical calculation and add
p(E) to both sides of this equation (see §2.9) with the result

pðEÞ þ pðEcÞ ¼ 1;

or in words, your probability for an event and your probability for the
complementary event add to one. Several important rules of probabil-
ity will be encountered later, but they have one point in common—they
proscribe constraints on your beliefs. While you are free to assign any
probability to the truth of the event, once this has been done, you are
forced to assign one minus that probability to the truth of the
complementary event. If your probability for rain tomorrow is 0.3,
then your probability for no rain must be 0.7. This enforcement is
typical of any rule in that there is great liberty with some of your
beliefs, but once they are fixed, there is no freedom with others that are
related to them and we have an example of the coherence mentioned in
§3.5. You are familiar with this phenomenon for distance. If the
distance from Exeter to Bristol is 76 miles, and that from Bristol to
Birmingham is 81 miles, then that from Exeter to Birmingham, via
Bristol is inevitably 157 miles, the sum of the two earlier distances.
Mathematically, if the distance from A to B is x, and that from B to C is
y, then the distance from A to C, via B, is xþ y, a statement that is true
for any A, B, and C and any x and y compatible with geography.

3.8 ODDS

Although probability is the usual measure for the description of your
belief, some people prefer to use an alternative term, just as some
prefer to use miles instead of kilometers for distance, and we will find
that an alternative term has some convenience for us in §6.5. To
introduce the alternative measure, let us return to any uncertain event E
and your comparison of it with the withdrawal at random of a red ball
from an urn containing r red and w white balls, making a total of
n¼ rþw in all. Previously, we had 100 balls in total, n¼ 100, purely
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for ease of exposition. As before, suppose r is adjusted so that you have
the same belief in E as in the randomwithdrawal of a red ball, then your
probability for E, p(E), is the ratio of the number of red balls to the total
number of balls, r/(rþw). The alternative to probability as a measure
is the ratio of the number of white balls to that of red w/r and is called
the odds against a red ball and therefore, equally the odds against E.
Alternatively, reversing the roles of the red and white balls, the ratio of
the number of red balls to that of white r/w is termed the odds on a red
ball or the odds on E. We now encounter a little difficulty of
nomenclature and pause to discuss it.

The concept of odds arises in the following way. Suppose that, in
circumstances where E is an event favorable to you, such as a horse
winning, you have arranged the numbers of balls such that your belief
in E equals that in a red ball being withdrawn; then there are w
possibilities corresponding to E not happening because the ball was
white, and r corresponding to the pleasant prospect of E. Hence, it
makes sense to say w against E and r for E, or simply “w to r against”,
expressed as a ratio w/r. As an example, suppose your probability is a
quarter, 1/4, that High Street will win the 2.30 race at Epsom (Example
8 of §1.2), then a quarter of the balls in the matching urn will be red, or
equivalently, for every red ball there will be three white; the odds
against High Street are 3 to 1, the odds on are 1 to 3; as ratios, 3 against,
1/3 on.

Odds are commonly used, at least in Britain, in connection with
betting (§14.5). Odds in betting are always understood as odds against;
in the few cases where odds on are used, they say “odds on”. Thus
“against” is omitted but “on” is included. As a way through this
linguistic tangle, we shall always use odds in the sense of odds on. If
we do need to use odds against, the latter word will be added. This is
opposite to the convention used in betting and is weakly justified by the
fact that our probabilities will commonly be larger than those encoun-
tered in sporting events, also because a vital result in §6.5 is slightly
more easily expressed using odds on. It will also be assumed that you
are comfortable with using fractions.

There is no standard notation for odds and we will use o(E), o for
odds on replacing p for probability. There is a precise relationship
between probability and odds, which is now obtained as follows. p(E)
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is the fraction r/(rþw) and equally, p(Ec) is the fraction w/(wþ r). The
ratio of the former fraction to the latter is r/w, which is the odds on,
o(E). The reader is invited to try it with the numbers appropriate to
High Street. Consequently, we have the general result that the odds on
an event is the ratio of the probability of the event to that of its
complement. That sentence translates to

oðEÞ ¼ pðEÞ
pðEcÞ :

Because a ratio printed this way takes up a lot of vertical space, it is
usual to rewrite this as

oðEÞ ¼ pðEÞ=pðEcÞ; (3.1)

keeping everything on one line, as in English (see §2.9). Recall that
p(Ec)¼ 1� p(E), so that (3.1) may be written

oðEÞ ¼ pðEÞ=½1� pðEÞ�: (3.2)

The square brackets are needed here to show that the whole content,
1� p(E), divides p(E); the round brackets having been used in
connection with probability.

Equation (3.2) enables you to pass from probability on the right to
odds on the left. The reverse passage, from odds to probability, is given
by

pðEÞ ¼ oðEÞ=½1þ oðEÞ�: (3.3)

To see this, note that p(E)¼ r/(rþw), so that dividing every term on
the right of this equality by w, p(E)¼ (r/w)/(1þ r/w) and the result
follows on noting that o(E)¼ r/w. Thus, if the odds on are 1/3, the
probability is 1/3 divided by (1þ 1/3) or 1/4. The change from 3 in
odds to 4 in probability, caused by the addition of 1 to the odds in (3.3),
can be confusing. Historians have a similar problem where dates in the
16 hundreds are in the seventeenth century; and musicians have four
intervals to make up a fifth, so we are in good company. Notice that if
your probability is small, then the odds are small, as is clear from (3.2).
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Similarly, a large probability means large odds. Probability can range
from 0, when you believe the event to be false, to 1, when you believe it
to be true. Odds can take any positive value, however large, and
probabilities near 1 correspond to very large odds; thus, a probability
of 99/100 gives odds of 99.

Odds against are especially useful when your probability is very
small. For example, the organizers of the National Lottery in Britain
state that their probability that a given ticket (yours?) will win the top
prize is 0.000 000 071 511 238, a value that is hard to appreciate. The
equivalent odds against are 13,983,815 to 1. There is only one chance
in about 14 million that your ticket will win. Think of 14 million balls
in the urn and only one is red. Another example is provided by the rare
event of a nuclear accident.

In everyday life, odds mostly occur in connection with betting, and
it is necessary to distinguish our usage with their employment by
bookmakers (§14.5). If a bookmaker quotes odds of 3 to 1 against High
Street winning, it describes a commercial transaction that is being
offered and has little to do with his belief that the horse will win. All it
means is that for every 1 dollar you stake, the bookmaker will pay you
3 dollars and return your stake if High Street wins; otherwise you lose
the stake. The distinction between odds as a commercial transaction
from odds as belief is important and should not be forgotten. You
would ordinarily bet at odds of 3 to 1 against only if your odds against
were smaller, or in probability terms, if your probability of the horse
winning exceeded 1/4.

3.9 KNOWLEDGE BASE

Considerable emphasis has been placed on simplicity, for we believe
that the best approach is to try the simplest ideas and only to abandon
them in favor of more complicated ones when they fail. It is now
necessary to admit that the concept of your probability for an event,
p(E) as just introduced, is too simple and a complication is forced upon
us. The full reason for this will appear later but it is perhaps best to
introduce the complication here, away from the material that forces it
onto our attention. Our excuse for duping the reader with p(E) is a
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purely pedagogical one of not displaying too many strange ideas at the
same time.

Suppose that you are contemplating the uncertain event of rain
tomorrow and carrying through the comparison with the balls in the
urn, arriving at the figure of 0.3. It then occurs to you that there is a
weather forecast on television in a fewmoments, so you watch this and,
as a result, revise your probability to 0.8 in the light of what you see.
Just how this revision should take place is discussed in §6.3. So now
there are two versions of your belief in rain tomorrow, 0.3 and 0.8.Why
do they differ, for they are probabilities for the same event? Clearly
because of the additional information provided by the forecast, which
changes the amount of knowledge you have about tomorrow’s weather.
Generally, your belief in any event depends on your knowledge at the
time you state your probability and it is therefore oversimple of us to
use the phrase “your probability for the event”. Instead, we should be
more elaborate and say “your probability for the event in the light of
your current knowledge”. What you know at the time you state your
probability will be referred to as your knowledge base.

The idea being expressed here can alternatively be described as
saying that any probability depends on two things, the uncertain event
under consideration and what you know, your knowledge base. It also
depends on the person whose beliefs are being expressed, you, but as
we have said, we are only thinking about one person, so there is no
need to refer to you explicitly. We say that probability depends on two
things, the event and the knowledge. Somewriters on probability fail to
recognize this point, with a resulting confusion in their thoughts. One
expert produced a wrong result, which caused confusion for years, the
expert being so respected that others thought he could not be wrong. In
the light of this new consideration, the definition of probability in §3.4
can be rephrased. Your probability of an uncertain event is equal to the
fraction of red balls in an urn of red and white balls when your belief in
the event with your present knowledge is equal to your belief that a
single ball, withdrawn at random from the urn, will be red. The change
consists in the addition of the words in italics.

This necessary complexity means that the mathematical language
has to be changed. The knowledge base will be denoted by K , the
initial letter of knowledge, but written in script to distinguish it from an
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event. In place of p(E) for your probability of the event E, we write
p(EjK ). The vertical line, separating the event from your knowledge,
can be translated as “given” or “conditional upon”. The whole
expression then translates as “your probability for the event E, given
that your knowledge base is K ”. In the example, where the event is
“rain tomorrow” and your original knowledge was what you possessed
before the forecast, p(EjK ) was 0.3. With the addition of the forecast,
denoted by F, the probability changes to p(EjF and K ) and 0.8. Your
knowledge base has been increased from K to F and K .

Despite the clear dependence on how much you know, it is
common to omit K from the notation because it usually stays constant
throughout many calculations. This is like omitting “you” because
there is only one individual. Thus, we shall continue towrite p(E) when
the base is clear. In the example, after the forecast has been received,
we shall write p(EjF). Although the knowledge base is often not
referred to, it must be remembered that it, like you, is always present.
The point will arise in connection with independence in §8.8.

Some people have put forward the argument that the only reason
two persons differ in their beliefs about an event is that they have
different knowledge bases, and that if the bases were shared, the two
people would have the same beliefs, and therefore the same probabil-
ity. This would remove the personal element from probability and it
would logically follow that all with knowledge base K for an uncertain
event E, would have the same uncertainty, and therefore the same
probability p(EjK ), called a logical probability. We do not share this
view, partly because it is very difficult to say what is meant by two
knowledge bases being the same. In particular, it has proved
impossible to say what is meant by being ignorant of an event or
having an empty knowledge base, and although special cases can be
covered, the general concept of ignorance has not yielded to analysis.
People often say they know nothing about an event but all attempts to
make this idea precise have, in my view, failed. In fact, if people
understand what is under discussion, such as rain tomorrow, then, by
the mere fact of understanding, they know something, albeit very little,
about the topic. In this book, we shall take the view that probability is
your numerical expression of your belief in the truth of an event in your
current state of knowledge; it is personal, not logical.

3.9 KNOWLEDGE BASE 65



3.10 EXAMPLES

Let us return to some of the examples of Chapter 1 and see what the
ideas of this chapter have to say about them. With almanac questions,
such as the capital of Liberia, the numerical description of your
uncertainty as probability would not normally be a worthwhile exer-
cise, though notice how, in the context of “Trivial Pursuit ” your
probability would change as you consulted with other members of
your team and, as a result, your knowledge base would be altered. A
variant of the question would present you with a number, often four,
possible places that might be the capital, one of which is correct. This
multiple-choice form does admit a serious and worthwhile use of
probability by asking you to attach probabilities to each of the four
possibilities rather than choosing one as being correct, which is
effectively giving a value 1 to one possibility and 0 to the rest. An
advantage of this proposal in education is that the child being asked
could face up to the uncertainty of their world and not be made to feel
that everything is either right or wrong. There is a difficulty in making
such probability responses to multiple-choice examination questions,
but these have been elegantly overcome and the method has been made
a real, practical proposal.

The legal example of guilt (Example 3) is considered in more
detail in §10.14 but for now, just note how the uncertain event
remains constant throughout the trial but the knowledge base is
continually changing as the defense and prosecution present
the evidence.

Medical problems (selenium, Example 4 and fat, Example 15) are
often discussed using probability and therefore raise a novel aspect
because you, when contemplating your probability, may have available
one or more probabilities of others, often medical experts in the field.
You may trust the expert and take their probability as your own but
there is surely no obligation on you to do so since the expert opinion
has to be combined with other information you might have, such as the
view of a second expert or of features peculiar to you. There exists
some literature, which is too technical for inclusion here, of how one
person can use the opinions of others when these opinions are
expressed in terms of probability.
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Historians only exceptionally embrace the concept of probability,
as did one over the princes in the tower (Example 5) but they are
enthusiasts for what we have called coherence, even if their form is less
numerate than ours. When dealing with the politics of a period,
historians aim to provide an account in which all the features fit
together; to provide a description in which the social aspects interact
with the technological advances and, together with other features,
explain the behavior of the leading figures. Their coherence is neces-
sarily looser than ours because there are no rigid rules in history, as will
be developed for uncertainty, but the concepts are similar. Whether
probability will eventually be seen to be of value in historical research
remains to be seen though, since so much in the past is uncertain, the
potential is there.

The three examples, of card play (Example 7), horse racing
(Example 8), and investment in equities (Example 9) are conveniently
taken together because they are all intimately linked with gambling,
though that term seems coarse in connection with the stock market;
nevertheless, the placing of a stake in anticipation of a reward is
fundamentally what is involved. Games of chance have been inti-
mately connected with probability, and it is there that the calculus
began and where it still plays an important role, so that many
cardplayers are knowledgeable about the topic. There is a similar
body of experts in odds, namely, bookmakers, but here the descriptive
results seem to be at variance with the normative aspects of §2.5
(see §14.5). Bookmakers are very skilled and it would be fascinating to
explore their ideas more closely, though this is hindered by their
understandable desire to be ahead of the person placing the bet,
indulging in some secrecy. A descriptive analysis of stockbrokers would
be even more interesting since they use neither odds nor probabilities.
There is a gradation from games of chance, where the probabilities and
rewards are agreed and explicit; to horse racing, where the rewards are
agreed but probabilities are not, since your expectation of which horse is
going to win typically differs from mine; to the stock market, where
nothing is exposed except the yields on bonds.

Some of the examples, but especially that of opinion polls before
an election (Example 12), are interesting because the open statement of
uncertainty itself can affect an uncertainty. An obvious instance of this
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arises when a poll says that the incumbent is 90% certain of winning
the election, with the result that her supporters will tend not to vote,
deeming it unnecessary, and your probability of their victory will drop.
The other examples either raise no additional issues, or, if they do, the
issues are better discussed when we have more familiarity with the
calculus of probability to be developed in the following chapters.
Instead, let us recapitulate and see how far we have got.

3.11 RETROSPECT

It has been argued that the measurement of uncertainty is desirable
because we need to combine uncertainties and nothing is better and
simpler at combination than numbers. Measurement must always
involve comparison with a standard and here we have chosen balls
in urns for its simplicity. Other standards have been used, perhaps the
best being some radioactive phenomena, which seem to be naturally
random and, like krypton light, have the reliance of physics behind
them. It has been emphasized that the role of a standard is not that of a
practicable measuring tool but rather a device for producing usable
properties of uncertainty. From these ideas, the notion of probability
has been developed and one rule of its calculus derived, namely that the
probabilities of an event and its complement add to one.

So what has been achieved? Quite frankly, not much, and you are
little better at assessing or understanding uncertainty than you were
when you began to read. So has it been a waste of time? Of course, my
answer is an emphatic “No”. The real merit of probability will begin to
appear when we pass from a single event to two events, because then
the two great rules of combination will arise and thewhole calculus can
be constructed, leading to a proper appreciation of coherence. Future
chapters will show how new information, changing your knowledge
base, also changes your uncertainty, and, in particular, explains the
development of science with its beautiful blend of theory and exper-
imentation. When we pass from two events to three, no new rules arise,
but surprising features arise that have important consequences.
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CHAPTER4

Two Events

4.1 TWO EVENTS

So far we have only investigated a single event and its complement.
We now pass to two events and the relationships between them. To fix
ideas, consider these two events that you are contemplating now but
that refer to what happens one year in the future:

Inflation next year will exceed 4%, and

Unemployment next year will exceed 9% of the workforce.

These are two events of economic importance about which you are
uncertain, and which are to be discussed in connection with a fixed
knowledge base. It is tedious to have to spell out the whole sentences
describing the events each time they are mentioned, so let us simply
call the first event high and the second many. The complementary
event, high not happening, will be termed low, and the complement of
many will be few. So you are uncertain about high (inflation above 4%)
and about many (unemployed above 9%). By taking the event high on
its own, you can proceed as in the previous chapter and assess the
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probability of high using the comparison with red and white balls in an
urn. Suppose you think that if there are 40 red balls (and 60 white) in
the urn, then the uncertainty of a red ball being drawn at random is the
same as that of high inflation, then the probability of high inflation for
you is 0.40 (and of low, 0.60).

Now let the same thing be done for the event of many
unemployed, but to avoid confusion, in the new urn, also with
100 balls, replace red by spotted and white by plain. Then you
will arrange for the number of spotted balls to be selected so that the
uncertainty of drawing a spotted ball at random matches the uncer-
tainty of many. Suppose that you select 50 as the number of spotted
balls needed for the match, leaving 50 plain, then your probability of
many unemployed is 0.50; you think that many and few employed
are equally probable.

This has attended to each event separately, but the key question
for the economist is likely to concern any possible relationship
between the two. How can this be expressed in our scheme? The
trick is to combine the two urns in the sense that we still have a single
urn with 100 balls, but in this urn, the balls are basically either red or
white and, at the same time, either have black spots added or are left
plain. Thus, there are four types of ball; spotted red, plain red, spotted
white, and plain white. The number of red balls has already been
settled at 40, being the sum of the numbers in the first two of these
four categories. Similarly, the sum of the numbers in the first and
third, the spotted balls, is 50. The situation can conveniently be
represented in a table.

INFLATION

High (red) Low (white) Total

UNEMPLOYMENT Many (spotted) 50

Few (plain) 50

Total 40 60 100

The rows in the table correspond to unemployment, the columns
to inflation. There are two basic rows and two basic columns towhich
columns and rows of totals have been added. So far, by taking the two
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events separately, you have settled on the totals, both along the rows
and down the columns, but what has not been settled are the entries in
the table, we have only the margins of the table not the interior
entries. There are several ways of thinking about these but, for the
moment, let us concentrate on the number of balls that are both red
and spotted, corresponding to both high inflation and many
unemployed and to an entry in the top, left-hand corner of the table.
This is a new event, in which two other events are both true, and can
be contemplated in the sameway as before; namely by thinking about
how many balls of that type, red and spotted, are needed to make the
uncertainty of drawing a red, spotted ball equate to your uncertainty
of the event of both high inflation and many unemployed. The value
cannot exceed 40 as only 40 red balls are available to receive spots.
Suppose that you settle on 10. The table now looks as shown below:

INFLATION

High (red) Low (white) Total

UNEMPLOYMENT Many (spotted) 10 50

Few (plain) 50

Total 40 60 100

The table can be completed by simple arithmetic without any extra
considerations of uncertainty; thus, in the first column, there are 40 red
balls in all, of which 10 are spotted, so there must be 30 that are plain
red. Continuing in this way with the rows, the table may be completed
and then it looks as shown below:

INFLATION

High (red) Low (white) Total

UNEMPLOYMENT Many (spotted) 10 40 50

Few (plain) 30 20 50

Total 40 60 100

On dividing every entry by 100 to obtain the fractions of balls of
the different types, we have your probabilities.
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INFLATION

High (red) Low (white) Total

UNEMPLOYMENT Many (spotted) 0.1 0.4 0.5

Few (plain) 0.3 0.2 0.5

Total 0.4 0.6 1.0

Recall that you reached this table by the consideration of only
three events, “high”, “many”, and “both high and many”, but now
you have probabilities for many other uncertain events. For exam-
ple, your probability for the highly desirable event of low inflation
and few unemployed is 0.2. (As an aside, recall that desirability
does not enter into the numbers so far obtained in the table, which
relate purely to questions of uncertainty, see §3.6.) From the three
original numbers in the table, you can calculate others such as the
one just mentioned. There are many uncertain events in the table
and all have their uncertainties determined from the three already
given. This is an example of the principle of coherence mentioned
in §3.5, for although you were free to choose the original three
values, once they are settled, all the others follow by the rules of
probability and you have no further choice. They must all cohere.
This is an important point and we will repeatedly return to it, but let
us now look at some further statements that can be derived from the
table and to which you have, perhaps unwittingly, committed
yourself.

It is useful to have a term to describe such a table; it is called a
contingency table because it describes how one event is contingent
upon another. Strictly, it is a contingency table of probabilities, here of
size 2�2 since there are 2 rows and 2 columns.

4.2 CONDITIONAL PROBABILITY

Let us be a little more mathematical and introduce Roman letters for
the two original events and their complements. In each case, the initial
letters are used, thus H for high inflation andM for many unemployed.
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Then for complements, Hc is L, low, andMc is F, few. The contingency
table of probabilities is now as follows:

H (red) L (white)

M (spotted) 0.1 0.4 0.5

F (plain) 0.3 0.2 0.5

0.4 0.6 1.0

Here the corresponding patterns on the balls have been retained to aid the
understanding of what follows. Using the notation introduced in §3.7,
we canwrite, for example,p(M)¼ 0.5 andp(H)¼ 0.4.Recall that a fixed
knowledge base is supposed and is omitted from the notation for
simplicity, though it should not be forgotten. The event of both high
inflationH andmany unemployedM, considered earlier, is the event that
may be denoted H & M, though it is usual to omit the ampersand and
write this simply as HM. Thus the occurrence of both events is the new
event written by putting the two symbols together. This is only one way
of combining two events; another will be encountered later in §5.1. The
consideration above gave p(HM)¼ 0.1 and from the three assessments
we saw that p(LF)¼ 0.2, among others that could have been derived.

Let us look at the uncertainty in this table in another way. So far, the
two features of inflation and unemployment have been treated sym-
metrically, whereas another possibility is to think about how one, say
inflation, might influence unemployment, and see how the numbers in
work are dependent on a change in the value of money. This viewpoint
would lead you to think about what would happen to unemployment
were inflation low. Notice the use of the subjunctive mood here; it is
not known that inflation is low, you are merely thinking about what
might happen were it to be low in a year’s time. So let us look at your
uncertainty ofM were L true, and show that your uncertainty here can
be expressed as a probability, obtained from the numbers already in the
table. If L obtains, the equivalent for the standard is the withdrawal of a
white ball; so supposing that L is true corresponds to supposing that the
ball is white. If the ball is white, the only uncertainty lies in whether it
is spotted, corresponding to many unemployed,M. But of the 60 white
balls, 40 are spotted, so the proportion of spotted balls among the white
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is 40/60¼ 2/3, and it is proportions that can be equated to probabilities.
Consequently, it is not necessary to think about your probability of M
were L to obtain; it has already been found as 2/3 from the table of your
original judgments. Expressed as a decimal, to conform with the
others, to two decimal places, this is 0.67, and in this style, 0.2 in
the table should be 0.20 and the others similarly. A reference back to
the end of §2.9, where decimal representation was discussed, may help
here.

This probability is written in mathematical notation as pðMjLÞ and
is read “your probability ofM were L true”. The vertical line has been
used in §3.9 to mean “given”, but here it means “were”. The distinction
will be discussed in §4.6. Some writers make a distinction between
probabilities such as p(M), which only explicitly refer to one event, and
those such as pðMjLÞ, which mention two. The former are called, as
here, probabilities, but the latter are termed “conditional proba-
bilities”, differing in that although both refer to the uncertainty of
M, the latter is conditional on L. The latter termwill not be used, except
in special circumstances, because we view all probabilities as condi-
tional, on at least the knowledge base K (see §3.9) and the adjective is
superfluous. Thus, in our view, pðMjK Þ and pðMjL & K Þ differ only in
the conditions and not on the type of probability.

The value of pðMjLÞ has been calculated, in terms of the standard
of balls in an urn, as 40/60 but it could equally be found in terms of
probabilities, which are proportions of balls, rather than numbers.
Thus, from the last table, pðMjLÞ is 0.40/0.60, which is identifiable as
the ratio of p(ML) to p(L), thus enabling the standard to be forgotten
and all the calculations to be expressed in terms of probabilities. This
idea will form the basis of the multiplication rule of probability to be
developed in §5.3; for the moment we only need to notice the
calculation of the “conditional probability” as the ratio of two
probabilities.

What these ideas show is that from your three, original uncertainty
judgments, p(H), p(M), and p(HM), many other uncertainties can be
deduced, such as pðMjLÞ, by coherence within your belief system.
The reader might like to try others that follow from the table above;
thus p(MjH)¼ 0.10/0.40¼ 0.25. The reverse effect of unemployment
on inflation can be found by considering probabilities such as
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p(LjM)¼ 0.40/0.50¼ 0.80 and p(HjF)¼ 0.30/0.50¼ 0.60. All are
expressions of how one event is contingent upon another. It is worth
emphasizing, at the cost of repetition, that all these probabilities, and
many others, have been obtained from the three original ones, p(H),
p(M), and p(HM), by coherence. You need not have started from these
three. Another popular method is to think about p(L), from which p(H)
is immediate as the complement, and then, using the standard urn,
consider p(MjL) and p(MjH); taking inflation first and then thinking
how unemployment depends on it. The reader will easily be able to
obtain all the entries in the table from these three, just as with the
original three. The order may be reversed, starting withM (and F) and
then considering L. You are free to make what judgments you like
about some events, but once having made them, you are no longer free
to judge others; their judgments can be calculated from the original
values. If you do not like the probabilities obtained by calculation, then
your only resource is to return to the original values and change these
until overall coherence is attained and you are satisfied that all the
numbers reflect your beliefs. This idea will be used as a basis for some
probability assessments in Chapter 13. Coherence is our most impor-
tant tool in the evaluation of our uncertainty, and this book is not about
what your uncertainties must be but about how they must cohere.

4.3 INDEPENDENCE

The study of the uncertainty relations, expressed through probability,
between unemployment and inflation are continued in this section and
the contingency table of probabilities is repeated here for convenience,
with the slight change that a second decimal place, always a 0, has
been included since the calculations that follow will be done to this
precision.

H L

M 0.10 0.40 0.50

F 0.30 0.20 0.50

0.40 0.60 1.00
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From the final column of this table, we see that your probability of there
beingmany unemployed next year, p(M), is 0.50. But suppose therewas
low inflation next year; then the previous column shows that your
probability of many unemployed has increased to 0.40 / 0.60¼ 0.67
using the ratio concept of the last section. In symbols, p(M)¼ 0.50 but
p(MjL)¼ 0.67. This is a quantitative expression of your belief that low
inflation will tend to increase unemployment. (Some economists may
not agree with this, so we repeat, the values are not mandatory; insert
your own, but be coherent.) Also recall that these are your judgments
now about events a year ahead.

Suppose that you did not have this belief but felt that inflation and
unemployment next year were unrelated. Were this so, and you still felt
that p(M)¼ 0.50, you would have p(MjL)¼ 0.50 as well. What would
the entries in the table look like then? Again recognizing pðMjLÞ as the
ratio of p(ML) to p(L), the entry againstMLmust be 0.30. All the other
entries in the table then follow by simple arithmetic as before and the
table will look as shown below:

H L

M 0.20 0.30 0.50

F 0.20 0.30 0.50

0.40 0.60 1.00

This table was derived on your view that L did not affect M with
p(M)¼ p(MjL). But from the numbers in the table, it can be seen that it
is also true that p(M)¼ p(MjH), so that high inflation would similarly
not affect your uncertainty regarding the number of unemployed. Not
only this, consider the effect the other way round, of unemployment on
inflation. p(L)¼ 0.60 but equally, p(LjM)¼ 0.30/0.50¼ 0.60 and sim-
ilarly, p(LjF)¼ 0.60. Again we have an example of coherence. Once
you have decided that L did not affect M, you have decided that no
aspect of inflation, high or low, effects unemployment, many or few;
nor does unemployment affect inflation. In this case, we say that the
two events are independent. Let us make this more formal and, to
clarify a further point, recall the knowledge base on which all your
judgments of uncertainty have been made. The concept is stated for
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any two events, E and F, and not just for the specific events of high
inflation and many unemployed.

If two events E and F are such that, on knowledge base K , you
assert that

pðEjK Þ ¼ pðEjFK Þ;
then we say that you judge E and F to be independent given K .

The motivation for the use of the word independent is that your
uncertainty of E is independent of the inclusion of F. From the
considerations just advanced with inflation and unemployment, Fc

similarly does not affect E, nor does E or Ec affect F, so that the
relationship of independence is symmetric between the two events and
you can talk about the independence of them, or that one of the events
is not contingent upon the other. To exhibit this symmetry between the
two events, the defining equation just displayed can be written as

pðEFjK Þ ¼ pðEjK Þ � pðFjK Þ:
In words, your probability of both events happening is the product of
their separate probabilities. The reader will be able to verify this using
the ratio considerations, though the point will be examined more
carefully when the multiplication rule is introduced in §5.3.

Independence is an extremely important concept in the study of
uncertainty. A glimpse into why this is so can be seen from the
contingency table, for if two events, M and L in the example, are
independent, you will only have to think about p(M) and p(L), or
equivalently, the numbers of spotted and of white balls in the urn.
All the other probabilities, or numbers of balls that are both spotted and
white, will follow from the admission of independence, and you can
obtain the body of the table from the margins. Without independence,
many calculations of uncertaintieswould becomeprohibitively difficult.

4.4 ASSOCIATION

In your original assessment of the uncertainties involving the two
events of low inflation L and many unemployed M, you did not regard
them as independent on your knowledge base. Instead, you thought that
the probability of many unemployed would be increased were the
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inflation to be low. In symbols, p(MjL) exceeds p(M), omitting reference
to K . The numbers were 0.67 and 0.50, respectively. The same
inequality is true if every event is replaced by its complement. Thus,
p(McjLc) exceedsp(Mc), orp(FjH) exceedsp(F), the numbers being 0.75
and0.50, respectively. The same inequality even persists if the events are
interchanged. Thus, just as p(MjL) exceeds p(M), p(LjM) exceeds p(L),
the numbers being 0.80 and 0.60, respectively. Indeed, the example was
constructed to reflect the view of one economist who thought that more
people in work (event F) would put money in peoples’ pockets and
thereby increase inflation (event H); p(HjF)¼ 0.60 exceeds p(H)¼
0.40. We say that two events M and L are positively associated if the
occurrence of one increases the probability of the other, or generally,

If; on knowledge base K ; two events E and F are such that

pðEjFK Þ > pðEjKÞ;
then the two events are said to be positively associated on K :

(Here use has been made of the symbol>, meaning “greater than”,
explained in §2.9.) It then follows that p(FjEK )> p(FjK ) on reversing
the roles of the two events, and the same inequalities hold if both events
are replaced by their complements.

A senior policeman was quoted as saying that the proportion of
members of an ethnic minority among those convicted of mugging was
higher than the proportion in the general population. In our language
and omitting reference to a fixed knowledge base, p(EjC)> p(E),
where E is the event of belonging to the ethnic minority and C
conviction for mugging. This association implies that p(CjE)> p(C),
the members of the ethnic minority are more likely to be convicted of
mugging than is a random member of the population. To some, the
second statement sounds more racist than the first, yet they are
equivalent. We return to this example in §8.7.

Notice that the inequalities are reversed if one of the events is
replaced by its complement but the other is not. Thus, if E and F are
positively associated, then p(EjFc)< p(E). In our example, p(MjL)>
p(M), so thatM andL are positively associated,whereas, recalling thatLc

isH, p(MjH)< p(M), the numbers being 0.25 and 0.50, respectively. The
situationwill become clearer when themultiplication rule of probability
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has been introduced in §5.3. If, in the definition of positive association
just displayed,> is replaced by<, or in words, “exceeds” is replaced by
“is less than”, the events are said to be negatively associated on K . The
upshot is that the positive association between E and F implies positive
association between their complements, but a negative association
between E and Fc or between Ec and F. In your judgment, low inflation
is positively associated with many unemployed, but is negatively
associated with few unemployed. If E and F are independent on the
knowledge base, p(EjF)¼ p(E) and there is zero association. Numerical
measures of the amount of association have been introduced, and are
much used, but need not concern us here.

4.5 EXAMPLES

Some of the examples in §1.2 are extended here to illustrate the ideas
of independence and association. If, to the event of rain tomorrow
(Example 1), we add the event of rain on the day after tomorrow, then
you would not ordinarily regard them as independent because in many
places, weather on successive days tends to be similar and you would
ascribe positive association between them. Many events that occur in
time sequence exhibit this positive association, as high inflation one
year tends to be followed by high inflation the following. Negative
association within successive members of a sequence is rare.

Two almanac events (Example 2), would usually be independent.
Thus, the capital of Liberia beingMonrovia is totally unconnected with
the population of France being above 60 million, in that being told
the truth of one would have no effect on your uncertainty of the other.
Of course, if they were both events concerning France, there might be
some association.

In legal trials (Example 3), independence is often appropriate. For
example, evidence about the defendant being at the scene, and
evidence about the possession of a weapon, may be independent in
your view. However, there can be subtle connections that result in
associations that are hard to handle coherently. For example, if the
same witness is involved in the scene and weapon evidence, there may
be reason to think of an association. This is discussed further in §10.14.
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The medical examples of selenium (Example 4) and saturated fat
(Example 15) remind us that association is a problem that often arises,
especially in the treatment of patients, because the effect of onemedicine
may be influenced by other medical aspects. Thus it is possible that the
beneficial effect of selenium may be reduced if saturated fat is removed
from the diet. Drug companies have to be aware of the possible inter-
actions of one drug with another and the possibilities become even more
complex when more than two events are involved, as will be seen in
Chapter 8. The lack of independence has bedeviled much medical
research so that special techniques have been developed to overcome it.

The event that a card will be an ace (Example 7) is not independent
of the event that a second card, drawn at random from the same pack
without replacement of the first ace, will also be an ace. For if the first
event occurs, there are only 3 aces left in the pack, now of 51 cards, and
your probability of an ace is reduced from 4/52 to 3/51 and there is
negative association. The event that High Street will win the 2.30 race
(Example 8) is certainly not independent of another horse winning the
same race, but it may be reasonable to judge it independent of
Congress winning the 3.15.

The electricity industry in Britain, rather than the nuclear (Exam-
ple 13) provides a good example of an unsound judgment of indepen-
dence. The electricity grid, carrying supplies around the country, is
designed so that a failure in one part of it can be compensated by
rerouting the electricity, with the intention that no place suffers an
interruption to the supply. Even two failures can be allowed for, with a
third route available. In the original calculations of supply, failures
were supposed to be independent and the calculations of the small
probability of a place having no supply were based on this assumption.
However, one cause of failure is the trees fouling the electricity cables,
especially in a high wind in the spring when growth of the trees is
vigorous. Thus a storm in April can cause several failures, revealing
that independence of interruption events is not a sensible assumption.
Once this is recognized, the common cause can be introduced, and
under a different knowledge base incorporating the storm, indepen-
dence recovered, reminding us how important the base is in the
definition, for E and F may be dependent under K , but independent
under GK , for some G (see §8.8).
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History (Example 5), as was seen in §3.10, is affected by a
nonnumerate form of coherence and is similarly conscious of
association in a more literary guise than that presented here. Politics
(Example 12) is replete with associations such as those between social
class and voting. Independence plays an important role in science
(Examples 15 and 20) because the ability to repeat scientific experi-
ments is a key concept, as explained in §11.11, and the repetitions are
typically independent because they are performed by different scien-
tists in different environments. Most experiments, especially those in
the biological sciences, have an element of uncertainty in them that has
to be handled with a statistical analysis that almost always involves
basic assumptions of independence. Indeed, some writers have been so
overwhelmed by independence that it dominates their understanding of
probability to such an extent that a popular statistics textbook hardly
mentions conditional probability. Scientific procedures for handling
association within an experiment are discussed in §11.4.

4.6 SUPPOSITION AND FACT

In §3.9, the vertical line in the mathematical expression for probability
was used in the sense of “given”. Thus, p(EjK ) was your probability that
the event Ewas true, given your knowledge baseK , whereas in §4.2, the
same line has been used in the sense of supposition, using the subjunctive.
Thus, p(EjF) was your probability that the eventEwas true, were another
eventF true. There is a vast difference between knowing something to be
so, aswithK , and supposing it to be so, aswithF, so is this a case of sloppy
mathematical language? We think not and explain here the apparent
liberty of using the same symbol for apparently different concepts.

The notation p(EjF) omits reference to the knowledge base; so let us
temporarily introduce some more complicated, but accurate notation
andwrite p(EjF :K ) for your probability ofE on the supposition thatF is
true, and knowing K ; the colon separating the supposition, on the left,
from knowledge, on the right. Now contemplate the two probabilities

pðEjFG : K Þ and pðEjF : GK Þ;
where G is a third event. The only difference between these two
probabilities is that in the one on the left, the truth of G is mere
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supposition, being to the left of the colon, whereas in the probability on
the right,G is known to be true, being to the right of the colon, while all
the other elements in the two expressions are the same.Consequently, the
change from the left-hand probability to the right-hand one is entirely
accounted for by your learning that G is not just supposition, but a fact.
We now make the assumption that the change from supposition to fact
does not alter your uncertainty of E, and therefore your probability; in
other words, the two probabilities displayed above are equal.

At first sight, this assumption looks wrong. If you have learned
that inflation was low, rather than merely supposing it to be low, you
might well appreciate the uncertainty about unemployment differ-
ently. By contrast, we saw in §4.5 that the probability of a second ace
when one had already been drawn was 3/51, and the value would
surely be the same whether you were merely making a supposition
and thinking about the situation before any card had been taken, or
whether you had actually seen the first ace. So the assumption is
sometimes reasonable. Why the difference between inflation and
the aces?

The answer is that when you learn about inflation, you almost
certainly learn about something else as well. Recall that it is inflation
next year that is under discussion, and so the event can become a fact
only after the passage of a year. During that year you will have learned
many other things. In other words, your knowledge base will have
changed, apart from the extra knowledge of inflation. But in the two
probabilities displayed above, about which the assumption was sug-
gested, they had the same base, K . So the assumption amounts to
saying that if G passes from supposition to fact, and nothing else
happens, then the two uncertainties are the same, as with the aces. In
this form it is often found acceptable. If it is, then there is no need to
make the distinction between supposition and fact, and the vertical line
can be used for either or both purposes. Hence, the notation p(EjF) is
adequate and there is no need for the complication.

4.7 SEEING AND DOING

Having developed the concept of your probability of an uncertain event
E, given that you either know or suppose another event F to be true, a
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concept that has been denoted p(EjF), we will, in the next chapter,
develop the rules that such probabilities must obey, essentially the
rules governing coherence between uncertainties. These rules are
really simple and, with a little experience, are not hard to use. Because
of the comparison with the standard, they are equivalent to the rules
that obtain for the proportions of balls of different types in an urn. If the
calculus of probability, at least at the level at which it will be used here,
is as simple as the balls in an urn, then in contrast, there is an aspect of
probability that really is difficult, so difficult that even experts in the
field can make errors more frequently than they care to admit. The
difficulty lies in the relationship between the probabilities, on the one
hand, and the real uncertain world you are attempting to describe on
the other. There is a difficulty in translating your opinions about
inflation and employment into probabilities, and then, after calculat-
ing, translating the results of the calculations back into reality. It does
not stretch language too far to say that the science is easy but the art is
difficult. Examples of this arise in many places in this book, but here
we explore the notion of association, as developed here, and an
apparently similar notion of causation.

Let us return to the example of unemployment and inflation and
consider carefully what you mean by p(HjF)¼ 0.6. You are contem-
plating now what the economy will look like a year ahead, in
particular, on the two events of high inflation and few unemployed
then, thinking of how they are associated and saying that if few are
unemployed, then the probability of high inflation is 0.6, greater than it
would be with many unemployed. Suppose that you, the person
making this statement, are a politician concerned about unemployment
in the country and are proposing to increase public expenditure,
creating new jobs, and hence reducing the number out of work.
You might think that high inflation would possibly result and even
think that many people at work cause inflation because they have more
money to spend. This could be incorrect since the original statements
of association refer to a passive situation in which you are merely
contemplating, whereas causation here reflects an intervention, by
raising public expenditure. The contrast has been happily expressed by
distinguishing between “seeing” and “doing”. Association says that if
you see F at the end of the year, then you will expect to see H.
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Causation says that if you do something to make F true, you will getH.
There is a lot of difference between seeing and doing because the latter
involves intervention in the system, whereas the former merely
demands observation.

Here is another example: a chemical engineer was disturbed by the
variability of the product being made, and launched an investigation to
find the cause of the variability. An obvious result of the study was that
there was a critical temperature for the chemical reaction involved,
either too hot or too cold and the product was unsatisfactory. In our
language, an association was established between quality and temper-
ature. The process being used had no real control over the temperature
of the vessel in which the product was made, so it was decided to
redesign the vessel so that it could be kept near to the critical
temperature revealed by the study. This was done, at a considerable
expense, only to discover that the quality of the product was markedly
less than in the study. The reason was that the new design had affected
other features of the production process, which were not previously
thought important. The investigation had been concerned with seeing
what happened. The new process was the result of doing something.
Again we see that there can be a real difference between seeing and
doing. There is a well-established association between heavy con-
sumption of saturated fat and heart disease (Example 15) found by
observing people, but it does not follow that reducing the amount of fat,
doing something, will reduce deaths from heart disease, although more
recent evidence suggests that it may be true. The association between
smoking and lung cancer was established before it was shown that
smoking was a cause of lung cancer.

We shall have little to say about causation but the distinction
between seeing and doing will often arise, especially in connection
with Simpson’s paradox in §8.2. The general point to be made here is
that in making your probability statements, you need to be alert to the
precise interpretation of the events involved.
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CHAPTER5

The Rules of Probability

5.1 COMBINATIONS OF EVENTS

It has been shown how your uncertainty of an event E, when you know
or suppose event F to be true, can be described by a number pðEjFÞ,
termed your probability of E, given F. This is for a knowledge base
that will be supposed fixed throughout the following discussion and
therefore mostly omitted from the notation. In almost all practical
cases, several uncertainties, or probabilities, are involved and it is
necessary to combine them to reach an overall measure. Probabilities
combine according to rules, and the aim of this chapter is to explain the
rules so that you can perform the necessary calculations. There are
three basic rules from which all others can be derived; one of them is
slight and the other two are developed from the two ways in which
events may be combined. This chapter begins with a study of these two
ways.

We have already seen in §4.2 one way in which two events can be
combined. If E and F are any two events, then the event that is true if,
and only if, both events are true, was written E& F, or more succinctly,
EF. It is called the conjunction of the two events. If E is the event of
rain tomorrow, Saturday, and F is the event of rain on Sunday, then EF
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is the event that it rains on both days. If E is the event that a person is
white, and F is the event that the same person is male, then EF is the
event that the person is a white male. If E is the event that the ball,
taken at random from the standard urn, is red, and F is the event that it
is spotted, then EF is the event that the ball is both red and spotted.

There is another way in which two events can be combined.
Consider the event that is true provided at least one of E and F is true
and is therefore only false if both events are false. It is called the
disjunction of E and F and will be written E or F. (It is sometimes
written EþF but this can be misleading since the plus sign with
events does not obey the same rules as it does with addition in
arithmetic.) When E is the event of rain on Saturday, and F that of
rain on Sunday, E or F is the event of rain at some time during the
weekend. If E is the event of a ball being withdrawn from the urn and
found to be red, and F the event of a similar withdrawal having black
spots added, then E or F is the event of the ball being decorated, in the
sense of having color or spots applied. If E is the event of high
inflation and F that of many unemployed, then E or F is the event that
the government will experience unpopularity either from the inflation
or from the unemployed.

It may be helpful to distinguish between these two methods of
combining events by presenting the rules of combination in the form of
a truth table that describes the truth of a combination in terms of the
truths of the original events. At the same time, recall that we have
already seen another way of creating a new event, by means of the
complement Ec in §3.7. Here is the truth table for all the three methods,
conjunction, disjunction, and complement in which, for any row of the
table, the status of the first two events determines the status of the other
three. For example, in the first row, if both events are true, then so are
the conjunction and the disjunction but the complement is false.

E F EF E or F Ec

True True True True False

True False False True False

False True False True True

False False False False True
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There are other ways in which events can be combined, including
combinations involving more than two events, but they can all be
expressed in terms of the three given in the truth table.

The rule that governs the relationship between your probabilities of
an event and its complement was considered in §3.7, where it was seen
that your probability of the complement was one minus your proba-
bility of the event; or equivalently that your probabilities of an event
and of its complement add to one. In symbols,

pðEcÞ ¼ 1� pðEÞ:
We now consider the rules that apply to the methods of combining two
events by disjunction and conjunction. They are necessarily more
complicated than that for the complement, involving, as they do, two
events. The rules will be developed by the device of comparison with
the standard of balls withdrawn at random from an urn, since what
holds for the standard must also hold for the general concept of
probability. Essentially, the rules of probability are just those of balls
of different types in an urn.

5.2 ADDITION RULE

We first look at the way probabilities behave when two events are
combined by disjunction, and begin by taking the standard urn that has
been used before with balls that are either red or white, and simulta-
neously, either spotted or plain. Let R be the event that a ball, drawn at
random from the urn, is red; and S the event that it is spotted. The
combination R or S is then the event that the ball is decorated, either by
color or spots, or both.

Now recall that probability is just the fraction of relevant balls in
the urn, so, out of 100, we have merely to count the numbers to obtain
the probabilities. A first reaction might be to say that the number of
balls that are either red or spotted is the number that are red plus the
number spotted. But a moment’s reflection will show that this is false,
for in so doing, the balls that are both red and spotted will have been
counted twice, once as red, once as spotted. The following is the true
state of affairs:
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The number of balls that are decorated is the number that are red,
plus the number that are spotted, less the number that are both red and
spotted.

In that sentence, the first number is related to the disjunction of the
events, R or S, the next two to the individual events, and the last to the
conjunction of the events, RS. Recalling that probability is the fraction
of balls of the relevant type, we can divide every number in the
statement above by 100 and interpret the results as probabilities, so that
the statement is equivalent to:

The probability that a withdrawn ball is decorated, either by color
or by spots or by both, is the probability that it is red, plus the
probability that it is spotted, less the probability that it is both red
and spotted.

Let this be written in mathematical language. We have

pðR or SÞ ¼ pðRÞ þ pðSÞ � pðRSÞ:
Since any two events E, F admit comparison with the urn, this result
holds for any two events, so that

pðE or FÞ ¼ pðEÞ þ pðFÞ � pðEFÞ: (5.1)

Equation (5.1) is the general rule for calculating the probability of
either of the two events occurring, the disjunction. It is not a happy
result since it involves not just the individual probabilities of the two
events, but also the probability of the event that arises from the other
method of combination, conjunction, EF. There is an important,
special case where the result simplifies.

Two events E and F are exclusive if it is impossible for them to
occur simultaneously. Alternatively expressed, the conjunction is
impossible. The obvious case is where F is the complement of E,
for an event cannot be both true and false. Here are some examples of
exclusive events.

1. Inflation next year will exceed 6%. Inflation next year will be
below 3%.

2. The defendant was at the scene of the crime in the club. The
defendant was at home.
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3. High Street will win the 2.30. Gladiator will win the 2.30.
4. Your neighbor will vote Republican. Your neighbor will vote

Democrat.

If E and F are exclusive, then you will assess the impossible event, EF
to have probability zero, p(EF)¼ 0. Equation (5.1) then simplifies to
produce the result that

pðE or FÞ ¼ pðEÞ þ pðFÞ: (5.2)

This result is much simpler than the general form (5.1) but it applies
only to exclusive events and is therefore limited in scope. For obvious
reasons, (5.2) is called the addition rule of probability, though we shall
use the same term for the general Equation (5.1). In view of its
fundamental importance, the addition rule of probability is now stated
in full generality and, in particular, we recall that all uncertainties are
relevant to a knowledge base K .

If E and F are any two events, uncertain for you on knowledge base
K , then

pðE or F jK Þ ¼ pðE jK Þ þ pðF jK Þ � pðEF jK Þ: (5.3)

This is the addition rule of probability. If E and F are exclusive on K ,
then

pðE or F jK Þ ¼ pðE jK Þ þ pðF jK Þ:
Although this result may seem, at first, a little complicated, though

simpler when it relates to exclusive events, recall that it is only an
expression about fractions of balls in the standard urn. When consid-
ering an example, it is often useful to think of the calculations in terms
of fractions of balls.

5.3 MULTIPLICATION RULE

The addition rule deals with the combination E or F, the disjunction of
two events, though, in general, it involves the conjunctionEFaswell.We
now turn to this last formof combination and develop another rule, using
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the same device, as in the last section, of comparison with the standard
urn. If, as before, R refers to the event of the ball being red, and S to the
event of being spotted,RS is the event of being both red and spotted. The
red balls are either spotted or plain, so the number that are both red and
spotted is equal to the number that are red multiplied by the fraction of
the redones that are spotted.Dividing by the total number of balls, 100, it
can be seen that the fraction of balls that are both red and spotted is the
fraction that are red times the fraction of the red that are spotted. (It may
clarify the statement to insert actual numbers of balls; for example, those
in the third table of §4.1.) Replacing each of the fractions by probabilit-
ies, we have the following:

Your probability that a ball, withdrawn at random from the urn, is
both red and spotted is your probability that it is red, multiplied by your
probability that it is spotted, given that it is red.

Here the concept of conditional probability, explored in §4.2, has
been used, equating the fraction of red that are spotted with your
probability of being spotted, given that a ball is red. Finally, we turn the
literary form into mathematical language and replace the special
events, R and S, by general events, E and F, to obtain the result

pðEFÞ ¼ pðEÞ � pðF jEÞ:
It is usual to omit the multiplication sign, as explained in §2.9, and
write

pðEFÞ ¼ pðEÞpðF jEÞ: (5.4)

As with the addition rule, let us next restate it in full generality
including reference to the knowledge base.

For any two eventsE and F that are uncertain for you on knowledge
base K ,

pðEF jK Þ ¼ pðE jK ÞpðF jEK Þ: (5.5)

This is the multiplication rule of probability. Product rule is an
alternative term.

Like the addition rule, it is merely an expression of a result
concerning fractions of balls, and it can be useful to think in terms
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of these when calculating. Notice one important feature of the multi-
plication rule; it involves two knowledge bases, unlike the addition rule
that had only one, K ; for here, in addition to K , there is K augmented
by E. This feature will play a vital role in describing how your
uncertainties change when new information, E, is acquired.

In the case of the addition rule, it was seen that it simplified if the
two events were exclusive, and that then the result could be expressed
in terms of your individual probabilities of the two events, without the
inclusion of the other combination EF. The multiplication rule can
similarly be simplified and involve only the individual probabilities.
This happens, not when the events are exclusive, but when they are
independent, see §4.3. Recall that E and F are independent, given K , if
pðF jEK Þ ¼ pðF jK Þ and using this in (5.5), we have the following
result:

If E and F are independent, given K , then

pðEF jK Þ ¼ pðE jK ÞpðF jK Þ: (5.6)

The disjunction E or F is sometimes called the sum of the two
events, and the conjunction EF the product. With this terminology, the
last form of the multiplication rule reads that your probability of the
product of two independent events is the product of their separate
probabilities, a result that is attractive because it is easy to remember.
Unfortunately, it is true only if the events are independent; otherwise it
is wrong, and often seriously wrong. Similarly, (5.2) reads that your
probability of the sum of two events is the sum of their separate
probabilities. Again, this is true only under restrictions, but this time
the restriction is not independence but the requirement that the events
be exclusive. Simple as these special forms are, their simplicity can
easily lead to errors and are therefore best avoided unless the restric-
tions that made them valid are always remembered throughout the
calculations. The desire for simplicity has often been emphasized, but
here is an example where it is possible to go too far and think of the
addition and multiplication rules in their simpler forms, forgetting
the restrictions that must hold before they are correct. Notice that the
restriction, necessary for the simple form of the addition rule, that
the events be exclusive, or the disjunction impossible, is a logical
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restriction, having nothing to do with uncertainty, whereas indepen-
dence, the restriction with the multiplication rule, is essentially
probabilistic. It is perhaps pedantic to point out that the simple
form of the addition rule is correct if you judge the disjunction to
have probability zero, rather than knowing it is logically impossible,
but we will see in §6.8 that it is dangerous to attach probability zero to
anything other than a logical impossibility.

5.4 THE BASIC RULES

There are now two rules that your probabilities have to obey: addition
and multiplication. To these we add a third, one that is so simple that
we have passed it by as obvious, for it merely says that any probability
lies between the limits of 0 and 1 and that an event that you know to be
true has probability at the upper limit of 1. This is strangely called the
convexity rule. The three rules are now stated together:

Convexity Rule. For any event E with knowledge base K , your
probability of E, givenK , pðE jK Þ, is a number between 0 and 1.
If, on K , you know E to be true, then your probability is 1.

Addition Rule. For any two events,E andF, with knowledge baseK ,

pðE or F jK Þ ¼ pðE jK Þ þ pðF jK Þ � pðEF jK Þ:

Multiplication Rule. For any two events, E and F, with knowledge
base K ,

pðEF jK Þ ¼ pðE jK ÞpðF jEK Þ:

It is a fact that can hardly be emphasized too strongly that these
three rules encapsulate everything about probability, and therefore
everything about your uncertainty measurement, in the sense that
although the rules have been obtained through comparisons with a
standard, all other properties of probability can be deduced from these
three, and the standard forgotten. Although we have used the standard
of balls drawn at random from an urn, it will be seen in §5.7 that other
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standards lead to the same three rules. All that you need to know about
your uncertainty measurements, all the results that experts have
obtained (and some are very sophisticated) are contained within these
three rules. It is now possible to give a formal definition of the concept
of coherence mentioned in §3.5. A person’s beliefs are coherent if,
when those beliefs are expressed in terms of probabilities, they obey
the three rules just stated. In §5.7, it is shown that an incoherent person
is potentially capable of losing money for sure.

As an undergraduate, I once attended a course of 24 lectures on
Newtonian mechanics. The first lecture was devoted to a careful
mathematical formulation of Newton’s laws and, at the end, the
lecturer explained that the remaining 23 lectures would merely consist
of calculations based on these laws and went on to say that, since you
can calculate, in a sense, the lectures are redundant. A similar feature
obtains here, so that once you have understood the three laws of
probability just stated, you can calculate for yourselves and not read
further. Of course, the undergraduates continued with the lectures to
gain experience in calculation and, more importantly, to see how to
apply Newton’s method. So I hope that you will continue with this
book, but I do sincerely suggest that you ensure that the rules are
thoroughly understood before proceeding.

All the properties of probability follow from the three rules, but
equally, the term probability is used only in the sense of something that
obeys the three rules. It sometimes happens that probability is
employed to mean any number that measures belief, lying between
0 and 1; that is, merely obeying the first, convexity, rule. Here we will
follow Humpty Dumpty in making probability mean exactly what we
say, that is, obeying all three rules, not just a subset.

The fact that the three rules have been derived from assumptions,
and not just invented, is not always appreciated. One cannot sit down in
one’s ivory tower of the Prologue and invent rules. This is because
there are uncertain events of some simplicity (we have chosen to use
balls in an urn) where convexity, addition and multiplication do hold.
One school of thought replaces the last two by rules that use maxima
and minima. These rules may be suitable in some contexts, but they do
not obtain with balls in urns or other simple situations that wewill meet
later. People may sensibly reject our comparison of general uncertainty
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with balls in urns, or betting at the casino, but some justification for
alternative rules, such as maxima and minima, is required.

Another way of expressing the ideas of the previous paragraphs is to
say that the calculations of several uncertainties, forming a calculus of
probabilities, are based entirely on addition and multiplication. What is
also remarkable about this is that probabilities combine in two different
ways: addition and multiplication. Most common concepts only com-
bine in one way. Lengths add, but they do not multiply; when they do,
they produce something different, area. Youmay add sums ofmoney but
it makes no sense to multiply 3 dollars by 7 dollars. Even human beings
can combine in only one way to produce another human being, by the
addition of sperm to egg, though there are now many ways of effecting
the addition. Probability is so rich because of its two methods of
combination, corresponding to the two ways that events may combine.

Despite this richness, recall that the three rules are only results
concerning fractions of balls in an urn, expressed in a different
language. If you have trouble thinking about some of the results in
this book, do not be ashamed to think in terms of fractions of balls in an
urn, if you find that convenient. Nevertheless, experience shows that it
is better to forego the habit and calculate directly in terms of
probabilities. Notice that the rules have been expressed in terms of
probabilities and not in terms of the odds (§3.8) with which some
people are more familiar. This is because the rules are easier to
comprehend, and to use, in probability form. The interested reader
might like to translate the addition rule into odds; the result is a mess.
Bookmakers are familiar with the multiplication rule but sometimes do
not understand the addition rule.

After the above had been written, a little voice in my ear said that I
was not quite correct and that the addition rule in the form stated above
is not adequate for all that had been claimed. “Don’t forget conglom-
erability” it said, as if one could forget a word as long as that. The
objection is sound; most probabilists do introduce a conglomerability
rule, which cannot be justified by reference to the standard, and use it
extensively to produce deep results. My contention is that conglom-
erability is just a mathematical device for handling infinities and not a
basic property relevant to the finite situations that we shall encounter.
We shall not need to use sophisticated tools such as integration or
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differentiation but can make do with simple devices that are adequate
for a layperson’s understanding. To assuage the curious, and to
encourage curiosity, we will mention conglomerability in §12.9
when more experience of using the rules has been gained.

There is another important (some might say outrageous) claim for
the three rules. Most of us like to think of ourselves as logical, though
we often have difficulty in living up to the ideal. Now logic deals with
the truth and falsity of events and the rules are principally captured in
the truth table of §5.1; thus if E and F are both true, then it logically
follows that EF, the conjunction, is also true. Probability deals with all
events, principally uncertain ones, but true and false events are
included with p(E)¼ 1 if E is true and 0 if false. I claim that probability
is the unique extension of logic and that your ideal should not be to be
logical, but to be coherent in the sense of the three rules. The grand
assertion is that you must see the world through probability and that
probability is the only guide you need. “Understanding Uncertainty”
means knowing the three rules of probability. The language of life is
that of probability. Probability is as essential as ethics, religion,
physics, genetics, and politics. Probability should operate everywhere
and is a feature of all these topics because uncertainty is present in all
of them.

5.5 EXAMPLES

One result in probability was met in §3.7 but does not appear in the
basic rules just listed; so to support our claim that all results in
probability follow from the basic ones, let us derive the earlier result
from these. There it was seen that your probability of an event and your
probability of its complement necessarily added to one; yet this does
not appear in the three rules and the complement is not even men-
tioned. To establish the correctness of this result, take any event E and
its complement Ec. These two events are exclusive (§5.2) since they
cannot both be true. The addition rule may therefore be applied in its
simpler form of (5.2) to provide

pðE or EcÞ ¼ pðEÞ þ pðEcÞ:
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The event on the left-hand side of this equation, E or Ec, must be true
since E is either true or false, and by the convexity rule, a true event has
probability 1. Hence, the above result reads

1 ¼ pðEÞ þ pðEcÞ;

and the earlier result is obtained, thereby substantiating the claim that
the earlier result follows from the three rules. Further rules that follow
from the basic ones will be developed later.

In §3.5, a problem about birthdays was mentioned to illustrate the
idea that, from some easily assessed probabilities, others that were
harder to think about, could be found. Let us see how the rules
achieve this and begin with three people. For each of them, you state
that your probability that they were born on March 4 is 1/365, and
similarly for any other date. You further believe that knowledge of
the birthday of any of them would not affect your probability for any
other; in the language of §4.3, on your knowledge base, the birth
dates for different people are independent. The rules are now used to
calculate the probability that at least two of the three share the same,
unstated birthday.

To do this, we calculate the probability of the complementary event
that none of them share a birthday, when the required result will be one
minus this value, by the general result just obtained. Take the three
people in order. The first person will have some birthday and for the
second to have a different day, it must be among the 364 other days, so
your probability is 364/365 by the addition over the 364 exclusive
possibilities. Now take the third; their birthday is restricted to the
remaining 363 days, so your probability that the day will be different
from the first two is 363/365. By the multiplication rule, and using your
assumed independence, your probability that all three will differ is
364/365 times 363/365. This is 0.9918 to four decimal places. It
follows that your probability that at least two of them share a birthday
is one minus this, at 0.0082. This is small, less than 1%.

In the original example, there were 23 people, not 3, but the general
method of calculation is the same. Having 364 days available for the
second, 363 for the third, there will be 362 for the next, 361 for the
next, decreasing by one each time. For 23, your probability for all
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23 having different birthdays will be

364

365
� 363

365
and so on until� 343

365
;

the last fraction and product corresponding to the twenty-third person.
A calculator enables this to be found to be about 1/2. Hence, your
probability of the complement, that at least two people share their
birthdays, is also about 1/2, as stated. Thus, from probabilities that are
easily thought about, such as 1/365, others that are far from easy can be
calculated. This use of the probability rules is typical.

As another example of the rules, consider the probability of a
nuclear accident in Example 13 of §1.2. The following simplified
version will illustrate the ideas of how this might be assessed.
Suppose that an accident can occur only if two things simultaneously
happen: first, a fuel rod jams, an event R; second, the cooling
thermostat fails, an event C. Then you are interested in the event
RC. The probability of this can be evaluated by the multiplication
rule as pðRÞpðC jRÞ. Suppose your probability of jamming is 0.01
and, if the rod jams, the probability that the thermostat will fail to
respond to the consequent overheating is 0.04. In symbols,
p(R)¼ 0.01 and pðC jRÞ ¼ 0:04. Then the probability of an accident
is the product 0.01� 0.04¼ 0.0004. Notice that although the two
separate probabilities are modest, the product is small. In reality,
more than two things will have to occur simultaneously for there to
be an accident and as each involves multiplication by a probability,
necessarily less than one, the accident probability decreases with
each multiplication and its very small value can be assigned, pro-
vided the individual probabilities, of modest size, can be found.
Again, in practice, there will be many ways for an accident to arise;
each can have its probability found by this use of the multiplication
rule and the addition rule used to combine them. Thus, if in addition
to the failure method mentioned above with probability 0.0004, there
was another method, exclusive of the first, with probability 0.0007,
the total probability would be 0.0011. Two words of caution need to
be included: first, the uncertainties refer to a fixed period of time, say
over a year, and second, they refer to a fixed knowledge base.
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5.6 EXTENSION OF THE CONVERSATION

The three rules are the basic ones but many others can be derived from
them, a particularly useful one having the delightful name of the
extension of the conversation. Although the proof of the rule involves
some technical mathematics, which we said would be avoided in
general, it is given here because the technicalities are very simple, and
because it will perhaps show the reader, by example, how these simple
ideas can be used to extract many other results from three basic rules.
The reader prepared to embark on the journey of discovery should
recall that probabilities are only numbers and that the manipulations
that follow are essentially a combination of arithmetic and the basic
rules; the language, such as pðE jFÞ, covering many possible arith-
metical interpretations, one of which is given in the cancer example
that follows. The reader who is not interested can proceed directly to
the result, Equation (5.7) helped by the literary equivalent in the
following paragraph.

Take any event E whose probability you wish to find, and let F be
another event. From these, two other events can be constructed, EF
and EFc. The latter is the event that is true if, and only if, both E is
true and F is false. The events EF and EFc are exclusive since F
cannot be both true and false. The addition rule in its simpler form
(5.2) gives

pðEF or EFcÞ ¼ pðEFÞ þ pðEFcÞ:

The event on the left is just E since the truth of F is irrelevant. So

pðEÞ ¼ pðEFÞ þ pðEFcÞ:

Next, apply the multiplication rule to each of the two terms on the
right. Thus, pðEFÞ ¼ pðE jFÞpðFÞ, and similarly with Fc. The result is

pðEÞ ¼ pðE jFÞpðFÞ þ pðE jFcÞpðFcÞ: (5.7)

This is the rule of the extension of the conversation and it holds for
any two events on a common knowledge base. The reason for the
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terminology is that you are considering, or conversing, about E on the
left of (5.7), and extending the conversation on the right to include
event F.

Like all the results, this can be thought of in terms of ratios of balls
in the standard urn. Let E correspond to red and F to spotted. Then the
rule says that the proportion of red balls is equal to the proportion of
red among the spotted, times the proportion of spotted, plus the
proportion of red among the plain, times the proportion of plain.
The last sentence is the literary equivalent of (5.7).

An immediate question is what use is this rule; why extend the
conversation to include another event, making life more complicated?
The reason is that the conditional probabilities of E that appear on the
right-hand side of (5.7) are often easier to think about than those of E
on its own. Here is an example that we meet again in §6.4. Suppose
there is a clinical test for cancer that can yield either a positiveþ or
negative� result but is not perfectly reliable, thus introducing an
element of uncertainty. Suppose that all the patients showing a positive
result have to go for a more extensive analysis. It then becomes
important to know how probable it is that a person will showþ on
the test. With a clinical test, it is usual to know how good it is in the
sense that the probabilities of false positives and false negatives are
agreed and known. That is, if C is the event of having cancer, pð� jCÞ
for the false negatives, and pðþ jCcÞ for the false positives, are known.
Here Cc is, as usual, the complement, not having cancer. If the
conversation is extended fromþ (playing the role of E) to include
C (playing that of F) then, from (5.7),

pðþÞ ¼ pðþ jCÞpðCÞ þ pðþ jCcÞpðCcÞ: (5.8)

Finally, with pðþ jCÞ ¼ 1� pð� jCÞ and pðCcÞ ¼ 1� pðCÞ, your
required probability of a positive outcome, p(þ), has been expressed in
terms of the known falsity rates and your probability that, before the
test, a patient has cancer, p(C).

Here is a numerical example. The rates are low for a good test, so
suppose

pð� jCÞ ¼ 0:01 and pðþ jCcÞ ¼ 0:05:
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The first value means that a patient who truly has cancer has only one
chance in 100 of slipping past the test undetected and therefore is
almost certain, probability 0.99, of being detected, pðþ jCÞ ¼ 0:99.
The second value means that a cancer-free patient still has probability
0.05 of a positive test result. If only 2% of the population has cancer,
and you consequently take p(C)¼ 0.02, your probability of a positive
result is, by (5.8),

0:99� 0:02þ 0:05� 0:98 ¼ 0:0688:

So you assess the probability of a positive result at almost 7%, much
greater than the 2% of the patients who truly have cancer.

The analysis just advanced recognizes that a positive test result
can arise from one of two causes; a patient with cancer can be
correctly diagnosed, pðþ jCÞ, or a healthy patient can respond
incorrectly, pðþ jCcÞ. If all patients had cancer, only the first case
would apply and pðþÞ ¼ pðþ jCÞ; if none, then only the second
operates and the errors are experienced, pðþÞ ¼ pðþ jCcÞ. The
general result (5.8) is a combination of these two cases and the
formula for the extension of the conversation reflects this, adding a
proportion p(C) of the first value, and the complementary proportion
p(Cc) of the second. We say that the conditional probabilities have
been mixed and (5.7) reflects this mixture of pðE jFÞ and pðE jFcÞ in
proportions p(F) and 1� pðFÞ ¼ pðFcÞ.

It has repeatedly been emphasized that probabilities behave like
proportions of balls in urns, so let us redo the cancer calculations in
those terms without any of the mathematical apparatus. Mathemati-
cians rather frown on this form of argument but it is useful for those
who find the symbolism too abstract and, most importantly, it is
correct; its serious disadvantage is that it only handles special,
numerical cases and does not, unlike the general Equation (5.7), reveal
the structure of the edifice that is your logical way of thinking about
uncertainty.

Instead of our usual urn of 100 balls, let this one have 10,000 balls,
otherwise the numbers will be uncomfortably small. With 2% of the
patients having cancer, there will be 200 balls labeled “cancer” and the
remaining 9,800, “cancer free”. The falsity rate for the former was 1%,
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so 2 will register negative, leaving 198 positive. The falsity rate for the
latter was 5%, 1 in 20, so 490 will register positive. Hence, the total
number of positives is 198þ 490¼ 688 out of 10,000, exactly as
before. Notice that the high rate of positives, nearly 7%, compared with
the cancer rate of 2% is mostly due to the 490 healthy patients that the
test got wrong. An alternative way of laying out the arithmetic is by the
use of a contingency table, as was done with unemployment and
inflation in §4.1.

5.7 DUTCH BOOKS

Let us see where we have got to in the argument from where we began
with examples of uncertainty in Chapter 1. As a result of some
assumptions about the measurement of uncertainty involving compar-
ison with a standard of balls in an urn, we have demonstrated that the
measurement, called probability, has to obey three rules, convexity,
addition and multiplication, which form the basis of a calculus that can
be used to make your appreciation of uncertainty coherent. This
derivation of the rules from a standard has been used because it is
perhaps the simplest and the least free from objections. However, some
readers may not be convinced and their doubt is not at all unreasonable.
You may feel unhappy using a single number to describe something as
subtle as not knowing, or youmay be concerned at a comparison that in
many cases, for example with inflation, you would have difficulty
in making. In this and the following sections, we discuss how other,
quite different approaches lead to the same rules. That is, whatever
way uncertainty is approached, probability is the only sound way to
think about it. The alternative approaches will only be dealt with in
outline, hopefully enough for you to appreciate their main ideas. If
probability is the only sound way to think about uncertainty, it is
valuable to have many derivations of the rules, thereby strengthening
your confidence in the rules.

One derivation has been briefly mentioned in §3.6 that involved
gambling. As usual, let E be an uncertain event and suppose a gamble
onE is offered by you at odds of 5 to 1 against, meaning that, for a stake
placed by another, you will pay out five times that stake if E is
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subsequently found to be true, and return the stake. If E is not true, then
you will retain the stake. The importance of numbers, as has already
been explained, lies in their abilities to combine easily, so let us
suppose you contemplate a second gamble, but this time on the
complement of E, denoted, as usual, Ec. With two gambles, something
interesting happens. Here is an example.

Suppose that you offer a gamble on E at odds against of 1 to 1,
commonly called “evens”, and, at the same time, offer one on Ec at
odds against of 2 to 1. Next suppose that I come along and place a stake
of 3 on the first gamble and a stake of 2 on the second. What will
happen? If E is true, then you will lose 3 on the first and gain the stake
of 2 on the second—a total loss of 1. Suppose E is false, Ec true, then
you will keep the stake on the first, a gain of 3, but will lose 4 on the
second, because you will have to pay out twice (2 to 1) the stake (of 2).
So your total loss will be 1. Hence, whatever happens, whether E is true
or false, you will lose 1. You might just as well give me 1 and forget
about the gambles.

If, as here, I can choose the stakes such that I will win for sure, and
you will lose for sure, we say that I have made a Dutch book against
you. It has just been shown that if you give odds of evens against an
event and odds of 2 to 1 against its complement, then you will lose
money for sure with an intelligent placing of stakes. (The stakes of 3
and 2 were selected deliberately.) Clearly, you want to avoid the
possibility of a Dutch book and the question is how can this be done?
The answer is to turn the odds into probabilities, as with equation (3.3)
in §3.8, and arrange the probabilities to add to 1. In the example, your
equivalent probability for E was 1 /2, that for Ec was 1 /3. These do not
add to 1. There is more discussion of this in §14.5.

The method of the example may easily be extended to prove that
the avoidance of Dutch books implies one of the rules of probability,
namely,

pðEÞ þ pðEcÞ ¼ 1;

as obtained in §3.7. Using more complicated combinations of events
and their associated gambles, it is possible to derive all three rules of
probability. Hence, we have here a quite different approach to uncer-
tainty, employing gambles, which leads to exactly the same results,
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thereby adding to our confidence that the results are correct. There are
three reasons why the gambling approach has not been employed here.
First, many people, understandably, object to gambling. Second, there
are difficulties with uncertainty being confused with desirability, see
§3.6. The third reason is that the proofs are more complicated than
those presented here. Notice that in the urn approach, all the rules
of probability have been proved, not merely presented as plausible.
A proof seems to me to be the best way of convincing you that the rules
are correct, indeed, inevitable.

One final remark about Dutch books before we leave them. If
you go to a race meeting and investigate the odds offered by a
bookmaker against the horses in a single race, you will find that it is
always possible for you to arrange your stakes such that you will lose
money for sure. That is, the bookmaker has arranged his odds such
that he has the potentiality for a Dutch book against unwary
gamblers. Of course, he cannot guarantee this, since he does not
control the stakes, but this is how he makes his money. Turn the
bookmaker’s odds against into probabilities and you will find they
always add to more than 1. Again See §14.5.

5.8 SCORING RULES

Some people reasonably object to the derivation of the rules used here
because they feel that the standard is not usable, or operational, though
we attempted to overcome this objection in §3.5. Here is a method of
deriving probability that is operational, though unfortunately it has
been little used.

Suppose that I ask you to give me a number that describes your
uncertainty for an event E, where you are free to use whatever
process you like, even one that merely provides a number that keeps
this annoying inquisitor quiet. But you are told that, if the event is
subsequently found to be true, you will be given a score that is the
square of the difference between your number and 1. If it is false,
you will be scored by the square of the difference between your
number and 0. For an explanation of “square” see §2.9. Thus, if you
say 0.7 and the event is true, you score ð1� 0:7Þ2 ¼ 0:32 ¼ 0:09; if
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false, you score 0.72¼ 0.49. In practice, the scores are multiplied by
100, giving a modest 9 if the event is true but a more substantial 49 if
false. In symbols, if you provide a number x you will score ð1� xÞ2
or x2 according to whether the event is true or is false. What number
x will you give? The scores are to be thought of as penalty scores so
that you aim to make them as small as possible. Furthermore, you
may be asked to provide uncertainty numbers for other events, in
which case the scores for the various events will be added to produce
a total score.

It is easy to see, and so easy that it is left as an exercise for the
reader, that your score will be smaller, and hence better, if you obey
the convexity rule of probability. That is, the number provided must
lie between 0 and 1, and that if you know the event to be true, it must
be 1. Using these scores for several events, it is possible to prove the
addition and multiplication rules of probability. That is, the numbers
that you give must satisfy those rules or else you will necessarily
receive a larger penalty score than you need have done. The proofs
here are not so easy and are omitted, which is a pity since the proof
of the multiplication rule is one of the most beautiful pieces of
modern, simple mathematics. The use of a scoring rule based on
squares therefore leads to the same rules of probability. It is called a
quadratic rule.

Nevertheless, an objection will occur to many of you; why use
those scores, other scores might have given different results; for
example, those based on maxima and minima mentioned in §5.4.
What happens if scores that are not quadratic are used? There are two
possibilities. The first type of score means that effectively you will
think of any event as either “true” or “false” with no shades of meaning
in between. Alternatively expressed, you will, to any event, assign one
of two numbers, one number can be interpreted as “true”, the other as
“false”. The second type of scoring rule will lead to a range of
numbers, which may not be probabilities, but will be capable of being
transformed into probabilities. For example, one scoring rule leads to
your stating odds. These, as we have seen in §3.8, can be easily
transformed into probabilities. The first type of rule is unsatisfactory
because it does not distinguish between different strengths of beliefs in
an uncertain event. Nevertheless, a pupil under instruction is often
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forced by their teacher to say “true” or “false” when uncertain, so
denying their uncertainty. (The comments in §3.10 are relevant here, as
is the problem in §12.5.) There is no general agreement on which,
among the second type of scoring rule, is best. The choice between
them may depend on other factors. For example, odds are preferred by
some people, probabilities by others. An important conclusion is that
there are no scoring rules that lead to the maxima and minima rules
mentioned in §5.4. Scoring rules necessarily lead to probability, or
something equivalent to it, such as odds.

5.9 LOGIC AGAIN

A modern computer operates according to the rules of logic. Each
statement is regarded as either true or false and the calculations
operate within the rules to produce other statements that are similarly
either true or false. The computer does not deal with uncertainty
directly but can only handle uncertainty by operating with probabili-
ties, or other numbers, which themselves obey the rules of arithmetic.
Suppose we were to think of a machine that dealt with uncertainty
directly rather than with just truth and falsity; what rules would it
have to obey? The person “you” that has been used previously is
replaced here by a machine and we are enquiring what rules this
machine would have to use in a generalization of logic (compare
§5.4). This is a complicated matter but let me try to convey an outline
of the ideas involved.

As before, take two events, E and F. There are several uncertainties
here such as those of

E; F; E jF; F jE; EF;

discussed in Chapter 4. Thus, there is the uncertainty of one event,
were the other known to be true, exemplified by E jF. Some basic
requirements establish that there must be relations between these five
uncertainties, in the form that some must be functions of the others.
What functions could these be? Here the mathematics becomes a little
involved, but the result is that the relationships are just those of the
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probability rules and the functions are just those of addition and
multiplication. In other words, we are back to the familiar territory,
even though the starting point and the route have both been different. In
many ways this is the best way of deriving the rules because it assumes
so little and because it exhibits the powerful feature of probability,
namely that it is a generalization of logic. It has the pedagogical
objection that the proofs are hard, much harder than those offered here
with balls in urns, which is not too serious provided the reader has trust
in the mathematician. It also has the more cogent objection, namely
that it encourages the idea that a computer can measure uncertainty.
This is not so; all the material does is to provide the rules and it does
not say what the probabilities should be, only how you (or the
computer) should manipulate those it has. This point has been
made in §1.7: you are free to believe what you wish within the bounds
of the rules prescribed by probability, but these you must never offend.
Unfortunately, many writers have not appreciated this point and tried
to develop a machine concept of ignorance, from which other uncer-
tainties could be derived. This is unsound. A machine cannot know
what an uncertainty is any more than it can tell whether an event is true
or false, except in comparison with other events that it has been told
about.

5.10 DECISION ANALYSIS

There is one other way of justifying the rules of probability. It ignores
the concept of uncertainty directly and instead inquires how you
should act in the face of uncertainty. Forget about the uncertain events;
only consider whether you should act this way or that when faced with
a situation in which you do not know all the facts. The emphasis is on
the action, rather than on thinking about the events, as we have done.
Alternatively expressed, you need to decide what to do, so the topic is
called “decision analysis”. We shall not have anything to say about this
here, because in Chapter 10 it is demonstrated how the results we
already have, enable you to act in the face of uncertainty. With this
before us, it will be easier to understand the advantages and disadvan-
tages of decision analysis. We shall also see how decision analysis
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leads us back to probability, in that coherent actions necessitate
uncertainty being so described and the three rules used.

The upshot of the material in the last four sections is that we have
five, rather distinct methods of establishing the rules of probability.
These are

1. Comparison with a standard.
2. Avoidance of Dutch books in gambling.
3. The use of scoring rules.
4. An extension of logic.
5. Action in the face of uncertainty.

These can be thought of as five pillars supporting the same edifice, the
edifice of probability, and whichever way you look at uncertainty, the
end result is the same. It is possible to use other approaches that lead to
different rules, for example, involving upper and lower probabilities,
see §3.5. These can be dismissed on grounds of simplicity, or for
confusing the idea of measurement with the practice. By contrast, there
are no approaches that lead to rules of comparable simplicity to those
of probability. We can therefore go forward in the real confidence that
our rules are the proper ones to use. Recall that although they may
appear, especially in their use, to be complicated, in reality they are
only expressions of simple properties of proportions of balls in urns.

We next go on to develop, from the three rules, another rule of great
importance; so important that it deserves a chapter to itself. But before
doing so, consider two words of caution lest my enthusiasm for
probability becomes too gross.

5.11 THE PRISONERS’ DILEMMA

Our cautionary tale concerns two prisoners, Ann and John, where
each has separate decisions to make, whether or not to confess to
a crime. Their dilemma is described in the contingency table
below, though it differs from the tables encountered in Chapter 4
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in that the entries are not probabilities, but the consequences of their
decisions.

JOHN’S DECISION

Confess Not Confess

ANN’S Confess 0,0 2,� 2

DECISION Not Confess �2,2 1,1

Ann controls the rows, the upper corresponding to her confessing, the
lower applying to when she does not. John similarly controls the
columns, on the left confessing, on the right not confessing. The entries
in the table are each a pair of numbers, the first being the reward to
Ann, the second that to John. For example, if neither confesses, the
right hand, lower entry, they both get a reward of 1; whereas if Ann
confesses with John still not confessing, she would increase her reward
to 2, at the cost of John losing 2; the entry 2,� 2 in the top, right. The
rewards have been selected for simplicity, rather than as an accurate
reflection of prison conditions. The problem is how they should act
when they cannot communicate, so that each is uncertain about what
the other will do. The uncertainties here, caused by one person not
knowing what the other will do, suggest probability, so that Ann might
consider her probability that John will confess, while he evaluates his
probability of her confessing. But consider the following argument:

Ann thinks what she should do were John to confess, when the left-
hand column of the table is relevant. Recalling that the first entry in each
pair refers to her reward, she should also clearly confess for, although
she will get no reward (value 0) as a result, it is better than the loss of 2
(value�2) that will arise if she does not confess. Similarly if John were
not to confess, the right-hand column, confession (value 2) is preferable
for her, yielding more than not confessing (value 1). So Ann argues that
whatever John does, it is better for her to confess, and her uncertainty
about his choice is irrelevant. Similarly when John considers what Ann
might do, it is always better for him to confess (0 instead of �2 if Ann
confesses, 2 instead of 1 if she does not), and his uncertainty about her is
also irrelevant, with the upshot that they both decide to confess, ignoring
their uncertainties and both ending up with no reward, 0,0.
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This conclusion is strange, since, had neither confessed, they
would each have increased their reward by 1. The difficulty with
both not confessing is that, had John not confessed, Ann could have
improved her position by confessing, increasing her reward to 2, and
similarly with their roles reversed. No such improvement is possible
when both confess. The dilemma therefore poses a real problem for
which several resolutions have been proposed, none of which is
entirely satisfactory. To report on the real progress that has been
made would take us too far from the main thesis. The point that
concerns us here is that although both participants face uncertainty, the
expression of that uncertainty in the form of probability does not help
in the resolution of the dilemma. The difficulty appears to be this: the
whole treatment of uncertainty presented here concerns a single
person, you, facing uncertainty; whereas the dilemma involves two
persons who are not able to cooperate. It is possible to consider two
people, with their individual uncertainties, by means of probability,
provided there is an element of cooperation between them. For
example, if John announces that his probability of rain tomorrow is
0.7, then it is possible to evaluate the effect his statement of probability
might have on Ann when she contemplates the possibility of rain
tomorrow. It is the lack of cooperation, and the consequent separation
of their roles, that seems to be the cause of the trouble. The cautionary
tale of Ann and John reminds us that the treatment of uncertainty
offered here is not universally applicable.

What seems to be true is that if only one person, or one group of
persons acting in cooperation is involved, then the probability calculus
is satisfactory. At the other extreme, if there is a complete lack of
cooperation, as in the prisoners’ dilemma, or with two armies in a
battle, probability may fail. There are intermediate cases, such as a
company marketing a product for sale to consumers, where there is no
cooperation between producer and consumer but equally no hostility.
Here the probability calculus appears to be helpful and typically
produces a sensible resolution for both the producer and the consumer.
Games, where there is competition between two players, can cause real
problems to both practitioners and mathematicians that have not been
satisfactorily resolved.
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5.12 THE CALCULUS AND REALITY

The calculus of probability, based on the three rules, is, at least in the
situations discussed in this book, rather easy to use, being essentially,
as its name suggests, merely a method of calculation. What can be
more difficult is to relate the calculus to the real, uncertain world. The
problem will repeatedly arise as we progress through the book. Here
we anticipate some of the difficulties, using the specific example of
weather forecasting. We suppose that a meteorologist has to forecast
tomorrow’s weather in Arizona. Future weather (Example 1 of §1.2) is
uncertain, so probability should be incorporated into the forecast.
Actually, British weather forecasts rarely include probabilities, pre-
ferring emphatic statements such as “it will rain tomorrow”. One
argument put forward in defense of this policy is that people will not
understand probabilities, to which my response is that people will not
until they are used. No, the difficulties with probability lie deeper.

Many people have a low opinion of weather forecasts, a view that
often stems from the emphatic nature of the forecasts. They recall the
occasions when the statement “it will rain” has been followed by a dry
day, forgetting the days when it did rain as forecasted. According to our
thesis, the emphatic statement should be replaced by one like “the
probability of rain tomorrow is 0.8.” A minor advantage of this style is
that the meteorologist is less obviously wrong since, even when the
weather is dry, he is covered by the 0.2 possibility of dry weather.
Recall that the probability reflects the meteorologist’s belief that the
event, rain tomorrow, will be true. (I once heard a forecaster in Florida,
where probability is used, say that it meant that 80% of you would get
wet.) But what does it mean that “rain tomorrow” is true? Does it mean
it will rain somewhere in Arizona, or everywhere in the state? Are the
inhabitants of Tucson entitled to criticize the forecast if their city is dry
when most are wet? These considerations suggest that the probability
form has unsatisfactory features. A way out of the difficulty is
indicated by looking at the practice of bookmakers. A popular activity
in England is to bet on having a white Christmas. There has to be a
precise definition of “white Christmas” in order that there is no
argument about when the payout takes place. A typical definition is
that at least one flake of snow settles on a small plate, placed on a roof
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in London, at some time during the 24 hours of Christmas day. The
idea could be adapted to cover “rain tomorrow”, referring to a rain
gauge at a specified location in Arizona. To be useful, several
localities would be needed to distinguish the wetter parts from the
drier ones. A lesson learned from this is that the statement, about
which the belief is expressed in probability terms, should, in princi-
ple, be testable as to its truth and, in particular, be well defined. We
say, in principle, because there are statements such as “the Earl of
Oxford wrote Hamlet”, which cannot be verified now, and maybe
never, yet can be reasonably described as true or false, even if you do
not see how to do the verification.

It was seen, with the discussion of scoring rules in §5.8, that when
verification is possible, a penalty score can be constructed, which will
provide assistance in assessing the meteorologist’s ability, not only on
one occasion, but over a period. This has been used with weather
forecasts of rain at a specified place in the United States, where the
professionals performed well, achieving a low penalty score. Even then
there remains a problem with how detailed the forecast is. Compare the
statement “rain tomorrow”with “at least twomillimeters (2mm) of rain
tomorrow”, both referring to the same, specified site. The latter must
necessarily have the smaller probability, for the first event can happen in
two, exclusive ways, “not more than 2 mm” and “at least 2mm”, so that
by the addition rule, your probability of the first event equals the sum of
the probabilities of the other two and, since probability is never negative,
the first must exceed either of the other two. Generally, if the truth of one
event implies the truth of a second, the first must have a smaller
probability. Applying this to the forecast, the more specific the forecast,
the smaller must be the probability, and it must be taken into account in
assessing the meteorologist’s ability.

The lesson to be learned from this study of weather forecasts
applies generally and warns us to be careful in the specification of the
uncertain events that are being referred to. This also applies to your
knowledge base. It is not merely a question of calculating with
probabilities but also that of relating the ingredients of your probability
statements to reality. You do not need to think only about pðE jK Þ but
also about the precise nature of E andK . In §12.4 it will be important to
consider how you came to know K .
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5.13 CLOSURE

A point now arises that appears to be little more than a mathematician
wanting to be tidy, or even fussy; but it can have practical relevance.
When discussing a single event E, it is often necessary to include the
complementary event Ec in the discussion (§3.7); indeed it is essential
when using Bayes rule (§6.3), especially when expressed in the odds
form (§6.5) with a likelihood ratio. If there are two events, E with F,
they can combine in two ways (§5.1): the disjunction, E or F, and the
conjunction, E and F, written as EF. Both combinations occur in the
extended form of Bayes rule (§9.1), where there is a partition of E by
exclusive and exhaustive events F1, F2 . . . Fn, because we use both F1

or F2 and EF1. Generally, when a situation involves several events E, F,
G, and so on, it is mathematically convenient to suppose that all events
that can be formed by complement, disjunction and conjunction from
the original events are available. When this is true, the set of events is
said to be closed; then none of the operations within the probability
calculations can take one out of a closed system. There exists a small
world (§11.7) from which you cannot escape, except by introducing
another event, an immigrant event.

There are practical cases where closure is necessary. Suppose that
you are in conversation with a stranger and are uncertain about her
family. In the course of the conversation, she remarks that she has a
daughter, thus changing your uncertainty about her family, and you
will need to update your opinion about it using Bayes rule. You need to
think about the complement of “I have a daughter”. What is it? Perhaps
“I have a son” or “I have no children”. One possibility is that she made
the remark because you had your daughter with you at the time of her
statement. In §12.4, we shall meet a problem that does not permit a
definitive solution until questions such as this are settled. We need to
work in small worlds within which everything is possible.
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CHAPTER6

Bayes Rule

6.1 TRANSPOSED CONDITIONALS

This chapter is devoted to what is surely the most interesting rule in
probability, with an overall importance that makes it fit to rank
alongside the basic equations of Einstein or the fundamental rules
of genetics. But first a few examples that are included to demonstrate
the need for the rule.

No one who has absorbed the thesis of this book will confuse

pðE jFÞ with pðF jEÞ:

The notation makes it apparent that they are different, reversing the
orders of the two events,E andF. In the first probability,E is an uncertain
event whose belief is being measured supposing, or knowing, that F is
true (plus an unstated K ). In the second probability, E, far from being
uncertain, is supposed or known to be true; it is F that is uncertain and
whose belief is being assessed. Despite the obvious differences, people
are continually confusing one probability with the other. They are
termed transposed conditionals, because E and F have been transposed
in the two probabilities, each taking it in turn to be the conditional. They
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are sometimes referred to as Janus examples after the Roman god with
two heads looking in opposite directions. Notice that the confusion
occurs in ordinary logic, as in this example from a newspaper, the
person’s name being changed. “If it is true that you should never trust a
man with a tidy desk, then you should have complete faith in Peter
Brown, for his desk, indeed every surface in his room, is cluttered with
papers and books.” The first part of the sentence says “tidy” implies
“untrustworthy”, the second that “untidiness” implies “trustworthy”,
and the deduction of the second from the first ignores thosewho are both
untidy and untrustworthy. The reversal here can be recognized by noting
thatE impliesF is equivalent toFc impliesEc, but notEc impliesFc; here
E is “tidy”, F is “untrustworthy”. Notice that the mathematical notation
for probability makes the distinction, which is not easily apparent in the
English language, very clearly, so much so that the language and
notation have been advocated in legal cases, where the confusion is
rife. The precision of the mathematical language should appeal to the
legal mind. Following are some examples of the confusion:

EXAMPLE 1. ARMADILLOS

Armadillos frequently give birth to identical twins. A scientist took

advantage of this fact to study the effects of environmental factors on

the animals, confident that they would not be influenced by genetic

differences, as there are none between such twins. One twin was enabled

to live a sedentary life; the other was made to work in a treadmill for much

of the time. It was observed that the worker developed much thicker and

stronger legs than the sedentary animal. A puzzle in anthropology is the

existence together of Neanderthal man and essentially modern man. The

former had much thicker leg bones than us. On the basis of the observations

on armadillos, the scientist concluded that Neanderthal man was more

physically active than were our ancestors.

EXAMPLE 2. DISEASE SYMPTOMS

The first example was specific but the others are deliberately made more

abstract to emphasize the generality of the situations. Doctors studying a
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disease D noticed that 90% of patients with the disease exhibited a

symptom S. Later, another doctor sees a patient and notices that she

exhibits symptom S. As a result, the doctor concludes that there is a

90% chance that the new patient has the disease D.

EXAMPLE 3. FORENSIC SCIENCE EVIDENCE

A crime has been committed and a forensic scientist reports that the

perpetrator must have attribute P. For example, there may be DNA of

type P at the scene that can only be accounted for as having come from

the guilty party. The police find someone with P, who is subsequently

arrested and brought to trial, charged with the crime. In court, the

forensic scientist reports that attribute P only occurs in a proportion

p of the population. Since p is very small, the court infers that the

defendant is highly likely to be guilty, going on to assess the chance of

guilt as 1� p since an innocent person would only have a chance p of

having P.

EXAMPLE 4. SIGNIFICANCE TESTS

Scientists often set up an Aunt Sally and attempt to knock it down. (In

America there is a sex change and Aunt Sally becomes a straw man.) Thus,

they may suppose that a chemical has no effect on a reaction and then

perform an experiment that, if the effect did not exist, would give numbers

that are very small. If they obtain numbers that are large compared with

expectation, they say that the straw man, usually called a null hypothesis, is

rejected and that the effect does exist. By “large” here they mean numbers

that would arise only a small proportion p of times, were the null hypothesis

true. When they do arise, they speak of having confidence 1� p that the

effect exists. The procedure summarized here is called a significance test

and p is the significance level of the test. Scientific journals are

unfortunately full of significance tests, often with p¼ 0.05, and will be

discussed in §§11.10 &14.4.
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What do these examples have in common? They all turn things
upside down, or put them back to front. The exercise affected the
armadillo’s legs but the inference for man was that the legs were
indicative of exercise. The disease gave rise to the symptom but,
with the new patient, the symptom was suggestive of the disease. If
innocent, there is only a chance p of the evidence, leading to a statement,
based on the evidence, that there is only a chance p that he is innocent. If
the strawmanwas correct, the resultwould be small; the fact that it is not
small is used as evidence that the strawman is false. In each case, the first
statement has been turned around to provide the second. Now this is not
entirely ridiculous; one can infer something about a disease from a
symptom, but we need to do it with some care. It cannot be done in the
na€ıve ways described in these examples. The proper inversion is
accomplished by the probability rule that is the concern of this chapter.

6.2 LEARNING

Bayes rule has an even more important role than that of clarifying
transposed conditionals; it tells us how we ought to learn. All of us learn
as a result of new experiences.Whenwe are children, we do it easily and
almost without effort; at school, we make the activity more formal; in
middle age, we get more set in our ways; in old age, learning becomes
difficult and we engage but little in the activity. This is descriptive (see
§2.5) in contrast to the prescriptive, or normative form; how ought we to
learn? Let us see how we can answer this question by using the
framework of probability so far developed. For any statement or event,
F, you have a probability p(F) on some knowledge base. Next suppose
that you acquire new evidence, E, that bears on the truth of F, thus
affecting your uncertainty of F; this will change your probability to
p(F jE) and learning is accomplished by your change from p(F) to
p(F jE). The normative question is: How do you pass from the former,
old uncertainty to the later, new one? In the formal learning process at
school, with its emphasis on right and wrong, you learn that F is true,
p(F jE)¼ 1, but the formulation to be presented here is a generalized,
and a more realistic, model. It has already been explained, in connection
with scoring rules in §5.8, that in teaching there can be too much
emphasis on certainty and that a proper appreciation of uncertainty is to
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be encouraged. The rule that is the subject of this chapter tells you how to
pass from your initial uncertainty of F to your revised uncertainty of F
when you acquire new evidenceE. The claim ismade that amajor aspect
of learning is captured by the rule. It does not deal with the extraordinary
inspiration of a genius when an epiphany is experienced, but it does
explain how you routinely ought to learn by the acquisition of new
evidence.And, of course, it describes howa computermight learn (§5.9).

Example 2 above of a disease and its symptom provides a simple
illustration. p(D) might be the doctor’s initial probability that the new
patient has disease D. The observation is then made that the patient
exhibits symptom S and the doctor’s opinion aboutD changes from p(D)
to p(D j S). The problem to be discussed and solved here is how the
change is to be made. As has been suggested in discussing this example
above, a factor that the doctor will surely take into account is how
probable it is that patients with the disease exhibit the symptom, in our
terminology p(S jD). It is here that transposed conditionals enter and
become important, because the learning transition from p(D) to p(D j S)
involves the Janus effect p(S jD), looking in the opposite direction. The
rule therefore simultaneously does two things: it provides a prescriptive
account of learning and relates transposed conditionals. Therein lies its
great importance.

Before leaving this “buildup” to the great rule, let us point out
something else the rule does. Suppose that patients withD nearly always
exhibit symptom S, so that p(S jD) is very large, near 1. At first glance,
this suggests that a patient with the symptom has high probability of
suffering from the disease. But this is not necessarily so, for suppose
patientswithout thediseasealsooftenexhibit the symptom,withp(S jDc)
alsonear1.Thenitlooksasif thesymptomhaslittleornodiagnosticpower
andthedoctorcannotlearnmuchfromitspresencebecauseitoftenoccurs,
whether the disease is present or not. It will be seen that learning involves
bothp(S jD)andp(S jDc)and leadsus toavery importantobservationthat
isoftenforgotten.Itisessentialinlearningnotonlytoconsidertheevidence
E(orS)onthebasisthatF(orD)istruebutalsoonthebasisthatitisfalse.Itis
agood rule in lifealways toconsider thealternatives—herenothaving the
disease, as well as having it. Recall that p(D j S) and p(Dc j S) necessarily
add to 1; this is not true of the transposed values, p(S jD) and p(S jDc).
Enough whetting of appetites, let us pass to this wonderful result about
learning and the Janus effect.
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6.3 BAYES RULE

To establish the rule, recall the multiplication rule of probability of
§5.3. Omitting explicit reference to the knowledge base, it reads for
two uncertain events E and F,

pðEFÞ ¼ pðEÞpðF jEÞ:
In words, the probability that two events are both true is equal to the
probability of the first, times the probability of the second, given that
the first is true. Or the proportion of balls that are both red and spotted
is the proportion that are red, times the proportion of spotted among the
red. The result is still true if the two events are interchanged so, in the
above result, write E wherever F occurs, and F wherever E, which,
recall, are any two events. This gives

pðFEÞ ¼ pðFÞpðE jFÞ:
But the event FE is exactly the same as the event EF, being only true
when both events are true, and in particular has the same probability. In
other words, the left-hand sides of the two equations just displayed are
equal, so the same must be true of the right-hand sides. Consequently,

pðEÞpðF jEÞ ¼ pðFÞpðE jFÞ:
If p(E) is not zero, both sides may be divided by it to obtain

pðF jEÞ ¼ pðE jFÞpðFÞ=pðEÞ:
Here we have what we want: p(F jE) on the left, in terms of the
transposed conditional p(E jF) on the right. We also have the learning
process mentioned in the last section, with p(F) on the right and
p(F jE) on the left, showing how you can learn about F on knowing
that E is true. This is Bayes rule. Let us now state it formally and
include the knowledge base, lest it be forgotten.

Bayes Rule. For any two events E and F and knowledge base K ,

pðF jEK Þ ¼ pðE jFK ÞpðF jK Þ=pðE jK Þ;
provided that pðE jK Þ is not zero.

118 BAYES RULE



The result is named after the Rev. Thomas Bayes, a nonconformist
minister who lived in Tunbridge Wells, England. The strict rules of
grammar demand the clumsy Bayes’s rule, but we treat Bayes as an
adjective. The result, or something near to it, is in a paper of his that
appeared posthumously in 1763. It nowadays most commonly appears
in a form given in §9.1, availablewith more than two events. In the next
section, there follow several examples of its use.

The claim has often been correctly made that Einstein’s equation
E ¼ mc2 is of supreme importance because it underlies so much of
physics. Here E is energy, m is mass, and c is the velocity of light in a
vacuum. I would claim that Bayes equation, or rule, is equally
important because it describes how we ought to react to the acquisition
of new information; how the gaining of E (evidence, not energy), in
addition to the earlier knowledge K should change your views about F
from p F jKð Þ to p ð F jEK Þ. In one sense it is more important than
the equation of physics because we all learn things new to us, whereas
only theoretical physicists use Einstein, though we all benefit from
their usage. My claim is that they are of comparable importance but
that Bayes connects with our daily activities in a manner that is
different from our involvement with Einstein.

6.4 MEDICAL DIAGNOSIS

Let us return to the medical example of diagnosis in §5.6. We were
concerned with a diagnostic test for cancer that yielded either a
positive or a negative result, and patients giving a positive result
had to go for further tests. The test had the following probabilities for
you:

pð� jCÞ ¼ 0:01; pðþ jCcÞ ¼ 0:05;

where C denotes the event that the patient has cancer, Cc that they do
not, and þ,� denote the two possible results of the test. The idea here
is that a positive result is indicative of cancer and, in the language of
§4.4, having cancer and having a positive test result are positively
associated. The two probabilities describe uncertainties concerning the
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errors. The first is the error of failing to indicate cancer when it is
present; the second of indicating cancer in a healthy patient. The first
error is the more serious and, in this example, has the lower error
probability. Using the fact that the probability of the complementary
event is one minus the probability of the event, we have the probabili-
ties of the correct indications to be

pðþ jCÞ ¼ 0:99; pð� jCcÞ ¼ 0:95:

In §5.6, it was also supposed that

pðCÞ ¼ 0:02;

or that 2% of patients taking the test had cancer. The rule of the
extension of the conversation was used to evaluate

pðþÞ ¼ 0:0688;

demonstrating that almost 7% of tested patients would give a positive
result. It was pointed out that this value was much greater than the
probability of cancer at 2%, an increase caused by the errors of which
the test is capable.

Now let us look at the situation of a patient who has been given a
test that yielded a positive result. What can be said about whether or
not they have cancer? Hereþ is known; the uncertain event is C. We
therefore require pðC j þÞ. This immediately follows from Bayes rule,
with C replacing F and þ replacing E in the statement of the rule
above, giving

pðC j þÞ ¼ pðþ jCÞpðCÞ=pðþÞ:

All the numerical values on the right-hand side are available above and
inserting them into the rule,

pðC j þÞ ¼ 0:99� 0:02=0:0688 ¼ 0:2878:

Similarly, for a patient with a negative result, the probability of cancer is

pðC j �Þ ¼ pð� jCÞpðCÞ=pð�Þ ¼ 0:01� 0:02=0:9312 ¼ 0:0002;
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where the fact that pð�Þ ¼ 1� pðþÞ has been used. It is an alarming
experience for a person to take a test of this type and obtain a positive
result, for the result is all too easily interpreted by them to imply that
they have cancer. The truth is less alarming, for the probability is about
29%, amuch higher figure than the initial 2%, but nothing like certainty.
The result is a striking testimony to the advantage of attaching numbers
to uncertainty, for no literary discussion could possibly convince one
that cancer was still unlikely despite the positive test result. It would be
better to have a test that gave more reliable indications with smaller
errors, but this may be expensive or require visits to a hospital, whereas
the one studied here may be given by nonmedical staff. They are often
referred to as screening tests. Notice that a patient who records negative
has almost no chance of having cancer, with only 1 in 5000 slipping
through the net. A similar situation arises with roadside tests, used on
the spot by the police, to assess the presence of alcohol in the blood
of drivers.

The calculations just performed exhibit the normative learning
phenomenon discussed in §6.2, the positive test result having changed
your probability of cancer from 0.02 to 0.29, a negative one decreasing
it to a negligible amount; either way you have learned something about
whether or not you have cancer. Elaborating on this aspect of the test
will be postponed until we have a more convenient form of Bayes rule
in terms of odds in the next section.

When the cancer example was discussed earlier, the calculations
for p(þ) were performed using the balls-in-urn approach, in addition
to employing the rule of the extension of the conversation. The same
arithmetical technique can be used here, avoiding Bayes rule. In §5.6,
to which the readers may like to return to refresh themselves on the
numerical results obtained there, it was shown that out of the 10,000
balls in the urn, 688 were positive and, of these, 198 were also with
cancer. As usual, probability corresponds to a fraction of balls, and
here the probability of cancer, given a positive test result, is the fraction
of positive balls that are cancerous, namely 198 out of 688, giving a
probability of 198/688¼ 0.2878 as before.

The analysis exhibited in this example is basic to many medical
diagnoses where the test results, or symptoms, are not perfectly
reliable, their performance being described by the error rates. The
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value of the test depends on the two error probabilities and also on
the incidence of the disease in the population presenting themselves
for diagnosis, p(C) in the example. With the three values available,
all the uncertainties in the diagnosis can be found using the
extension of the conversation and Bayes rule. The reader is advised
to work through another numerical example to get the feel of the
situation.

A common social reaction to tests such as the one just described
is to criticize them for admitting errors and to demand certainty.
Similar objections are heard elsewhere, for example, when errors
occur in vaccination and society rejects the vaccine, or when a
doctor makes a wrong diagnosis, a surgeon makes a faulty incision,
or an innocent person is found guilty. The fact is that errors are an
essential feature of the way we live and their elimination is often
impossible and always costly. People who accuse a surgeon of
making an error might ask themselves how often they make errors.
Instead of reaching for the ideal, society would do better to recog-
nize that some, hopefully small, uncertainty is inevitable and learn
to live with it through a proper understanding of probability. How,
except by Bayes rule, can one convince a lady who has experienced
the trauma of having a positive test after a breast scan, that she is
nevertheless more than twice as likely not to have, as to have, cancer.
A probability of 0.2878 translates into odds of 2.4746 to 1, about 5 to
2 against.

It was emphasized in §4.2, with the example of inflation and
unemployment, that all the uncertainties in a 2� 2 contingency table
could be found in terms of three probabilities. Our medical example
can be written in the contingency form, with rows for the test result
and columns for cancer, and uses three basic values, the two error
probabilities, and the incidence probability: pð� jCÞ; pðþ jCcÞ and
p(C). From these we calculated pðC j þÞ; pðC j �Þ and p(þ). Notice
that in the statement of Bayes rule that yielded pðC j þÞ, only two of
the basic probabilities appeared, pðþ jCÞ and p(C), whereas the other
probability needed, p(þ), had to be calculated. We now take a look at
an alternative form of Bayes rule that avoids this last calculation,
employing only the basic values, which exhibits the learning process
more clearly.
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6.5 ODDS FORM OF BAYES RULE

Recall that Bayes rule says that

pðF jEÞ ¼ pðE jFÞpðFÞ=pðEÞ;

and that in the medical example we had to calculate p(E), there p(þ),
before it could be used. We now derive another form of the rule that
does not involve this extra calculation. In the rule, replace F every time
it appears by its complement Fc, with the result

pðFc jEÞ ¼ pðE jFcÞpðFcÞ=pðEÞ:

If we take the ratio of the two terms on the left-hand sides of these two
equations, it must be equal to the ratio of the two terms on the right. But
p(E) appears in both of these and will disappear on taking the ratio,
which is just what we want to happen. The result is

pðF jEÞ
pðFc jEÞ ¼

pðE jFÞ
pðE jFcÞ

pðFÞ
pðFcÞ :

Here are three ratios. That on the far right is the ratio of the probability
of F to that of its complement. This was encountered in §3.8, where it
was called the odds on F and written o(F). Similarly the ratio on the far
left is the odds on F, given E, written o(F jE). Using this notation for
odds on and reinstating the knowledge base, the rule can be stated
formally:

Bayes Rule. For any two events E and F considered with
knowledge base K , for which pðEF jK Þ is not zero,

oðF jEK Þ ¼ pðE jFK Þ
pðE jFcK Þ oðF jK Þ:

(The qualification that your probability for the conjunction of the
events is not zero is needed to avoid division by zero.) Inwords, this says
that the odds on F, given E and K , are the odds on F, given K alone,
multiplied by a ratio of two probabilities. Let us look at this ratio.
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At first glance it looks like another odds withF in the numerator and
its complement below. But this is not so, for the two probabilities do not
concern F as the uncertain event, as with odds; they are both probabilit-
ies of E, not F nor its complement, and confusion with odds would
involve a transposed conditional. The numerator and the denominator
are both probabilities of the same event, but under different circum-
stances, the former when F is true, the latter when it is not, so that the
ratiomerits a different name fromodds. It is called the likelihood ratio of
F, givenE. Bayes rule can nowbe stated in the form, the odds onF, given
E, are equal to the product of the odds on F and the likelihood ratio of F,
given E. In other words, a single multiplication is all that is required to
pass from the original odds to the ones incorporating the extra informa-
tion. Notice that with our convention of using odds on, the likelihood
ratio also has the probability of the event in the numerator and of the
complement in the denominator. Writers who use odds against, have to
invert our likelihood ratio.

Before continuing with the discussion of the rule in this new form,
a little must be said about the term, likelihood ratio. When mathema-
ticians meet a new idea, which they often need to refer to, they give it a
name. Where is this name to come from? Usual practice is to take a
word from the English (or other) language and use it as the precise
meaning of the term for the new idea. We have already seen this done
once with the word “probability”. Our mathematical usage is in the
very precise form of comparison with the standard urn as a measure of
belief, which does not include, for example, the perfectly proper
English usage in the phrase “He could probably do it”. The same
thing is done here and the word “likelihood” is employed. In English,
these two words are nearly synonymous, whereas the mathematical
usages are for two very different things. In §7.8, another near-synonym
“chance” will be used, as something different again. This habit of
taking standard words and giving them very precise meanings is often
found confusing to others, but experience shows that, with practice, it
works very well. So while likelihood and probability may be near-
synonyms in everyday English, they are totally different in our usage,
which difference we now explain.

We havewritten p(E jF) for your probability of E, givenF. It is also
referred to as your likelihood of F, given E. It may seem unnecessary to
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have twowords, but the reason is that p(E jF) depends on two things, E
and F. In its dependence on the first, we think of it as probability; in its
dependence on the second, as likelihood. This dependence is empha-
sized by the use of “given”, p(E jF) is your probability of E, given F,
whereas it is your likelihood of F, given E. In the likelihood, the event
E is to be thought of as fixed. Likelihood behaves differently from
probability. We saw that the latter added in the addition law. Likeli-
hood does not add; it is not true that

pðE jFÞ þ pðE jGÞ ¼ pðE jF orGÞ;

even when F and G are exclusive. To emphasize the distinction,
different notations are sometimes used, and ‘ðF jEÞ is written for
the likelihood of F, given E. Then Bayes rule may be written, omitting
reference to the knowledge base, as

oðF jEÞ ¼ ‘ðF jEÞ
‘ðFc jEÞ oðFÞ:

An advantage of this form is that all the expressions therein have as
main argument F, or its complement, with E in the conditions, though
the earlier form, in terms of probability and odds, is often preferred.
The value of the distinction between probability and likelihood will
become apparent when the likelihood principle is treated in §14.1.

Notice that our object of removing p(E) from the calculations has
been achieved. All we need are your odds on F and your probabilities
of E, both when F is true and when it is false (or the equivalent
likelihoods). To appreciate the new form’s importance, let us take an
example that is important in its own right as it leads into the use of our
ideas in legal trials in §10.14. It also emphasizes the role of Bayes in
handling new evidence, beyond its use with transposed conditionals.

6.6 FORENSIC EVIDENCE

Suppose that you are a member of the jury in a criminal trial. The event
that the defendant is truly guilty of the crime with which he has been
charged is, for you, an uncertain event within ourmeaning of the phrase.
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Youwill therefore, at any stage of the trial, have your probability of guilt,
or equivalently, odds on guilt. Denote the event by G and the odds by
o(G).During the course of the trial, your oddswill changeas you listen to
the evidence. Denote a particular piece of evidence by E. Then, on
receipt of this evidence, your odds will change from o(G) to o(G jE) and
Bayes rule will tell you how to effect this change.

Consider a specific form of evidence. Suppose the crime is one of
breaking and entering and that the criminal has left DNA evidence at
the scene, made when he broke the window to gain access. A forensic
scientist has examined this evidence and found that the DNA is of a
genotype that occurs in a proportion f of people. Furthermore, the
defendant is of the same genotype. The evidence E thus consists of two
parts: the match between the DNA of the defendant and the DNA at the
scene, and the proportion of people with this genotype.

We are now ready to apply Bayes rule. Replacing F in the
formulation in §6.5 by G here, and omitting reference to K , it reads

oðG jEÞ ¼ pðE jGÞ
pðE jGcÞ oðGÞ;

the original odds on guilt being multiplied by the likelihood ratio for
guilt, given the new evidence, to provide the final odds on guilt, given
the new evidence. Consider the two likelihoods involved in the
likelihood ratio. If the defendant is truly guilty, then there will be a
match between the evidence at the scene and his own DNA because he
would have left the DNA. It follows that the numerator, p(E jG), equals
1. If the defendant is truly not guilty, then the true perpetrator of the
crime is another member of the population within which the proportion
is f. It therefore seems reasonable to take p(E jGc) to be f, leaving until
§7.7 the consideration of whether this is correct, as it often is. Hence,
the likelihood ratio is 1/f and Bayes rule gives

oðG jEÞ ¼ 1=f � oðGÞ:

(The multiplication sign, usually omitted, is inserted for clarity.) In
words, the original odds on guilt are multiplied by the reciprocal of the
frequency of the genotype to obtain the new odds. If it is a common
genotype that occurs in 20% of the population, then the odds are
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multiplied by 5. If it is a rare type that only occurs in 1%, then the odds
are multiplied by 100. If you were contemplating breaking and
entering, it would pay to be of a common genotype.

The analysis in this section is the correct treatment of Example 3 in
§6.1, introduced to illustrate the dangers of transposed conditionals, a
danger that was early recognized in legal circumstances and led to the
error of confusing p(E jG) with p(G jE) being called the prosecutor’s
fallacy, which may be a little hard on the legal profession which is no
worse than others in making the mistake. Experience has led to the
useful suggestion that whenever you make a statement of uncertainty,
you make it in a form where the uncertain event and the conditioning
event are clearly stated and separated. Always state pðA jBÞ, making it
transparent what A and B are.

6.7 LIKELIHOOD RATIO

The odds form of Bayes rule is more appropriate than the earlier
probability form because it clarifies the learning process from p(F) to
p(F jE) on receipt of evidence E. Remembering that odds are equiv-
alent to probability, in which one can pass easily from one to another,
the odds form shows that learning is accomplished by taking the odds
o(F) and multiplying it by the likelihood ratio of F, given E, to obtain
the revised odds o(F jE). The learning process is performed by a single
multiplication. (Readers with an understanding of logarithms will
appreciate that the process becomes even easier if they are used,
the multiplication being replaced by the simpler addition. Actually
log-odds are a better measure of uncertainty in some respects than
either odds or probability.) The multiplying factor, the likelihood ratio,
involves the probabilities of the evidence both on the supposition that F
is true, and that it is false. It is often useful to quote the likelihood ratio
separately from any consideration of the uncertainty of F. Values of the
ratio near one have little learning effect; only very large, or very small,
values give rise to substantial learning, the former favoring the truth of
F, the latter its falsity. Its importance reminds us to emphasize again
that youmust consider how the evidence depends both on F and also on
the alternative possibility Fc.
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Significance tests were mentioned in §6.1 where evidence is said to
be significant if it is improbable when F is true, that is, if p(E jF) is
small. But suppose that the evidence is equally improbable when F is
false, then the likelihood ratio is 1 and the effect of the evidence on the
odds on F is to leave them, and your opinion of F, unaltered by the
evidence, despite significance. By contrast, if the evidence is highly
probable when F is false, the odds are much diminished. Yet the
scientific literature is full of significance tests that only take into
account that p(E jF) is small. The situation is not as bad as this might
suggest because significance tests ordinarily are designed so that E not
only is improbable on F but is highly probable on Fc. The likelihood
ratio is then small and the odds on F, given E, are small, in agreement
with ideas of significance. Nevertheless, the odds can differ substan-
tially from the significance level, so that the latter can be misleading as
will be seen in §14.4.

The example of the DNA evidence illustrates the general point of
needing to look at alternatives. If guilty, the evidence is sure to match,
but if innocent, the match is less certain, how certain depending on the
frequency of the genotype. Thus, p(E jFc)¼ f is highly relevant. A
similar legal illustration is provided by glass fragments scattered at the
break-in. If guilty, the defendant will have matching fragments on his
clothing and p(E jF)¼ 1 again. But if innocent, he may also be certain
to have matching fragments if he is a builder who works with glass,
with p(E jFc)¼ 1 if K includes this knowledge.

Even when the likelihood ratio is large, it may still not convince
you that F is true. The reason for this is that the ratio has to be
multiplied by the odds, and if these are small, the final odds may also
be small. Go back to the example of the DNA evidence in the last
section, where the likelihood ratio was 1/f. Suppose that any male in
the town might have broken in, and that there are nþ 1 such men.
(Recall the nuisance of the extra one when passing from probability to
odds, see §3.8.) The initial odds on guilt are 1/n. As a result of
multiplying by the ratio 1/f, the final odds are 1/fn. Now fn is about
equal to the number of people in the townwhose genotypematches that
at the scene of the crime, and may be quite large. Consequently, the
DNA evidence does not, on its own, convince you of the defendant’s
guilt. Another way of looking at the same need to use both ratio and
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odds is to recall the point made in §4.2 that with two events, three
probabilities are required to describe completely your uncertainty. In
Bayes rule, three uncertainties are present, your probability of, or odds
on, F, and your two probabilities for the evidence. The final odds
depend on all three aspects of uncertainty and none of them should be
forgotten. Admittedly, only the ratio of two of them is required, but it is
rare to possess this ratio without knowing the individual values. The
central lesson of this section is that you must consider the uncertainty
of any evidence on the basis of all hypotheses that might explain it.
Here only two, F and Fc, have been considered, but the point is quite
general and will be studied further in §9.1.

6.8 CROMWELL’S RULE

Bayes rule in its original, probability, form says that

pðF jEÞ ¼ pðE jFÞpðFÞ=pðEÞ;

provided that p(E) is not zero, which is assumed throughout this
section. Suppose that your probability for F were zero, then since
multiplication of zero by any number always gives the same result,
zero, the right-hand, and hence also the left-hand, side will always be
zero, whatever be the evidence E. In other words, if you have
probability zero for something, F, you will always have probability
zero for it, whatever evidence E you receive. Since, if an event has
probability zero, the complementary event always has probability one,
it also follows that if you believe something so strongly that you give it
probability one, then, whatever evidence you receive, you will con-
tinue to believe in it. No evidence can possibly shake your strongly
held belief.

To many people, this last result seems unacceptable. Scientists
often appear to have probability one for some hypothesis, but if you
press them, they will admit that their probability is just a little bit less
than one, enough for it to be diminished by very striking evidence, that
is, evidence with a very small likelihood ratio. They accept this
because the history of science shows them that theories do alter
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over time with additional evidence. Really striking evidence is usually
agreed to damage seriously, if not destroy, a theory F.

This is a convenient point to remind the reader that there is almost
nothing in this book to say what your beliefs should be, only how they
should fit together, or cohere. Cromwell’s rule is a slight exception, but
all it does is to exclude values 0 and 1 in most circumstances because
their use can lead to what many people consider unsatisfactory results.
As an example of such a result, consider the case of a person who holds
a view F with probability 1. Then coherence says that it is no use
having a debate with them because nothing will change their mind. The
discussion in §1.4 is relevant.

Almost all thinking people agree that you should not have proba-
bility 1 (or 0) for any event, other than one demonstrable by logic, for
example 2� 2¼ 4. The rule that denies probabilities of 1 or 0 is called
Cromwell’s rule, named after Oliver Cromwell who said to the Church
of Scotland, “think it possible you may be mistaken”. Its acceptance
means that the convexity rule of probability needs to be strengthened.

Convexity Rule. For any event E with knowledge base K , your
probability of E, given K , pðE jK Þ is a number between 0 and 1.
Your probability is 1 if, and only if, K logically implies the truth
of E.

This is the same as the original form of the rule in §5.4 with the
addition of the words “and only if”. Naming the rule after Cromwell is
perhaps arbitrary, but recall Stigler’s lawmentioned in thePrologue. The
same spirit of open mindedness occurs in the Jain philosophy where it
has been encapsulated in the maxim “It is wrong to assert absolutely”.

The adoption of Cromwell’s rule means that you always admit
the possibility that you might be wrong. Nothing, except logic, is
incapable of being influenced by evidence. Much of the time you can
admit probabilities of one, as in the legal case of §6.6, because the
arithmetic would hardly be altered if you replaced it by “nearly one”,
yet occasionally, it will be necessary to admit that the one is really one
less a very small amount. Mathematicians often refer to a very small
quantity as epsilon, after the Greek letter commonly used for such a
value. So let your beliefs have probability 1 minus e; believe it
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possible, you may be mistaken. I have one minus epsilon for my belief
that the thesis of this book is correct. The law should not treat the
defendant as innocent until proved guilty but should admit a very small
probability that he is guilty; for if not, no evidence could coherently
lead to conviction, however strong that evidence.

The whole of the argument in this section depends on a fixed
knowledge base. If that base changes, then the situation can be
different from that described. Suppose that you learn that some part
of K is false; something that you had supposed to be true is in fact not
so. Then the knowledge base changes and you need to deal with a new
one. In the new one, the probability that was zero need no longer be so
and evidence can now affect your beliefs, whereas before it could not.
If my knowledge base included the “fact” that viruses and bacteria are
both killed by antibiotics, then my medical practice will change if I am
persuaded that this is not so and only bacteria are affected.

6.9 A TALE OF TWO URNS

The inclusion of the following example has two purposes: to test your
coherence and to show you Bayes rule as a learning tool in a simple
case. Suppose that before you is an urn containing a large number of
balls that are identical, except that some are colored red, the rest are
white. An urn, in fact, of the type that was used as a standard, but unlike
the standard, there are two, and only two, possibilities: either 2/3 of the
balls are red, or 2/3 are white, and you do not know which. All that
information constitutes your knowledge base. The first possibility,
where the red balls predominate, will be called the red urn, and denoted
R, while the second, with a majority of white balls, will be termed the
white urn, W. Since there are only two possibilities, R is the comple-
ment of W. You are uncertain whether the urn you have before you is
thewhite one or the red, so you will have odds on it being red, o(R). For
example, youmight think it just as likely to bewhite as red, so that your
odds are one, or evens. In the discussion that follows, let this be so,
o(R)¼ 1. There is no obligation to take this value and you are welcome
to try any other value, except probabilities of 1 or 0, in accordance with
Cromwell’s rule.
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You would like to remove this uncertainty and one way would be to
invert the urn, tip out the balls, and look at which color predominates.
Suppose this is not available to you, as realistically happens in practical
cases that the urn example models. In a consideration of whether the
white-tipped or red-tipped beetle was more common, it would be
impossible to look at all beetles. What you could do is look at some
beetles and, in the urn case, you could take individual balls from the
urn and look at their colors. Suppose that you do this in such a way that
you think the selection of a ball is random, see §3.2. Let r denote the
event that a withdrawn ball is red, and w that the ball is white. Thus,
capital letters refer to the unknown constitution of the urn and lower-
case letters to the color of the ball, which may be observed and hence
known. You immediately have two probabilities that follow from your
supposition of randomness: pðr jRÞ ¼ pðw jWÞ ¼ 2=3. These are your
probabilities that the withdrawn ball will be of the same color as the
purported color of the urn. It follows, since r and w are complementary
events, that pðw jRÞ ¼ pðr jWÞ ¼ 1=3.

Before proceeding further, imagine that the number of balls in the
urn is very large, so that the removal of a few hardly alters the
proportion of the colors present, and ask yourself the question: if
12 balls have been withdrawn at random and 9 are found to be red, the
other 3 white, what are your revised odds on it being the red urn?
Answer the question intuitively, without the help of Bayes or any other
probability rule. Answer it as you would if you were a member of a jury
and the 12 balls were 12 pieces of evidence, of equal importance,
which the court had produced, 9 by the prosecution and 3 by the
defense.

Having given your intuitive response, let us do the calculations,
starting with just one ball taken from the urn at random and found to be
red. Recall Bayes rule in §6.5,

oðR j rÞ ¼ pðr jRÞ
pðr jWÞ oðRÞ;

where R replaces F and r replaces E in the earlier result. All the
quantities on the right-hand side have been evaluated already. The odds
were evens, o(R)¼ 1, and the two likelihoods for the ratio are

132 BAYES RULE



p(r jR)¼ 2 /3 and p(r jW)¼ 1/3. The ratio is therefore 2, and the
revised odds, as a result of withdrawing the red ball, are o(R j r)¼ 2.
It is twice as probable to be the red urn as it is to be the white one, or
p(R j r)¼ 2 /3. It is easy to see, in the same way, that had the withdrawn
ball been white, the odds would have been halved, instead of doubled,
and p(R jw)¼ 1/3.

In summary, thewithdrawal of a red ball doubles the odds on it being
the red urn; a white one halves the odds. The same thing will happen
for subsequent withdrawals, each red one results in a doubling, each
white one in a halving of the odds on it being the red urn. To return to
the numerical example where 12 balls were withdrawn and 9
found to be red, 3 white, there are 9 doublings and 3 halvings
with the result that, since each doubling cancels out a halving, the total
effect is of six doublings and the result is a multiplication of the odds by
2� 2� 2� 2� 2� 2 ¼ 64. Thus, starting from odds of 1, the 12 balls
have resulted inyour odds changing to 64.Yourprobability that theurn is
indeed the red one has increased from 1/2 to 64/65¼ 0.985 to three
decimal places. You have strong evidence that it is the red urn and, in the
legal example, perhaps enough to pass a judgment of guilt.

Notice the strong use of coherence. The assumption that the balls
were withdrawn at random, coupled with your initial belief that the urn
could just as reasonably be the red one as the white, implies that after
9 red and 3 white have been seen, you must have a probability 0.985
that the urn is the red one. You may like to compare your intuitive
answer, requested above, with this coherent value. For most people, the
intuitive answer is much smaller. In other words, they are not as
convinced by the evidence as coherence requires. This even applies to
the withdrawal of a single ball; using common sense, the odds are not
doubled but a factor less than 2 is used. I have even known people who
use a factor less than 1; that is, the red ball indicates to them that it
is less likely to be the red urn. One of them, in explanation, said, “life is
always cussed”. The claim being made here is not that evidence
is always underrated, for there are cases where more is claimed for
evidence than is reasonable, but only that reasonable use of evidence
requires coherence and the calculus of probability.

Here is one of the most important lessons from this book: the
probability calculus shows you how to interpret evidence sensibly.
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It enables you to interpret the single ball, or the single beetle, in the
context of the urn, or the population of beetles. It enables you to assess
the evidence provided in the court of law. It enables you to assess the
value of a medical test correctly. Generally, it shows how one set of
beliefs inevitably leads to other beliefs.

There is an artificiality about the urn example, in that there were
only two possibilities for the fraction of red balls. In reality, there
would be many possibilities and any fraction might be possible. The
argument already used extends to the general case. We do not include it
here because the extension involves technical mathematics whose
infliction on the reader would distract from the general point about
coherence. The reader should be able to manage three possibilities,
adding the possibility of equal numbers of red and white balls, by using
the original form of Bayes rule in §6.3. A modified form of this
example is studied in §7.5.

There is another lesson that can be learned from this little example.
We said that 12 balls had been withdrawn and 9 were red. It did not
matter what the order was, a consideration that will be important when
we tackle exchangeability in §7.3. Furthermore, both the 12 and 9 did
not concern us, for it was only the difference between the numbers of
the two types of balls that entered into the final calculations. This was
because each red ball made a doubling, each white a halving, so that a
red ball canceled out the effect of a white one. All that mattered was the
excess of one color, here red, over the other. What is happening here is
that one has a lot of evidence, for example, rrwrrrwrwrrr, being the 12
balls in order, but most of it can be cast aside and all that matters is the
excess of red over white, here six. Spotting what really matters in a
mass of evidence is greatly helped by probability considerations. The
full history of the 12 balls does not matter; the excess 6 is sufficient,
which is the technical term used. It is useful in handling a lot of data, to
see what is sufficient for the task in hand.

It was supposed that initially you thought the urn was as likely to
be red as white, putting o(R)¼ 1. Suppose instead that you had a
different value for the odds, then it would still be true that every red
ball withdrawn randomly from the urn would double your odds and
every white ball would halve them. If it were truly the red urn, there
would be about twice as many doublings as halvings and your odds
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would increase, so that you would, after many balls had been
withdrawn, become almost convinced (probability near one) that
the urn was truly red. Similarly, were it the white urn, the halvings
would occur twice as often as the doublings, and you would think it to
be the white urn. In either case, truth will be revealed whatever you
thought initially. When we discuss science in §11.6, it will be seen
that this mechanism of Bayes rule is about how different views, here
about the urn, are generally brought into agreement by evidence, here
of balls withdrawn.

6.10 RAVENS

This section concerns an example that has been much discussed by
philosophers, yet yields easily to a probability analysis. Although it
superficially appears trivial, it does serve as a useful introduction to
some aspects of scientific method, free of technical difficulties.
Alternatively, the section can be omitted without damage to the
appreciation of the remainder of the book.

People are often concerned with general statements; statements
that are not confined to one, or a few, instances, but hold in many, if not
all, cases. “All men are aggressive”, “cheese is rich in calcium”, “a
body, when released, falls to the ground” are all general statements, as
distinct from special cases such as “John is aggressive”.We have called
such statements, events, though the word “hypothesis” might be more
apt here. Scientists are especially involved with hypotheses, which
have been referred to as Aunt Sallies, or straw men, in §6.1. Evidence
in support of such general statements can be obtained from special
cases; as “John is aggressive” supports “All men are aggressive”.
People sometimes have difficulty with general statements, being more
comfortable with special cases.

Consider the general statement, hypothesis, or event, “All ravens
are black”. You are uncertain about this because you have not seen all
ravens, yet have never seen a raven that was not black. It is convenient
to think in terms of a contingency table, as in §4.1, where the two rows
refer to the type of creature, raven or nonraven, and the two columns to
the color, black or nonblack. The entries in the body of the table are
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numbers in the four categories and lead to extra totals for rows and
columns. The entries needed in the subsequent analysis have been
inserted; thus the total number of ravens is n and the proportion of them
that are black is f. If the general statement is true, f¼ 1. Similarly, the
total number of nonblack creatures is N, of which a proportion g is not
ravens. Again, if the general statement is true, g¼ 1. The general
statement is also equivalent to saying the number in the top, right-hand
cell of the table is zero, so that the statement “all ravens are black” (the
first row) is the same as “all nonblack creatures are nonravens” (the
second column).

Black Nonblack

Ravens fn n

Nonravens gN

N

You are uncertain about the general statement, or hypothesis, but
your uncertainty would be changed by seeing a raven and observing
that it was not black, when the hypothesis is immediately seen to be
false. This is obvious, but let us see how Bayes rule confirms this.
Recall the rule in odds form

oðF jEÞ ¼ pðE jFÞ
pðE jFcÞ oðFÞ;

where evidence E changes your odds on the hypothesis F. In the current
usage, F is the hypothesis that all ravens are black, and the evidence E
is that of a nonblack raven. But if F true, E is logically false and
therefore has probability zero. So p(E jF)¼ 0 and inserting this into
the equation just given, the right-hand side is zero, so the left-hand side
must also be zero. Hence, o(F jE)¼ 0 and you have zero odds and so
zero probability for the hypothesis. This is heavy going and does not
need Bayes or even probability, only elementary logic, and is included
here merely to show that Bayes works even in the extreme case.

In contrast, suppose you see a raven and note that it is black. Does
this change your belief in the hypothesis? Now we do need Bayes rule.
If the hypothesis is true, the raven is bound to be black, so p(E jF)¼ 1
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and the rule gives

oðF jEÞ ¼ 1

pðE jFcÞ oðFÞ:

The analysis now depends on p(E jFc), the probability that a raven will
be black, when “All ravens are black” is not true. This is the proportion
of ravens that are black in the society in which not all ravens are black.
(This point will be considered in more detail in Chapter 7 but is
immediately appealing if you return to our original concept of belief in
relation to balls in an urn. Here there are creatures considered both with
respect to color and whether they are ravens.) From the table, this is f.
Hence, Bayes rule gives

oðF jEÞ ¼ 1=f � oðFÞ:

This is essentially the same result as the second displayed equation in
§6.6. The likelihood ratio is 1/f, which is greater than one, and the odds
in favor of the hypothesis are increased by the observation of a black
raven. How much they are increased depends on f, what you think the
proportion of black ravens might be. You may well think f is nearly
one, in which case the observation of a black raven will have little
effect on your belief in the hypothesis.

The aspect of this situation that has puzzled philosophers is that
since, as we have seen “All ravens are black” is logically the same as
“All nonblack creatures are nonravens”, the observation of a nonblack
creature to be a nonraven should also affect your opinion of the original
hypothesis. But this is not true, for the sight of a green creature and the
observation that it is a snake does not affect your belief in the colors of
ravens. Let us see what Bayes has to say. The evidence is that a
nonblack creature is not a raven, denoted by E� to distinguish it from
the previous evidence. As before, if the hypothesis is true, that
evidence has probability one. If it is not true, it has probability g,
using exactly the same argument as before, referring to a column of the
table, rather than to a row. Hence, Bayes rule gives us that

oðF jE�Þ ¼ 1=g� oðFÞ:
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So the odds on the hypothesis have again increased, but now by the
factor 1/g rather than 1/f. But look at the table; g is the proportion of
nonblack creatures that are nonravens. Ravens constitute a very small
proportion of all creatures, and the same is true if we concentrate on
nonblack ones. So g is indeed very close to one, and so is 1/g. Hence,
the change in your odds is negligible and the observation of the green
snake has hardly any effect. Whereas f is not as close to one and the
black raven has more effect.

The reader’s understanding of what is happening here may be
aided by changing the scenario from ravens to men, and the property of
being black to that of being aggressive. The hypothesis is “All men are
aggressive” and is equivalent to “All nonaggressive people are non-
men, that is, women”. Here f and g are of the same order of magnitude
and the observation of a man behaving aggressively has almost as
much weight as that of a peaceful person turning out to be a woman.

6.11 DIAGNOSIS AND RELATED MATTERS

In §§5.6 and 6.4, an example of medical diagnosis was discussed, and
here we return to it for a third time because it has yet more features
worthy of comment. Recall that patients either had cancer, eventC, with
probability p(C), or not. Theywere also given a diagnostic test that could
either yield a positive, þ, or negative, �, result, the former being
positively associated with cancer. The performance of the test was
described by two error probabilities pð� jCÞ, false negatives, and
pðþ jCcÞ, false positives. These three probabilities completely describe
the uncertainties and from them, all other uncertainties, such as p(þ), can
be found using the probability rules. In place of the error probabilities,
practitioners often use the success ratios pðþ jCÞ, termed the sensitivity,
and pð� jCcÞ, the specificity. In the numerical example, we had

pð� jCÞ ¼ 0:01; pðþ jCcÞ ¼ 0:05; and pðCÞ ¼ 0:02

and from these we calculated p(þ)¼ 0.0688, about 0.07. As a result, it
follows that while only 2% have cancer, 7% will respond positively,
three and a half times asmany. This increase from the true cancer rate to
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the apparent rate is typical of situations, where the rate is small and
errors occur. As an extreme example, take a type of cancer that is very
rare with p(C)¼ 0.001 but with a test of the same sensitivity and
specificity. The rule of the extension of the conversation establishes that

pðþÞ ¼ pðþ jCÞpðCÞ þ pðþ jCcÞpðCcÞ
¼ 0:99� 0:001þ 0:05� 0:999 ¼ 0:0509:

Here the true cancer rate of 0.001 has yielded an apparent rate of 0.05,
an increase by a factor of 50. The situationmay have arisen in theUnited
States where the National Rifle Association asked a sample of citizens
whether they had used a gun in self-defense during the past year. HereC
is replaced by true usage andþ by reported usage, recognizing that
people do not always tell the truth. The error probabilities above are
reasonablewhen questions of this type are posed. Yet if only one person
in a thousand had truly used a gun in self-defense, it will appear that one
in twenty did, providing grist to the Association.

The transposed conditional, or Janus effect, of Example 2 in §6.1
has already been mentioned in connection with the cancer figures.
Here pðþ jCÞ at 0.99 is quite different from pðC j þÞ at 0.29, see §6.4.
This confusion has led to an error in cancer surgery where a predictor
was used to classify younger women as at high (þ) or low (�) risk of
developing breast cancer later in life. Here p(C) can be quite high at
0.1, or 10%, with good sensitivity at pðþ jCÞ ¼ 0:92 but poor speci-
ficity at pð� jCcÞ ¼ 0:50, the latter figure implying that among those
women who do not develop breast cancer, high- and low-risk classifi-
cations are equally common. A surgeon who observed the large
fraction, 92%, of high-risk patients among those with breast cancer,
advocated removing the breasts of young women at high risk, so that
they could not be affected later in life. This is absurd. What the surgeon
is uncertain about is cancer, C; what is known is that the patient is at
high risk,þ; so what is required is pðC j þÞ, which here is evaluated by
Bayes rule to be 0.17, a much lower figure than the 0.92, which the
surgeon mistakenly used.

There is another type of error that rarely occurs in the medical
context, where sensitivity and specificity are carefully distinguished,
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but has arisen in psychology and in law. A popular example concerns a
town where the buses are either red or blue. An accident occurs at night
in which the bus involved is driven away without the driver apparently
being aware that anything untoward had happened. Awitness says that
it was a red bus and the lawyer acting for the company uses in defense
the argument that the illumination at night was poor and the witness
was mistaken. The law pondered the frequency of mistakes and asked a
psychologist for their experience of errors of color identification in
poor light and was quoted an error rate of 10%. What both experts
failed to recognize is that two types of error are involved here, that of
identifying a red bus as blue, and that of thinking that a blue bus is red.
These could be different. The situation fits into the diagnostic schema
used here, C corresponding to the bus being truly blue, Cc to it being
red. A positive result, þ, is replaced by the witness statement that it
was blue, and negative,�, to their saying it was red. The two errors are
the probabilities of thinking that a red bus was blue and vice versa. The
other relevant uncertainty is p(C), the proportion of blue buses in the
town, a factor that can easily be forgotten.

A lesson to be learned from all the examples and discussions in this
chapter concerning two associated events, here C and þ, is to think of
the basic probabilities, three in all, pð� jCÞ; ðpþ jCcÞ, and p(C), and
calculate all others from them. The notation can be enormously
clarifying both in developing the concepts required and in calculating
with them. The advantage of the notation becomes even more pro-
nounced when considering three events in Chapter 8, but before doing
this, it is needful to discuss a possible confusion between frequency, of
say cancer in a population, with your uncertainty of cancer expressed
as your probability. This is done in the next chapter.

6.12 INFORMATION

We ordinarily use data to provide us with information about something
of which we are uncertain, as in the test for cancer in §6.4, where the
data, the positive or negative result of the test, give information about
the possibility of cancer in the patient. To see how this works, it is
necessary to be more precise about what is meant by information.
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If you had probability near 1 for an event, you would feel that you had a
fair amount of information about the event, feeling confident in its
truth, and similarly, a probability near 0 would lead to some assurance
that it was false. On the contrary, with probability of 1/2, you have little
information, feeling that the event is as likely to be true as to be false.
Considerations such as these suggest that your information about an
event depends on your probability p for the event, decreasing with p as
p increases from 0, reaching a minimum at p¼ 1/2 and then increasing
to its original value at p¼ 1. Figure 6.1 illustrates the idea and a more
detailed analysis would reveal the exact form of the curve and
consequently the numerical values for information. It turns out that
information has a unique, precise meaning, which is at the basis of
what is now called the “information age”. The analysis to derive this
unique value is not performed here because it is rather technical.
Instead, the concept is explored in a more qualitative form using the
cancer diagnosis of §6.4 as an example.

Initially you had a probability p(C)¼ 0.02 that the patient had
cancer, corresponding to a reasonable amount of information, since it
is near 0. Suppose, seeking to increase your information about that
patient, the test is performed with a negative result; then we saw that
pðC j �Þ was 0.0002, even closer to 0, so that, referring to the figure,
information has been gained as onemight have anticipated. But suppose,
on the contrary, the test had yielded a positive result, which we saw gave
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FIGURE 6.1 Information about an event as a function of your probability for that
event.
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pðC j þÞ ¼ 0:2878, then information would be lost as your probability
had increased from near 0. The example showswhat is, in fact, a general
phenomenon, that data can both increase and decrease information, in
apparent conflict with the idea that data are collected, or evidence
presented in court, with the hope of acquiring more information. To
resolve this, notice that the information was increased with a negative
result andwe saw that this had p(�)¼ 0.9312,whereas it only decreased
with a positive result, p(þ)¼ 0.0688. Since the first probability is vastly
larger than the second, the test would nearly always (perhaps 93%of the
time) increase information and rarely (7%) decrease. The example
illustrates the general phenomenon:

Data may increase or decrease your information, but you always
expect it to increase your information. (The term “expect” will be
encountered in §9.3 and given a precise meaning; for the moment treat
it in its usual linguistic sense.)

Rather loosely, the result displayed above says that data are always
expected to be of value. That is one reason why we need a Freedom of
Information Act. The result can be extended even further and used to
justify the public dissemination of data that, at the moment, we
consider private. For example, why are not tax returns public, for
their general availability would seriously hinder tax evasion? A legal
application will be found in §10.14. The ideas do not find acceptance
because of a limitation of all the methods in this book, that is, they only
apply to an individual; they are of less relevance when two people are
involved, especially if there is antagonism between them.
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CHAPTER7

Measuring Uncertainty

The study of the rules of probability is interrupted in order to deal with
an important, outstanding issue: the measurement of uncertainty. The
method of comparison with a standard, which was used to obtain the
rules, is rarely satisfactory and other methods need to be developed.

7.1 CLASSICAL FORM

With any event E is associated the complementary event Ec that is true
whenever E is false, and false whenever E is true. It was shown in §3.7
that your two probabilities for these events necessarily add to one:
pðEÞ þ pðEcÞ ¼ 1. It follows that the measurement of the uncertainty
of any event may be replaced by that of its complement because one
probability can be calculated from that of the other. We saw in §5.5, an
example involving birth dates where this was advantageous. Here we
study the special case where your beliefs in the event and its comple-
ment are the same; p(E)¼ p(Ec). In that case, since they add to one,
both probabilities must equal one half; p(E)¼ p(Ec)¼ 1/2. An example
is provided by the genuine toss of what appears to you to be a coin from
a reputable mint, where your belief that it will land heads equals that
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for tails; hence both events, “heads” and “tails”, have probability one
half. Notice that there is no obligation on you to have the same beliefs
in the two outcomes, only that if you do, your probabilities are both one
half. The idea extends to the throw of a cubical die; if you have the
same beliefs for each of the six faces falling uppermost, then each must
have probability one sixth, for six equal numbers, adding to one makes
each of them equal to one sixth. Strictly, we have yet to prove an
addition rule for probabilities with more than two events; it will be
done in §8.1.

Generally, if an uncertain outcome has N possibilities, only one of
which can occur, and if your beliefs in each possibility are the same, then
your belief in each is 1/N. The coin hasN¼ 2, the dieN¼ 6, and roulette
N¼ 37 or 38. This is the classical definition of probability and has
essentially been used in §3.2when considering an urn containingN balls
numbered consecutively from 1 to N, for if all numbers are equally
uncertain when a single ball is withdrawn, we said the ball was drawn at
random and each value had probability 1/N. The classical definition is
fine in a limited context but is deficient in that for most cases such a split
into equally uncertain possibilities does not exist; for example, contem-
plating uncertainty about tomorrow’sweather has no such split. The real
importance is as a standard with which other events may be compared.
Notice that a tangible account of equal beliefs was provided by your
attitude to a reward, in that if you are indifferent between a prize if ball 7
is withdrawn, or one contingent on ball 37, and this for any pair of
different numbers, thenyour beliefs, and henceyour probabilities, are all
the same. The classical definition is therefore operational.

It is perhaps worth repeating the point, illustrated with the toss of a
coin above, that there is no obligation onyou to have a probability of one
half for heads, since youmay judge the coin to be biased and take 0.55 or
any other value between zero and one. Similarly, you may judge the
roulette wheel to be biased. These are not illogical values, merely
unusual ones; indeed, theymay be sensible if you have reason to suspect
the casino. Somepeople argue that if there areNpossibilities, only oneof
which can arise, and if you assign probability 1/N to each, then you are
ignorant of the outcome using this as a definition of ignorance. This is
unsound, for it is a strong statement to judge all possibilities equally
uncertain, surely not one of ignorance. Why, with N¼ 2, is the
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probability of 0.50 ignorance but one of 0.55 knowledge?Our attitude is
that judgments of uncertainty are alwaysmade against a knowledge base
and that ignorance, or an empty base, is not a sensible position. As soon
as you understand the meanings of “toss” and “coin”, you are not
ignorant of coin tosses. Ignorance has no place here, but this does not
mean that the assignments of 1/N should be avoided; on the contrary,
they often provide a convenient default position. Thus, suppose geneti-
cists are attempting to isolate a gene in a species havingN chromosomes,
then their knowledge base may not guide them as towhich chromosome
it lies on, and, in default of more information, they may assign the same
probability to each. Similarly, at the commencement of a police
investigation with N suspects, the police might reasonably regard all
equally probable of being guilty. In neither case is it ignorance, but
merely a sensible position describing uncertainty.

The concept of equal beliefs, basic to the classical form, can often
be used to advantage in other situations; we illustrate this with the
example in §4.1 of inflation next year. It may be convenient to think of
an inflation figure that you think is equally likely to be exceeded, or not
be attained. If you settle on 3%, then your probability of it being less
than 3% is 1/2 and the same value of 1/2 holds for values greater than 3%.
The idea can be extended to find a value, like 2%, such that you think it
is as likely to be less than 2% as between 2% and 3%. Similarly, 5%
might be a value such that you feel it is as likely that the inflation might
exceed it as be between 3 and 5%. Now you have four ranges of
inflation, all equally probable. The idea can be extended to provide a
probability distribution, as will be shown in §9.8. There remain many
phenomena where the classical definition cannot be used, so we pass to
a more powerful device based on frequency.

7.2 FREQUENCY DATA

Earlier we met the idea that if you, as a doctor, had seen many patients
with a disease and noted that a proportion p of them had exhibited a
symptom, then your probability that a further patient with the disease
would show the symptom was also p. That is, you pass from a
frequency among the patients seen, to a probability or belief about
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a further patient. This passage is so common that there has grown up a
confusion between frequency, which refers to data, and probability,
which is belief, so that people speak of the frequency interpretation of
probability. There is a connection between the two concepts, but it is
wrong to identify them, so let us investigate the situation carefully,
starting with a simple example.

Suppose that you have before you a drawing-pin; the American
term is a thumbtack. Such a pin has the property that, when tossed, it
can either land with the point down on the table,D, or sticking up in the
air, U. You are uncertain about the event that the pin will fall with the
point up and will express this by your probability p(U). We assume
some knowledge base that remains fixed throughout the discussion.
Now let the pin be tossed a number of times under conditions that
remain stable; you do not, for instance, alter the tossing procedure. To
be specific, let the results of 10 tosses in order be UUDUDUUUDD
and denote this result by x. Notice that 6 times the pin fell uppermost
and 4 times it fell with the point down, giving a frequency ofUs of 0.6.
You are about to toss an eleventh time and are uncertain about the event
U on that occasion. What is your probability p(Ujx)? A natural
response is 0.6, the frequency in the series of 10 tosses, and this is
the procedure used by the doctor in the example. Is it sound? Can you
pass from a frequency to a belief in this way? Is it coherent to do so?
There are three reasons for thinking that the passage from frequency to
belief is not so straightforward.

First, suppose that you had only tossed the pin once instead of 10
times. Looking back at the series of 10 results given above, you see that
the first toss gave U and that the frequency of Us is therefore 100%. Is
your probability that the second toss will result in the pin falling point
uppermost the same as the frequency, that is, 1? Surely not, it might
have increased a little from the original value p(U), as with the red and
white urns in §6.9, but not so far as to make the event certain for you,
thereby violating Cromwell’s rule (see §6.8). So you cannot make the
identification of frequency and belief when the former is based on little
information, here a single toss. If 10 is enough to allow the identifica-
tion, but 1 is not, where do you draw the borderline; is 7 enough?

A second reason for doubting the identification is demonstrated by
shifting the example. Suppose that the pin and the tosses are replaced by
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observations of theweather on successive days. Each day you observe if
it is dry D or unsettled U, meaning “not dry”. Suppose you record the
weather on 10 successive days and obtain the same sequence x as before.
What is your probability that the eleventh day will be unsettled? I
suggest that the frequency of unsettled days in the last 10 days, here 0.6,
is not a reasonable answer, at least under my knowledge base, because
successive days of weather tend to be alike. Indeed, the forecast that
tomorrow’s weather will be the same as today’s is often better than the
one based solely on the frequency ofweather. The last two days in xwere
both dry, sowe are in a dry spell and your probability that tomorrowwill
be unsettled may be less than the frequency 0.6. This example is based
on weather in Western Europe, and readers in other parts of the world
may need to adapt it to their own conditions, using their knowledge base.
The key point is that the order of theUs andDsmaymatterwithweather,
but usually not with drawing-pins.

Those are two reasons for doubting the identification of frequency
with belief. Here is another of a different character. Suppose, after having
tossed the pinwith the results given, you are nowprovidedwith a different
typeof drawing-pin and told that the next, eleventh, toss is to bemadewith
this pin. It would not be sensible to ignore the 10 tosses already made,
since they do provide you with some information about pins in general,
but on the other hand, it is a different pin and the direct use of the
frequency is dubious. You may, for example, look at the new pin and see
that the head is heavier than the one used in the tossing, so perhaps this one
is more likely to fall point upward than the other. You might therefore
express your belief with a value greater than the frequency of 0.6.

So while the idea of identifying belief with frequency is attractive,
it cannot be used in all circumstances. Nevertheless, frequencies surely
do influence beliefs and what has to be done is to understand the
relationship between the two ideas. This we proceed to do.

7.3 EXCHANGEABILITY

Consider again the drawing-pin and the result of the 10 tosses
UUDUDUUUDD that was abbreviated to x. Each toss could result
in one of two outcomes, so there are 2� 2� . . . � 2 (with 10 twos), or
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1,024 possible results for the 10 tosses. Before you perform the tossing,
you are uncertain about the outcomes and therefore, by the general
thesis, ideally have probabilities for each of the 1,024 possibilities, the
assessment of which is a formidable task if only because of the number
involved. An assumption is now introduced, whose adoption will make
this task much easier. It needs to be emphasized that the assumption is
not always appropriate.

Suppose that when you think about the possible results of the 10
tosses, you feel that your probability for any series depends only on the
number of times the pin falls with the point upward and not on the
arrangement of theUs andDs in the series. Thus, in the case cited, your
probability of the result depends only on the fact that there are 6 Us
(and therefore 4Ds), so thatUUUUDDUDUD, still with 6Us and 4Ds
but in a different order, is, for you, just as probable as what you actually
observed. If this were so, you would have a much easier assessment
task, for there would now be only 11 possibilities, not 1,024, that is,
from 0 to 10 Us. One way of expressing this is to say that any one toss,
with its resulting outcome, may be exchanged for any other with the
same outcome, in the sense that the exchange will not alter your belief,
expressing the idea that the tosses were done under conditions that you
feel were identical. Here is the formal definition:

A series of results, each of which can be one of the same two types,
is exchangeable for you under knowledge base K if your probability
for the series under K depends only on the numbers of the two types
and not on their positions in the series. It will be called the assumption
of exchangeability. In the example, the two types are U and D. Your
probability, assuming exchangeability, for the series x with 6 Us out of
10, may be written p(6j10). Given 10 tosses, this is your probability for
6 Us. Series that are exchangeable are of special importance because
there are many series that almost all people agree are exchangeable,
and because of the simplicity that they introduce into the structure of
your beliefs. The concept is related to that of sufficiency mentioned
toward the end of §6.9, the number ofUs, rather than their order, being
sufficient.

The assumption of exchangeability implies that the series of
outcomes UUUUUUDDDD, in which the 6 Us and 4 Ds each occur
together, is just as probable for you as the original series in which the
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Us and Ds were mixed up. People are often unhappy with this, but its
resolution is to notice that the series in the last sentence has a pattern to
it, whereas the other is chaotic, and there are vastly more chaotic series
than there are those with a pattern. There are 210 possible arrange-
ments of 6 Us and 4 Ds, very few of which exhibit a pattern. It is the
pattern that singles out that series, not its uncertainty; it is a coinci-
dence that the Us and Ds form clumps. Coincidences are hard to
discuss because the striking pattern, which owes nothing to uncer-
tainty, is easily confused with your uncertainty. And there is the
question of what constitutes a pattern; does UDDUUUDDUU have
a pattern because the last 5 tosses are identical to the first 5?

Exchangeability implies that your probability of U at any place in
the series is the same as U at any other place. To see this, consider the
first two terms in the series with the 2� 2¼ 4 possibilities

UU UD DU DD:

Exchangeability implies that UD and DU have the same probability. U
occurs at the first place if eitherUU or UD occurs, whereas it occurs at
the second withUU orDU, and in either case, your probability of aU is
the sum of your probabilities for the two possibilities. Now UU is
common to both and UD has the same probability as DU, so the two
sums are equal and U is just as probable at the first place as at the
second. Generalizing this argument, it is apparent that any arrange-
ment, say UDU, is just as probable at any place in an exchangeable
series as at any other. An exchangeable series is stationary; its
uncertainties do not change with place. In thinking about these results,
you need to distinguish between your probability of U in the second
place, on knowledge base K , and the same uncertainty when you have
already observed U in the first place. The notation makes this clear,
comparing p(U2) and pðU2jU1Þ, where a subscript refers to the place in
the series and K is understood. Notice that pðU2jU1Þ is easily
calculated in terms of the basic, exchangeable values, as
pðU1U2Þ=pðU1Þ by the multiplication rule (§5.3). Since, as was
seen above, pðU1Þ ¼ pðU2Þ, it follows from this last result that
pðU1jU2Þ ¼ pðU2jU1Þ, so that looking backward, on the left-hand
side of the equation, is the same as looking forward, on the right.
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Although in general for an exchangeable series, U1 and U2 are not
independent, pðU2jU1Þ 6¼ pðU2Þ, in §7.5 it will be seen that any
exchangeable series can always be built up from series in which
independence does obtain.

Most people would consider the series of tosses of a drawing-pin to
be exchangeable. They would not think it true of the series of weather
on successive days, because consecutive days tend to be more alike
than widely separated days, so that UUUDDD is more probable for
them than UDUDUD, despite the frequency being 0.5 in both cases.
The records of the doctor observing the presence or absence of a
symptom with a disease, you might think exchangeable, though if you
knew the sexes of the patients and thought the disease was sex related,
you might not. This example also serves to illustrate an important
point, that since the definition of exchangeable depends on your
probabilities, it depends on your knowledge base, and a series
exchangeable under one base, without knowledge of sex, may fail
to be under another, with knowledge of sex.

Let us return to the question of the connection, if any, between
frequency and probability. In the case of the pin, you wanted to pass
from the results of the 10 tosses to an eleventh toss about to be
made. The only aspect of the 10 tosses that matters under exchange-
ability is the 6 Us. One possibility is for you to consider the 11 tosses,
the 10 already seen and the new one, exchangeable. If so, we say that
the new toss is exchangeablewith the others. This would be reasonable
with the single pin, but not when the eleventh toss was to be performed
with a different pin. It might be fine with the medical example, but
perhaps not if you were the next patient and you thought yourself
different in some relevant way from those patients the doctor had
already seen. For example, the study may have been made in one
country and you are the resident of another.

Three examples were mentioned in §7.2: tosses of a pin, weather
on successive days, and tosses of one pin aiding beliefs about another.
The second series is not exchangeable, and in the third, the further toss
is not exchangeable with the previous ones. In both these cases, we
ruled out the possible identification of frequency with belief. It is only
in the first example with exchangeability in the series and extended to a
further toss that the identification might be reasonable, and it is this
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case that we study further, beginning with a special type of exchange-
able series.

7.4 BERNOULLI SERIES

To illustrate the series, let us return to our basic urn with balls, all
indistinguishable from each other except for color, some being red, the
rest beingwhite, the numbers of both types being known to you and from
which you think a ball is to be drawn at random.Denote the proportion of
red balls by the Greek letter u, pronounced “theta” with a long e. (There
is an important reason for going outside of the Roman alphabet that will
appear in § 11.4.) Remember that you know the value of u. Under these
circumstances, your probability that a withdrawn ball will be red is u.
Suppose the number of balls in the urn is vast, so that the withdrawal of
even a few balls will not affect the constitution of the urn and, in
particular, will not change u. Then your probability that a second ball
will be red is still u and it remains u however many balls are withdrawn.
Furthermore, your probability is not affected by the results of all
previous withdrawals; even if 10 withdrawals have each produced a
white ball, your probability of drawing a red ball on the eleventh
withdrawal remains u unless you discard the premise of randomness.
In the terminology of §4.3, the withdrawals are independent, though
there only two events were considered; the extension to many will be
introduced in §8.8. With this example in mind, we make the definition:

A series, each member of which can have one of only two
outcomes, is for you, a Bernoulli series if your probability of one
outcome is the same for every member of the series and is independent
of any earlier outcomes in the series. It is named after a Swiss
mathematician

A Bernoulli series is somewhat artificial because you never learn
from it, in the sense that your probability remains fixed at u, whatever
happens. In the artificiality of such a series, even 100 withdrawals, all
of which resulted in a white ball, would not change your belief that
withdrawal 101 would be red. Despite this, Bernoulli series is most
important for a reason to be explained now. It is easy with a Bernoulli
series to calculate your probability of any result. For example, take the
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series we had before with the toss of a drawing-pin, UUDUDUUUDD
with 6Us and 4Ds. If it is Bernoulli, the probability for eachU is u, for
each D, 1� u, and since the outcome of any one toss is judged by you
to be independent of previous tosses, these probabilities may be
multiplied (see §4.3). Hence, your probability for that series is
u6ð1� uÞ4, depending only on the number of Us, here 6, out of the
10 tosses. It follows that a Bernoulli series is exchangeable, since the
dependence solely on the numbers of Us was our criterion for
exchangeability. It is a special type of exchangeable series in which
you judge the individual events to be independent. With independence,
it is easy to write down your probabilities for any series by multipli-
cation. With series that are exchangeable, but not Bernoulli, we do not,
at the moment, know how to do this. For an exchangeable series of
length 10, we saw there were 11 probabilities to think about, whereas
in the Bernoulli case, there is only one, namely, u, your probability for
any U, and once you know that, you can find all the others by
multiplying the appropriate numbers of u and 1� u together. However,
there is a link between exchangeable and Bernoulli series that enables
the exchangeable calculation to be made in terms of the Bernoulli.

7.5 DE FINETTI’S RESULT

We return to the familiar urn with a large number of balls that are
identical except for their colors, some red, and the rest white. Suppose
that, unlike the case in the last section, you do not know the proportion of
red balls but are told truthfully that it is oneof twovalues u1 or u2. In §6.9,
the case where u1 was 1/3 and u2 was 2/3 was considered, the former
being referred to as the white urn, the latter, the red urn. Now the values
of u1 and u2 are not restricted but,merely for identification, it is supposed
that u1 is the smaller, so having a lesser proportion of red balls, it is
referred to as the white urn. You do not know whether it is the red or the
white urn that is before you and since you are uncertain, you will have a
probability that it is the white one, p say and 1� p that it is the red urn.

Were you to know the proportion of red balls, you would, on
withdrawing balls at random, have a Bernoulli series. Suppose that the
balls are drawn at random from the urn without knowing whether it is
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the white or the red one, and that the result of 10 such drawings is
RRWRWRRRWW, abbreviated to x, essentially the same as with the
tosses, though for ease of relating the result to the urns the notation has
been changed, U to R, D to W, retaining x for the data. In the original
urn treatment, lower-case letters were used for the data and upper-case
for the true constitution. Here u replaces the latter, freeing the capital
letters. Complete consistency of notation is rarely possible. What is
your probability, p(x), for this result? Before the drawings were made,
what is your belief that this result would be obtained? It is not easy to
see directly but recall from §5.6 the rule of the extension of the
conversation and extend your discussion of the series to include the
value of u. You require p(x) which, by the rule is

pðxÞ ¼ pðxju1Þpðu1Þ þ pðxju2Þpðu2Þ:

Now all the terms on the right-hand side of this equation are known,
since once you know the proportion of red balls, the series is Bernoulli
with pðxju1Þ ¼ u61ð1� u1Þ4 and similarly for the other possibility, u2.
Your probability of it being the white urn, corresponding to u1, was
written p, so substituting these values into the right-hand side, you have

pðxÞ ¼ u61ð1� u1Þ4pþ u62ð1� u2Þ4ð1� pÞ; (7.1)

and the calculation is complete. The argument has been presented here
for the case where there were only two values of u. If there were three,
the same procedure of extending the conversation would be available,
except that now there would be three terms on the right-hand side of
(7.1). Generally, any number of values of u can be included, resulting
in that number of terms on the right-hand side.

It is obvious that this series, with two possible values of u, is
exchangeable because the result just obtained depends only on 6, the
number of red balls, out of 10, and not on their order of withdrawal.
So we have established that the withdrawal of balls at random from
an urn of unknown composition generates an exchangeable series. De
Finetti showed that every series with two possibilities, here R and W,
that you judge to be exchangeable can be represented as random
withdrawals from an urn of unknown composition. In other words,
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the procedure just described is available for every exchangeable
series and exchangeable series necessarily reduce to combinations of
Bernoulli series. The result is of considerable importance because it
enables you to think about your beliefs for an exchangeable series in
a simple way. In the case where u can take only two values, all you
need to think about is the probability of u1, denoted by p above.
Generally, each possible value of u has to be assigned a probability
and the extension of the conversation is then used to perform the
evaluation. The last stage can be left to the mathematician or the
computer and need not concern us here, but the assignment of
probabilities, such as p, needs further thought.

An objection might be raised. Suppose you were to think about u to
two places of decimals; that is, you admitted values 0.01, 0.02, . . . ,
0.99 so that there were 99 possibilities in all. (The extreme, special
values of 0.00 and 1.00 being omitted.) Then there are 99 values of p
for you to think about, whereas for the series of Rs andWs of length 10,
there were only 11 to be considered, and all this fuss has only made
your task harder. This is perfectly sound, but once the 99 have been
settled upon, the calculation will work for any length of series of Rs
and Ws, not just 10; so that the 99 will replace the 1,000 needed for a
series of length 999 and there is a real simplification. It will be seen in
§9.8 that there are compact ways of studying the values of p that are not
available for the raw series.

7.6 LARGE NUMBERS

In order to think about a series with two possible outcomes that you
judge to be exchangeable, by de Finetti’s result you need to think only
about the values of u underlying a Bernoulli series. In the case of the
urn, u had a concrete interpretation, as the proportion of red balls, but
in other cases, such as patients with a disease, some exhibiting a
symptom, it is not clear what meaning to attach to u under exchange-
ability, so that before de Finetti’s result can be used, we need to be able
to escape from the tyranny of the Greek alphabet and think in medical
terms. To do this, we need a mathematical result called a law of large
numbers, which says that for any series, each member of which has two
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possible outcomes and that you consider exchangeable, you have
probability 1, that is, you are sure, that the frequency of one of these
outcomes tends to a fixed value as the length of the series increases,
rather than wobbling about all over the place. The fixed value to which
the frequency tends is an interpretation for u. (Probability 1 may appear
to violate Cromwell’s rule in §6.8, but the law is the result of logic in
the form of mathematics and is therefore exempted from the rule.)
Consequently, to think about an exchangeable series of two outcomes,
you need, apart from the Bernoulli calculations, only to think about
your beliefs about the frequency of outcomes in a long series. This
value is termed the limit of the observable frequencies.

Let all the threads be put together to produce your probabilistic
description of a series with two outcomes that you judge to be
exchangeable.

1. By exchangeability, you admit that the frequency of an outcome
in the series will tend to a limit. Denote this limit by u.

2. Assess your probabilities p(u) for the various values of u.
3. Combine this with the Bernoulli probabilities, urð1� uÞn�r,

giving a term urð1� uÞn�r
pðuÞ, and take the sum of these over

the various values of u. This is your probability for r outcomes of
one type in an exchangeable series of length n.

Consider the case of a drawing-pin and, to illustrate, take the nine
possible values of u, 0.1, 0.2, . . . , 0.9 corresponding to the outcome
that the pin falls with point upward, U. You need 9 numbers, adding to
one, to describe your beliefs about the pin. If you feel that the
frequency of it falling with point up will probably be less than its
falling with point down, then the larger probabilities would be assigned
to the smaller values. For example, you might assign probabilities

0:03; 0:10; 0:20; 0:25; 0:17; 0:12; 0:07; 0:04; 0:02

to the 9 values; thus, p(u¼ 0.1)¼ 0.03. Contrast this with the case of
a coin, where you might attach high probability to heads and tails
occurring with equal frequency in the long run but, with due
attention to Cromwell’s rule, would not rule out bias. A possible
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set of probabilities, spread over the same 9 values as before,
might be

0:01; 0:01; 0:01; 0:01; 0:92; 0:01; 0:01; 0:01; 0:01:

This means that your probability that the coin is fair, and being tossed
fairly, is 0.92, but admit that other values are possible with small
probabilities.

We began in §7.2 by considering how frequency and belief were
related; how the doctor’s observation that a symptom, occurring with
frequency p in the patients already seen, related to the belief that the
next patient would exhibit the symptom. With the 10 tosses of the pin
giving the result x, we sought p(Ujx), your probability that the next
toss, judged exchangeable with the other tosses, would result in it
falling with point up, eventU. (To avoid fussy notation,U now refers to
the eleventh toss.) Next, we show how this probability can be calcu-
lated using the three-step procedure just described. By the multiplica-
tion rule (compare the case of U1 and U2 in §7.3),

pðUjxÞ ¼ pðUxÞ=pðxÞ:

The denominator p(x) was calculated in §7.5, the last displayed equation
therein, for two values of the limiting frequency u, with its obvious
generalization. The numerator p(Ux) follows in exactly the same way
sinceUx has one extraU, giving 7Us and still 4Ds. Hence, the required
result, p(Ujx). This method is available for every exchangeable series
and a future outcome judged exchangeable with it.

There is another way of arranging the calculation, which makes use
of Bayes rule in learning about u from the observed data, and which is
illustrated using the example of the red andwhite urns in §6.9. Here u1 as
in §7.5, is the proportion of red balls with u1¼ 1/3 in thewhite urnWand
u2¼ 2/3 in the red R. Suppose that some balls are withdrawn at random
and let the result be denoted x. (In §6.9, 12 balls were withdrawn and 9
found to be red, 3 white, but the exact nature of the data, x, need not
concern us here.) In analogy with the doctor, uncertain about the next
patient, let us consider your probability that another random ball will be
red, an event denoted r. Extend the conversation to include u, the true but
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unknown constitution of the urn, with the result

pðrjxÞ ¼ pðrjRxÞpðRjxÞ þ pðrjWxÞpðW jxÞ:

Now, if you know it is the red urnR, the data x tells you nothing about the
next ball, so p(rjRx)¼ p(rjR)¼ 2/3 and similarly, p(rjWx)¼ 1/3. (In the
terminology of §4.3, r and x are independent, given R.) The other
probability p(Rjx) was found in §6.9, by Bayes rule, to be 64/65 and
naturally, the complement p(Wjx)¼ 1/65. Inserting these numerical
values into the result just displayed yields

pðrjxÞ ¼ 2=3� 64=65þ 1=3� 1=65 ¼ 129=195 ¼ 0:6615

to four decimal places. This is a little less than 2/3¼ 0.6667 to the same
accuracy, the slight reduction being caused by the fact that, although
you are almost sure it is the red urn, just a little doubt, expressed through
your probability 1/65, that it is the white one remains.

There remains a general problem, that of summing the various
terms and performing the calculations in Equation (7.1) of §7.5 above.
This is a technical matter and has been attended to by mathematicians.
My best advice to you is to consult a statistician, just as you would
consult a plumber if the repairing of your plumbing systemwas outside
your capabilities. However, it is possible to describe one of the results
that have been obtained in a form that is of immediate use without
technical skills.

7.7 BELIEF AND FREQUENCY

Take a series with two outcomes,U andD, of length n that you judge to
be exchangeable and suppose that you have just observed r Us and
therefore (n� r) Ds. By exchangeability, it does not matter to you
where the Us and Ds appeared in the series. Now consider your
probability that the next term, judged exchangeable with the series,
will beU. This is p(Ujr, n), your probability ofU, given the result (r, n).
Although it is tempting to equate this with r/n, the frequency of Us in
the series, we saw in §7.2 that it would not be realistic to do this for
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short series with small n. The methods of the last section tell us how to
proceed but they involve technicalities. It is now shown how they may
be overcome if an assumption is made about your opinion, p(u), of the
hidden value of u, the limiting frequency of Us.

Denote the observed frequency in the series by f¼ r/n, which is
firmly based on data and has no element of uncertainty. There is
another frequency, the limiting one, u, that is conceptual and not data
based, about which you are uncertain and have beliefs. Let g be your
best guess as to the value of u before you have any data on the series.
Exactly what is meant by “best guess” will be explained in a moment.
Now you have two pieces of information about the frequency with
which U, rather than D, will arise: f, which is based on data, and g,
which is based on initial beliefs about the series. It surely seems
natural, in assessing the probability of a further U, to incorporate both
these pieces of information, combining them in some way. The
simplest way to do this is to take a bit of one and add it to a bit of
the other; addition being the simplest arithmetic operation, So consider
the expression (nfþmg)/(nþm), where m is a positive number. If
m¼ n, the expression gives equal prominence to f and g, being the
average ( fþ g)/2. If n is much larger than m, little attention is paid to g
and the expression is near to f; similarly, if m is by far greater, the
emphasis is on g. Generally, the expression lies between f and g,
exactly where depends on the balance between m and n. Technical
analysis shows that it is often appropriate to equate the result
(nfþmg)/(nþm) to the required probability p(Ujr, n). Leaving the
discussion of m for the moment, the final result is

pðUjr; nÞ ¼ nf þ mg

nþ m
: (7.2)

Consider an example. Suppose with the drawing-pin, you believed
initially that D might be little more probable than U and that your best
guess at the limiting frequency of Us was 0.4. This is g. Now you have
data of 6 Us in 10 tosses, r¼ 6, n¼ 10, f¼ 0.6, and the formula gives

pðUj6; 10Þ ¼ 10� 0:6þ m� 0:4

10þ m
: (7.3)
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This is a simple combination of the two frequencies, which necessarily
lies between them, greater than what you initially believed, because of
the observations, but less than you observed, because of your lower,
initial belief. It is nowpossible to seewhat g, your best guess of u,means,
for if the general result (7.2) is used with n¼ 0, that is, before any
observations have beenmade, pðUjr ¼ n ¼ 0Þ reduces to gwhen n¼ 0.
Hence, your best guess is your belief that the first member of the series
will be U, rather than D. There remains the value of m to consider.

A clue to m can be found by reflecting that so far you have not
inserted any indication of how strongly you felt g reflected your initial
opinion. Thus, with the pin, you may not have much strength of
conviction about 0.4, whereas had it been a coin that was being tossed,
you would have had a firm opinion that the frequency in the limit would
be 0.5 and these feelings were reflected in the two sets of nine
probabilities chosen in the last section. m measures this conviction,
being small in the case of the pin and high in the case of the coin. But
what of an exact value? There are several ways to assess this. One of
them is to assess p(Ujr, n) directly and then equate it to the above
expression, so obtaining m since all the other quantities are known. For
example, suppose with the pin, you felt 0.55 was your probability after
the 6Us and4Ds, then arithmetic shows thatm¼ 10=3, a littlemore than
three. (Putm¼ 10=3 in (7.3) and you will obtain the result 0.55.) Let us
take 3, rather than the more precise value. Then what you are saying in
using the formula is that you are taking 10 parts of the data to 3 parts of
your initial belief, out of 13 parts in all. Roughly, m¼ 3 says that your
initial belief is worth about three observations in the series. Hadm been
10, you would have given equal weight to the two frequencies. With the
coin and g¼ 0.5, you might have had a large value, say m¼ 100.
Equation (7.2) then gives a probability for U on the next toss of
0.509 and the observed frequency of 0.6 has only slightly affected
your belief that the coin is being tossed fairly. Notice how the fact thatm
measures your strength of conviction about g goes some way to
answering thosewho feel that a single probability is inadequate, instead
preferring upper and lower probabilities in order to incorporate this
conviction (see §3.5). The analysis demonstrates that when the convic-
tion is relevant, it can be included within our simpler framework by
introducing m. Furthermore, the introduction of m is balanced by your

7.7 BELIEF AND FREQUENCY 159



conviction about the data f, naturally expressed by the number n of
observations. Here our simplicity has paid off and the additional
complexity is unnecessary. The expression above requires your best
guess g about u, in the sense of your probability that the first toss will
result inU, and also the strength of your conviction about umeasured by
m in comparison with n, the length of the series.

As remarked above, if n is large, the formula weighs f, the
frequency, very high and the effect of g is small, so the formula
says that it is sensible to identify frequency and belief, provided the
exchangeable data are numerous. Thus, if the doctor had seen a lot of
patients whom he judged exchangeable, with a proportion f exhibiting
the symptoms, a patient judged exchangeable with them would, for
him, have a probability effectively f of exhibiting the symptom. This is
the justification for a procedure, adopted in many cases, of equating the
probability of an aspect of the future with a frequency observed in the
past. Notice that it requires three conditions: an exchangeable series, a
long series, and a case exchangeable with the series. The first condition
rules out the weather; the last excludes a different pin.

There is one extremely important point to be made about (7.2), a
point that will repeatedly arise in probability calculations and is not
confined to exchangeable series. Once you have chosen the two values,
g and m, to reflect your initial opinion and the strength of that opinion,
you are committed to p(Ujr, n) for all values of r and n, and not just
those that you originally contemplated. Thus, in the case of the pin
with g¼ 0.4 and m¼ 3, a series of five tosses all of which resulted in
U and hence f¼ 1, would give your probability for another U on the
sixth toss to be 0.78. When considering the values of g andm, you need
to bear in mind that all these probabilities can be affected, and it is
often useful to consider several hypothetical values of r and n.

A consequence of the rules of probability and the coherence they
reflect is that while a few probabilities can be chosen at will, many
others are automatically determined from the few by the rules. This is a
general principle and affects all calculations of beliefs. In the
exchangeable case, there are many implications from your choice
of g andm, one for every possible series of data, and for every possible
combination of f and n. If you find that there are no values of g and m
that can accommodate your beliefs for all combinations, then you have
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two alternatives. You can retain exchangeability, but go back to the
original p(u), which will give you more flexibility. If this is still not
enough, then your only resource is to abandon your view that the series
is exchangeable. Here is an example.

There are many people who believe that if you have a long series
almost entirely ofUs, then there is a greater probability for aD next time
than if you had experienced fewerUs. The idea being that compensation
is needed tomake up the appropriate frequency ofDs that has so far been
too low. One can easily see that this view conflicts with (7.2) since the
bigger the r is, the larger is the probability ofU next time. It follows that
if youhave belief in compensation, then you cannot simultaneously have
beliefs that (7.2) accommodates.More can be said, for the compensation
concept and exchangeability do not even cohere and you cannot believe
both.Mathematically, pðUjr; nÞ ¼ ðnf þ mgÞ=ðnþ mÞ increases with r
and the more Us you see, the greater is your belief in U next time.

It may be felt that excessive attention has been paid to the notion of
exchangeability and that we have labored unduly over a rather narrow,
specialized concept. The reason for our labors is that the notion is used
throughout the analysis of data, where many series, not just of two but
of any number of outcomes, are generally accepted, not only by you,
but by nearly everyone, to be exchangeable. Even series, such as
weather, that are not exchangeable, have been studied by connecting
them with other series that are exchangeable, though the technicalities
are beyond us here. So exchangeability arises all over the place and our
hope is that by studying it in a simple case of two outcomes, you will
gain an appreciation of its value elsewhere, even though the technical-
ities are understandably beyond you. The quantity u that was intro-
duced above is called a parameter and it will be seen in Chapter 11 how
parameters play a central role in science. Next, we take a closer look at
the Bernoulli parameter u.

7.8 CHANCE

It was seen in §4.3, with the discussion of two events, that there was
some simplification if the two events were independent; in particular,
the product rule was simplified. Also, instead of three probabilities
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needed for a complete description of the uncertainty surrounding two
events, A and B, for example, p(A), p(BjA), and p(BjAc), independence
required only two, p(A) and p(B). (As usual, a fixed knowledge base is
assumed, for independence can be destroyed or created by changes in
the base, as we will see in a moment.) The simplification produced by
independence is even greater with more than two events, considered in
the next chapter. It would therefore be most desirable if you could
create independence in your beliefs in some way; that is what the
quantity we have denoted by u does with exchangeable series. To see
this, consider the first two tosses of the pin and the resultUD. These are
not independent for you, since your probability for the D on the
second toss is influenced by the occurrence of U on the first. But
now introduce u and you have independence since pðUDjuÞ ¼
pðUjuÞpðDjuÞ ¼ uð1� uÞ by the Bernoulli nature of the series,
given u. Generally, for any length of an exchangeable series, you
have independence, given u, but not without u.

It is not a topic that will arise much in this book, but there are many
uncertain situations that are most profitably studied by introducing a
new, and perhaps a little artificial, quantity such as u, to create
independence. For example, in agricultural experiments, two varieties
will behave similarly, and therefore not independently, because they
experience similar weather conditions; so a quantity representing
weather is introduced to create independence, given the weather,
and thereby simplifying the analysis, without weather necessarily
being described in terms of sunshine, temperature, humidity, and so
on. Readers who are familiar with even the simplest statistical litera-
ture will have encountered the mantra “independent and identically
distributed”, which occurs so frequently that it has acquired an
acronym, iid. Yet the authors hardly ever mean what they say.
What they intend is iid given some quantity such as u.

Returning to the exchangeable series of two possible outcomes,
U andD, let us look at u in more detail. First notice that it behaves like a
probability; indeed, within the Bernoulli series it is a probability,
namely your probability of U were you to know its value, pðUjuÞ ¼ u.
Also it obeys the probability rules, for example, in calculating the
result urð1� uÞn�r for your probability of r Us. Does u therefore
correspond to your belief in something? You already have beliefs about
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its value expressed by a probability p(u), yet according to the attitude
adopted in this book, it is nonsense for you to have a belief about your
belief, if only because doing so leads to an infinite regress of beliefs
about beliefs about beliefs . . . Another feature of the Bernoulli u is
that it has a degree of objectivity in the sense that if Peter and Mary
both judge a series to be exchangeable, then the value of u, as a limiting
frequency, will be common to them both, though unknown to them
both. The objectivity is limited though because if Paul disagrees with
exchangeability, u may not have a meaning for him. Experience shows
that there is a massive agreement about some series being exchange-
able, so that objectivity can be at least a convenient approximation.

The upshot of these considerations is that u, while it obeys the rules
of the probability calculus, is not a probability in the sense of a belief.
As a result, we prefer to give it a different name and it is often referred
to as a chance. Thus, de Finetti’s basic result in §7.5 is that an
exchangeable series of two outcomes is always a mixture of Bernoulli
series with different chances. Notice that there are now three words
that are almost synonymous in the English language but to which we
have assigned special, different meanings. Probability always refers to
your belief, likelihood to your uncertainty of a single event under
different circumstances, and chance is a concept pertaining to a
Bernoulli series. It may appear pedantic to fuss in this way, but
experience has shown that the separation of the ideas is essential
for a proper appreciation of uncertainty. It has the minor misfortune
that we cannot vary the language, as modern writers like (see §2.8)
switching between probability, likelihood, and chance, for if proba-
bility is meant, then probability it has to remain. It also helps to
understand why mathematical modes of thought differ from those of
poets. Poets like to invest words with many shades of meaning and
encourage ambiguity, while mathematicians are precise and a word has
a single, unambiguous meaning. Poets make simple things compli-
cated; scientists try to make complicated things simple.

The relationship between probability and chance is profitably
explored a little further using the pin as an example. First, p(U)
expresses your belief that the first toss will result in the pin falling
with point up, U. Strictly, it should be pðUjK Þ, referring to your
knowledge base but, as usual,K will be kept constant and conveniently
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omitted. On the contrary, p(Uju) is u, your belief concerning the first
toss, were you to know the value of u. The relationship between p(U)
and p(Uju) is, for the case where two values of u, u1, and u2, are being
considered, as in §7.5, obtained by using the extension of the conver-
sation from U to include u, and introducing p(u) (§7.6)

pðUÞ ¼ pðUju1Þpðu1Þ þ pðUju2Þpðu2Þ
¼ u1pðu1Þ þ u2pðu2Þ:

Generally, if there are many values of the chance that you consider
possible, there will be a term equal to the value of the chance u, times
your probability for that value p(u), the terms being added to provide
your probability for U. The expression on the right-hand side plays an
important, general role that is encountered in §9.3.

The “probabilities” that are basic to quantum mechanics are really
chances, in our usage of the terms. Thosewho accept quantummechan-
ics accept exchangeability as part of that acceptance and therefore have
chances. In statistical mechanics, there are two forms of exchange-
ability, Fermi–Dirac and Bose–Einstein. The same situation is observed
in genetics, which is based on chances, not on probabilities. Further-
more, since the “probabilities” that physicists and geneticists recognize
are really chances, the chances are associated in their minds with
frequency, so that probability is thought of in terms of frequency.

We now have two methods of assessing probabilities: using the
concept of cases, which have equal uncertainties, the classical method,
and that based on frequency allied with the concept of exchangeability.
The former applies only to a limited class of situations, such as games
that use cards or dice. The second is of such wide use that probability is
often confused with frequency. There remain situations where neither of
these methods apply, for example, when you attempt to assess your
probability that the political party you support will win the next
democratic election. Here there are no equally probable cases and the
frequency with which your party has won the previous elections is no
guide, only because you do not make the judgment that those elections
are, for you, exchangeable.We, therefore, need a further method. This is
based on coherence and is treated in Chapter 13whenwe have examined
the phenomena that can arise when you contemplate three events.
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CHAPTER8

Three Events

8.1 THE RULES OF PROBABILITY

So far in this book we have almost entirely been concerned with studies
involving only two events. The ideas developed there are now extended
to situations with three or more events. The rules of probability that
were developed in Chapter 5 are perfectly adequate to deal with the
extension, and no new rules are required, but they do lead to some
surprising results when more events are contemplated. We begin by
looking again at the three rules.

The convexity rule in §5.4 deals with a single event and requires no
elaboration. The addition rule, in the simpler form of Equation (5.2) of
§5.2, says that if two events, E and F, are exclusive (that is, cannot both
be true) then

pðE or FÞ ¼ pðEÞ þ pðFÞ: (8.1)

The extension to three is immediate. SupposeE,F, andG are three events
that are exclusive, in the sense that no two of them can both be true, then

pðE or F orGÞ ¼ pðEÞ þ pðFÞ þ pðGÞ; (8.2)
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whereE orF orGmeans the event that is true if, and only if, one of them
is true. There are several ways to see that this is correct. One is to return
to the urn and suppose that some balls are emerald, E, some fawn, F,
some green,G, and the remainder without color. A colored ball has only
one color, so the colors are exclusive and the total number of colored
balls is the sum of the numbers that are emerald, fawn, and green.
Dividing by 100, the total number of balls, to obtain proportions or
probabilities, the probability of being colored is seen to be the sum of
the three probabilities of the individual colors. Exactly the same
argument can be used for any number of different colors, not just
three, and correspondingly for any number of exclusive events.

The mathematical way of seeing that the result is true is to take the
original two-event form, (8.1) above, and replace F by F or G giving,
since E is exclusive of F or G,

pðE or F orGÞ ¼ pðEÞ þ pðF orGÞ: (8.3)

We then use the two-event form again to yield

pðF orGÞ ¼ pðFÞ þ pðGÞ:
Combining these two results gives the three-event form of Equation (8.2).

It is worth stopping for a moment to look at the mathematical
argument in the last paragraph because it demonstrates the power of
mathematical notation, which, as remarked in §2.7, is really another
language. Since the two-event form of the addition rule applies to any
two events, the notation reflecting this, the flexibility can be used to
advantage and, in particular, we can use an event that combines two
others, as in Equation (8.3). Repeatedly doing this, we obtain general
statements, not tied to special concepts such as balls in an urn.
Furthermore, the method applies to any finite number of exclusive
events by repeated use of the method.

The addition rule says that, to obtain your probability of one of a
number of exclusive events happening, you add your probabilities of
the individual events, a result used in discussing the classical theory in
§7.1. Notice that it is essential that the events be exclusive. There is an
extension of the general form of §5.4 without the restriction to
exclusive events but, since we shall not need it, and it is somewhat
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complicated, it is not given here. In all forms, recall that a fixed
knowledge base is assumed.

The multiplication rule of §5.3 also extends to three events in the
form

pðEFGÞ ¼ pðEÞ � pðF jEÞ � pðG jEFÞ: (8.4)

In words, your probability that all three events occur is your probability
of the first, multiplied by your probability of the second, conditional on
the first, and then multiplied by your probability of the third, condi-
tional on both the first and second. Incidentally, this provides a good
illustration of the simplicity and clarity of the mathematics in (8.4)
compared with ordinary English in the last sentence. Recall that EF is
the event that is true if, and only if, both E and F are true; whereas E or
F is true provided either one of E and F is true. The reader might like to
refer again to the truth table in §5.1.

As with the addition rule, the multiplication rule may be demon-
strated with balls in an urn. There would be red balls corresponding to
E, the others being white. Some balls would, in addition, be spotted,
corresponding to F, the others being plain. Finally, some balls would be
plastic, corresponding to G, the others being wood. Thus there would
be eight types of balls, for example, some balls would be plastic,
painted red, with spots, corresponding to EFG. The proportion of balls
in the urn that are simultaneously red, plain, and plastic is equal to the
proportion of red, times the proportion of plain among the red, times
the proportion of plastic among the red, plain ones. Mathematically,
the two-event form with the events E and FG gives

pðEFGÞ ¼ pðEÞ � pðFG jEÞ:

Applying it again to F and G with everything conditional on E (as well
as the implicit knowledge base) we have

pðFG jEÞ ¼ pðF jEÞ � pðG jEFÞ:

Combining these last two results gives the form stated in (8.4). Notice
that unlike the addition rule, there is no need for the events in the
multiplication rule to be restricted in any way.
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So there is nothing really new in passing from two to three events,
insofar as the rules of probability are concerned, and we do not need
new rules. We derived modified forms, by the mathematical arguments
just given, from the old. Since all the properties of probability follow
from the three basic rules (see §5.4), it means that the other rules, such
as that of the extension of the conversation (§5.6), and most impor-
tantly Bayes rule, (§6.3) to be discussed in §9.1, similarly extend to
three events. Although the rules are adequate for any number of events,
it turns out that they lead to surprising results when passing from two to
three events, while beyond three, nothing surprising happens, life just
gets more complicated. To investigate the surprise, we start with an
example, which is extreme but has been chosen to emphasize a point.
The phenomenon it displays ordinarily occurs in a less extreme form,
where it is very common.

8.2 SIMPSON’S PARADOX

Below are some data in the form of a contingency table (see §4.1). The
context is medicine, where 80 patients with a disease took part in a
clinical trial. 40 of them were given a treatment, in the form of an
experimental drug, and the remaining 40 were provided with a placebo,
none of them knowing which they had received. At the end of the trial,
each patient was classified as recovered or not. The outcome of the trial
is given in the table, with the obvious notation of T for treated and R for
recovered. As before, the raised letter c denotes complement: Tc for the
placebo andRc for a patientwho had not recovered by the endof the trial.
In addition to the raw data, the recovery rates, calculated from them,
have been included in the last column.

R Rc Total Rate

T 20 20 40 50%

Tc 16 24 40 40%

Total 36 44 80

The treatment by the drug would appear to be beneficial since the
recovery rate for the treated patients is 10% higher than for those
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untreated, and medical opinion might be that the treatment is a “good
thing”. It may be objected that the trial is too small for reliable
conclusions to be drawn. If you feel this, add a couple of zeros to
each of the raw figures, with 8000 in all and 3600 recovered. The
analysis that follows will not be affected.

It was seen in §7.7 that under exchangeable conditions, and with
sufficient data, you would assert pðR j TÞ ¼ 0:5 and pðR j TcÞ ¼ 0:4.
Here the first probability refers to the event of your recovery were you to
receive the treatment, the second to your recovery with the placebo, and
on this basis you might decide to have the treatment, thereby increasing
your probability of recovery by0.1.Notice the use of the subjunctive here,
since these are assessments before your treatment regime is decided.

Both men and women took part in the trial and the results were
available for each sex separately. The results for the 40 males,
presented in tabular form as above, were

Males R Rc Total Rate

T 18 12 30 60%

Tc 7 3 10 70%

Total 25 15 40

Now the position is reversed and instead of the treatment increasing
the recovery rate by 10%, it has decreased it by the same amount. The
treatment would appear not just to be ineffectual, but to be positively
harmful. Using exchangeability again, a male might argue that p(R j TM)
¼ 0.6, whereas p(R j TcM)¼ 0.7, whereM denotes male. The interpreta-
tion is as before, that were he to receive the treatment, his probability of
recovery would be 0.6, whereas without it, it would be 0.7 and the
treatment is to be avoided. Notice that the man is making a different
exchangeable judgment from that made with all the data. There he was
supposing himself to be exchangeable with all the data; now, with more
information, he is restricting himself to being exchangeable with the
males only. Exchangeability is always conditional, just like probability.

It might be thought that a treatment that is good overall, but is bad
for the males, must be good for the females, if only to compensate. So
let us look at the data for the 40 females who took part in the trial.
These can be obtained by subtracting the numbers in the table for the
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males from those in the complete table and no new information is
needed. The result, as the reader may easily verify, is

Females R Rc Total Rate

T 2 8 10 20%

Tc 9 21 30 30%

Total 11 29 40

The result is not that anticipated because the treatment is just as bad
for the females as it is for the males, namely, a reduction in the recovery
rate by 10%.As before, a femalemight argue that for herp(R j TF)¼ 0.2,
whereas p(R j TcF)¼ 0.3. Here F denotes female orMc. (Lest feminists
object, Fc¼M.) Thus, a woman might decide not to use the treatment.

The situation is that a treatment that appears to be good for all of us
(the first table) is bad for the men and bad for the women. This is the
paradox. It is usually known as Simpson’s paradox, after a UK civil
servant who came across it in his salad days, though it had occurred
earlier in the literature, recalling Stigler’s law of eponymy in the
prologue. In his form, the paradox says that the overall behavior may
be contrary to the behavior in each of a number of subgroups, here male
and female. People’s first reaction is to disbelieve the paradox and to
think that there has been a mistake in the arithmetic, but careful perusal
of the figures shows that this is not so. Recalling that probabilities are
equivalent to proportions of balls in an urn, you could envisage the
paradox in terms of balls, colored red or white (for T), spotted or plain
(forR), and plastic orwood (forM). The paradox, aswe now try to show,
is of considerable practical importance even in its most modest form.

8.3 SOURCE OF THE PARADOX

How has the paradox arisen? First notice that the disease the treatment
was designed to cure is more serious for the women than it is for the
men. Confining ourselves to the data for the placebo, where the disease
effectively remained untreated, apart from the possible psychological
encouragement from participation in the trial, we see that only 30% of
the women recovered, whereas 70% of the men did, so it is a disease
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that is more serious for women than for men. Second, observe that in
the case of the men, 75% (30 out of the 40 men in the trial) were
treated, whereas with the women, only 25% (10 out of the 40 women)
received the treatment. Thus, the treatment went predominately to the
men, who were more likely to recover anyhow, and kept from the
women who were the main sufferers. Consequently, the treatment
looked good, not because of real merit, but because it was mainly
applied to the men with their higher recovery rate. Perhaps the person
in charge of the trial was distrustful of the treatment, feeling that it
might do harm, so gave it predominately to the men, whowere likely to
recover anyhow, and kept it from the principal sufferers, the women.
Whatever the reason, it is the confusion between sex and treatment that
has given rise to the paradox. We leave it to the reader to do the
arithmetic to convince themselves that had the sexes been handled
equally with respect to the allocation of the treatment, in the sense that
the proportion of men receiving the treatment equalled the proportion
of treated women, then the original table, that did not refer to sex,
would have exhibited the same 10% reduction in the recovery rate as
exhibited in the other two tables, that did record sex. For this
calculation, assume the same recovery rates as in the last two tables.

Simpson’s paradox therefore arises because the allocation of treat-
ments depended on another quantity, sex, that itself had an effect on the
recovery rate. This type of dependence is called confounding and the two
quantities, treatment and sex, are said to be confounded. Because of the
confounding, it is not possible to be sure, in the original table, that the
apparent treatment effect is real and not due to the confounded quantity,
sex. What is therefore required is an allocation of treatments to the
patients that is not confounded with any other quantity that might have
an effect. This is a tall order and beforewe see how it can be achieved, let
us draw some lessons from the paradox.

8.4 EXPERIMENTATION

An immediate consequence of the paradox is that one cannot believe the
message that a simple contingency table appears to deliverwithoutmore
investigation. Recovery appears to be helped by the treatment in the
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example but the effect is an illusion due to sex. Even the tables that
include sex cannot be guaranteed to send a correct message since there
may exist another quantity that reverses the effect of treatment again. For
example, it might happen that breaking up the last two tables according
to whether the patients came from a rural or urban community, thus
producing four tables, rural males, rural females, and so forth, would
exhibit a different effect.

The paradox has repeatedly arisen in practice. The early work on the
relationship between smoking and lung cancer revealed a strongpositive
association (§4.4) between smoking and the occurrence of the disease,
just as our first table showed one between treatment and recovery. An
eminent statistician suggested that there might be a genetic factor that
encouraged smoking and also made the person prone to lung cancer,
playing a similar role to that of sex in our example; if so, the causal
relation between consumption of cigarettes and lung cancer might be
spurious. The suggestion was sensible and much further work was
required to eliminate this possibility and establish the causal link. It has
now been demonstrated that the original table did not lie and smoking is
a cause of lung cancer. Here are examples where the table did mis-
represent the situation. It was once claimed that the consumption of
yogurt increased one’s life span, again on the basis of a contingency
table. Here, unlike smoking, there was a confounding, genetic effect
because consumption of yogurt was greatest in Bulgaria, where there
appears to be a gene for longevity, so that longevitywas confoundedwith
a gene. A trial of the effect of giving milk to schoolchildren in Scotland
appeared to show that milk was harmful, because the teachers had given
milk to those they felt most in need of it and kept it from the healthier
ones, so confounding the consumption ofmilkwith health.Wewillmeet
a sociological example in §8.7.

A general lesson from the analysis of the paradox, and the
examples, is that one should always be suspicious of a claimed
association between two factors, because there may be confounding
with other factors. Most scientists today are fully cognizant of the
difficulties and try to eliminate the confounding by methods about to
be described, but this may be hard in fields where observational data,
rather than experimental data, are all that are available. It is often found
that people without training in numeracy fail to appreciate the

172 THREE EVENTS



difficulties the paradox exemplifies. Neither arts nor science has a
monopoly of truth, so that better understanding and control of the
world will surely come through combining both standpoints.

How are the difficulties revealed by the paradox to be overcome;
how can contingency tables be presented that really mean what they
appear tomean?Oneway is to think of all the quantities thatmight affect
the feature of interest; in our example, all the quantities that might affect
recovery. These are termed factors. Thus, treatment, sex and urban
environment, are all factors. An experiment is then performed with all
factors fixed (e.g., placebo, male, rural) and a secondwith all the factors
the same except for the one of primary interest (e.g., treatment, male,
rural) giving a measure of the treatment for rural males. This is repeated
for all combinations of the other factors; then if every factor has been
included, any differences between the two experiments must be due to
the single factor that changed (e.g., treatment). Experiments with all
factors fixed are said to be controlled. It may happen with a controlled
experiment that the effect is seen to be present only for certain values of
the other factors; thus the treatment could work only for themen. In that
case, we talk of an interaction between the treatment and the factor.
Physics and chemistry aboundwith examples of controlled experiments.
Unfortunately, it is usually possible to perform such experiments only
within the confines of a laboratory, where conditions can be controlled,
while in subjects such asmedicine or agriculture,where the experiments
cannot be confined to a laboratory, such control is rarely possible. The
situation is even worse in sociology, where even modest amounts of
control are difficult to arrange. Some physicists can be contemptuous of
attempts by sociologists to be scientific, but often the contempt is
unjustified because of a failure to recognize the difficulties of exper-
imentation in the latter field compared with the precision attainable in
their own, often at considerable expense. We will return to this point
when we discuss the scientific method in §11.1.

8.5 RANDOMIZATION

If the doctor is not able to know about or to control all the possible
factors that might reasonably effect the disease under investigation,
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how is a medical trial to be performed? How is a dietitian to determine
whether some modest amount of alcohol is good for one? How is a
criminologist able to assess the main causes of crime or how they
might be treated? How is a farmer to find out the best fertilizer for his
crops? In none of these cases is complete control possible. Never-
theless, there is a possible answer that does not demand the complete
control beloved by the laboratory scientist.

Let us return to the example of the medical trial and Simpson’s
paradox in §8.2, wherewe saw that it was important to avoid factors that
were confoundedwith the treatment under investigation, the factor in the
example being sex. We wanted sex and the treatment to be independent
(see §8.3), or that the treatment should be assigned to a patient
irrespective of their sex. How is this to be done? There are two ways.

The first is obvious and is related to the controlled method often
used in the laboratory. It is to recognize the factor and make the
assignment of treatment accordingly. Thus, in the medical trial, since it
was known that sex was influential, the disease being more serious in
women than men, sex should have been recognized from the outset and
the same proportion of men should have been allocated to the treatment
as women, and similarly for the placebo. One difficulty with this
method is that there may be many factors that are recognized as
possibly influencing the result. Suppose there are 8 factors, each of
which can exist, like sex, in two forms, then there are 2� 2� . . . � 2
(with 8 2s) or 256 in all, possible groups of patients. Even with only
one patient of each type allocated to the treatment and one to the
placebo, the experiment will involve 512 people and will likely be too
big. There are ways of reducing the size by ignoring some interactions
(§8.4) between factors, but these will not be considered here. A second
difficulty is that one can never be sure that every factor has been
thought about. Maybe the blood type of the patient could affect the
result, so another factor and an even larger experiment would be
needed. It is all too easy to think of possible factors and criticize an
experiment because they have not been included.

There is an ingenious way out of these troubles that uses random-
ization. We met the idea of randomness when drawing balls from the
standard urn in §3.2. Youwould think the balls to be drawn at random if
any ball was judged by you to be as likely as any other to be taken; or if
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you were indifferent between a prize contingent on a specified ball
being drawn, and the same prize contingent on a different specified
ball. Let the same device be used with the medical trial and suppose the
balls in the urn are either labeled treatment T or placebo Tc. With a list
of the patients who have agreed to participate in the trial available, a
ball is withdrawn at random and the first patient is assigned according
to what is on the ball. Proceed in this way with subsequent withdrawals
and patients. By this device, the patients are said to be allocated to
treatment at random. If there are the same numbers of balls of each
type, then there will be equal numbers of patients receiving treatment
as placebo. What is more important is that the proportions of men, and
of women, receiving the treatment will be about the same because sex
had nothing to do with the allocation. In practice, the balls in urns are
not used and there are tables of random numbers that operate in a
similar way. The important point is that the method of withdrawal of
the balls, or the use of the tables, is not confounded with sex. Indeed, as
far as you are concerned, the allocation of treatments by these methods
is not confounded with anything because random means that the
withdrawal of the balls is not affected by anything. By this device
you can be reasonably sure that the final results from the trial will
really mean what they appear to say and that no factor can disturb your
conclusion. Actually you cannot be quite sure because it could happen,
just by chance, that all the men got the treatment and all the women the
placebo, just as all tosses of a coin could fall heads, but it is unlikely
and, in any case, if you were aware of sex as a source of concern, you
could check on this before carrying out the trial.

Experience shows that the following is the best procedure to use in
designing an experiment such as the medical trial. First think of
factors, such as sex, that might be influential and, if there are not
toomany of these, allocate treatment to patients so that no confounding
with them takes place. Having made sure that the important factors are
not confounded, allocate the treatments purposefully as regards these,
as in a controlled experiment, but otherwise at random. Having done
all this, check that the randomization has not produced something odd;
for example, if all the treated patients are rhesus negative and all the
placebos positive, it would be better to do the randomization again,
since otherwise the claim could legitimately be made that treatment is
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confounded with blood type. It is not essential to use a table of random
numbers and it would suffice to allocate the treatments in a haphazard
way, checking afterward for any possible confounding. But random
numbers are often a convenient way of getting a haphazard result. It is
always important to check the result of the haphazard or random
selection, preferably before carrying out the experiment, to check for
any possible confounding. Sometimes it is not necessary to perform
any randomization; all controls can be implemented, as in the labora-
tory, but the general form is a suitable method of experimentation that
permits reliable conclusions to be drawn. Unfortunately, there are
cases where even the haphazard allocation is not feasible and an
example will be encountered in §8.7.

As an example of applying these methods, consider the original
medical trial. With 80 patients available, 40 of each sex, the men could
have been allocated the treatment at random or haphazardly, and
similarly the women. Before beginning the trial, the allocation should
be carefully inspected to make as sure as one can be that the
randomness has not thrown up some factor that could influence the
conclusions. For example, the random allocation might have resulted
in the treated men coming predominately from a city; in which case, to
forestall possible criticism on the basis of town versus country,
something more haphazard might be attempted. Of course, one can
never cover all possibilities; the best one can hope is to reduce the
uncertainty surrounding any conclusion.

8.6 EXCHANGEABILITY

In the case of the medical trial of §8.2, which illustrated the paradox, it
was pointed out that, in order for you to use the information the trial
provided, you would ordinarily make some assumption of exchange-
ability of yourself with the patients who took part in the trial. For
example, presented with only the first table, with no reference to sex,
you might feel that, were you to receive the treatment, you would be
exchangeable with the 40 patients in the trial who also had T and that
your probability of recovery would therefore be 50%, p(R j T)¼ 0.5.
Similarly, were the treatment not taken, exchangeability would be with
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the other 40, p(R j Tc)¼ 0.4, and as a result, you would accept the
treatment. Recall that it is being assumed that the numbers in the trial
are large so that the more delicate considerations of §7.6 are not
needed.

If you now received the additional results that included information
about sex, you would alter your assumption of exchangeability. Thus a
woman might judge herself to be exchangeable with the women who
took part in the trial and, using an argument similar to that advanced in
the last paragraph, would take her personal probabilities to be
p(R j TF)¼ 0.2 and p(R j TcF)¼ 0.3, so would refuse the treatment.
In this section, we point out how careful you have to be about these
judgments of exchangeability, using an example from agriculture.

The medical example has patients affected by three factors:
treatment, recovery, and sex. In the agricultural example, plants
replace patients and the three factors are variety (black or white),
yield (high or low), and height (tall or short). For convenience, the two
sets are listed and you may find it helpful in what follows to make
repeated reference to this list.

Medical Trial Agricultural Trial

Treatment (or placebo) Black (or white) variety

Recovery (or not) High (or low) yield

Sex (male or female) Height (tall or short)

Black corresponds to treatment, high yield to recovery, and tall to
male. In both trials, interest lies in the association between the first two
factors, the third factor being there because it might influence the
conclusions. The farmer wants to know whether to plant the black or
white variety with the aim of getting a high yield. The results in the
agricultural trial could be written out in the form of contingency tables
exactly as in the medical case. Suppose that in doing so, the numbers in
the agricultural case are the same as in the medical one. Thus
corresponding to the entry 18 for TRM in the medical table for the
males, the number of black plants that both grew tall and had high yield
was 18. For the reader’s convenience, the new tables are given here,
with the obvious notation: H, high; L, low; B, black; W, white.
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H L Total Rate

B 20 20 40 50%

W 16 24 40 40%

Total 36 44 80

Tall H L Total Rate

B 18 12 30 60%

W 7 3 10 70%

Total 25 15 40

Short H L Total Rate

B 2 8 10 20%

W 9 21 30 30%

Total 11 29 40

We have two entirely different sets of data, the numbers happen to
be the same. The conclusion reached in the medical trial was that the
treatment was not to be used, since it is harmful for both the men and
the women, and the placebo was to be preferred. Before reading
beyond this sentence, ask yourself, and answer this question: do
you think the white variety is better; white, recall, corresponds to
placebo in the list above?

Most people answer the question by preferring the black variety as
the one giving the higher yield. That is, they take their conclusion from
the first agricultural table, rather than from the two that incorporate the
breakdown by height (replacing sex). The conclusion is correct and
despite the fact that the numbers are exactly the same in the two trials,
the conclusions are different. Why is this? We argue that the difference
lies in the use of exchangeability with the data.

In the medical trial, as we have just seen, a woman would consider
herself exchangeable with the women in the trial and her personal
probability of recovery, were she to have the treatment, would be
p(R j TF)¼ 0.2. Consider a farmer having to decide, after seeing the
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data, whether to plant the white variety or the black. What exchange-
ability judgment is reasonable for him to make between the new
planting and the plantings in the trial? If the same judgment were made
as with the medical experience, the farmer would reach, in analogy
with p(R j TF), the probability of high yield, were the black variety
planted and grew short. But this probability is of no relevance to the
farmer because when the black variety is planted, he does not know
whether it will grow tall or short, unlike thewoman who knows her sex.
A relevant probability is p(R j T), the probability of high yield when the
black variety is planted, which is obtainable from the first of the tables
and, with a judgment of exchangeability between the new planting of
that variety and those in the trial, has the value p(R j T)¼ 0.5. Similarly,
with the white variety, p(R j Tc)¼ 0.4, a smaller value, so that the black
variety is to be preferred. The difference is that the doctor could know
the patient’s sex, whereas the farmer could not know the plant’s height.

It is surprising that although the numbers are the same in themedical
and agricultural trials, the conclusions are exactly opposite, placebo
(white variety) in the medical case and black variety (treatment) in
agriculture. The example demonstrates the need to think carefully about
the appreciation of data, as well as the data themselves. It is possible
today to purchase computer packages that purport to analyze data. As a
result, people put their data into the computer, togetherwith the package,
expecting to obtain sensible results. They may, but they may not, for
although the computer is a wonderful tool for computing, it is not, at the
time of writing, a substitute for thought. Our example, simple though it
is, demonstrates the necessity for more than just calculation; what to
calculate is also relevant. A good computer package would ask the user
to make exchangeability and other assumptions, as well as perform the
calculations. Statistical textbooks can also be misleading in presenting
analyses for contingency tables without adequate attention to the
practical circumstances surrounding the numbers.

Since the farmer’s conclusion depended only on the results of the
first table, where height was ignored, it might be felt that the additional
data with height included are irrelevant for him, but this is not so. For
example, were the black variety to be planted, corresponding to B in
the tables, more plants would grow tall (male) than short (female). In
the trial there were 30 of the former and only 10 of the latter. From this
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it might be deduced that p(tall jB)¼ 3/4 and it is perhaps because of this
tendency of the black variety to grow tall that it provides a higher yield.
Notice that in the medical trial, sex was controlled. For example, the
doctor chose to give the treatment predominately to the men. In the
agricultural trial, height (corresponding to sex) was not controlled but
was influenced by the variety selected. This affects the judgments of
exchangeability subsequently made.

Many people, in discussing these two examples, would speak of
causation, saying that giving someone the treatment does not cause them
to be male, whereas planting the black variety is the cause of the plants
growing tall. They would claim that it is this causal difference that
distinguishes the two cases, medical and agricultural. This is surely
sound but there are difficulties, that need not concern us here, in
providing a precise definition of causation. It fits better with our
approach to uncertainty, to use the concept of exchangeability. It is
possible to come very close to the concept of causation by using the
concepts of “doing” and “seeing” mentioned in §4.7, where seeing a
quantity to have a value can have entirely different consequences from
doing something to make the quantity have that same value. In the
medical example of this chapter, the doctor can do something to control
the sex of the patient receiving treatment, not by changing someone’s
sex, but by selecting for treatment or placebo, according to their sex. In
contrast, the farmer cannot control the height of an individual plant but
can merely see how tall it grows. So, in a distortion of the English
language but fitting within our specialized use of it, the doctor can “do”
sex, whereas the farmer can only “see” height, and it is this difference
that, perhaps better than exchangeability, explains the distinction
between the two experiments. There is still a need to pass from the
data to the conclusions aboutwhich is better for you, as a patient, or you,
as a farmer, where the correct judgment of exchangeability is essential.

The intimate connection between “doing” and “seeing” on the one
hand, and causation on the other may be clarified by the consideration
of the following famous illustration. The arrival of low atmospheric
pressure in an area causes the barometer to fall and later rain to arrive,
so that seeing the barometer fall leads you to anticipate rain, whereas
making the barometer fall by artificial means does not make it rain.
Low pressure causes rain but a low barometer does not.
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8.7 SPURIOUS ASSOCIATION

The police in Britain recently produced data showing association
between the crime of mugging and ethnic group, which we present
in our familiar form of a contingency table, taking the liberty of
changing the numbers slightly to simplify the arithmetic. The reason
for the change is that our concern is with illustrating the phenomenon,
rather than making judgments about crime and ethnicity. It is supposed
that the police took 64 people at random, in accordance with the ideas
expounded in §8.5, from the Blacks in a population; and similarly, 64
at random from the Whites. We return to this point after the data have
been analyzed.

C Cc Total Rate

B 26 38 64 41%

W 11 53 64 17%

Total 37 91 128

In the table, C denotes those arrested on the charge of mugging, Cc

is, as usual, the complement, not arrested, and the factor will be
referred to as crime, hence the letter C. B means that the person was
Black,W that they wereWhite, again the complement. Na€ıve use of the
table would say that since the crime rate is 41% among the Blacks but
only 17% among the Whites, race was a cause of crime. The argument
can be compared with that applied to the table for the medical trial,
with ethnic group replacing treatment and crime substituting for
recovery.

As with the medical trial, it is instructive to include a third
factor, which is here, not sex, but unemployment. The breakdown
follows.

Unemployed C Cc Total Rate

B 24 24 48 50%

W 4 4 8 50%

Total 28 28 56
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Employed C Cc Total Rate

B 2 14 16 121/2%

W 7 49 56 121/2%

Total 9 63 72

The situation has now changed dramatically because, both within
the unemployed and within the employed, there is no difference
between the crime rate for the Blacks and that for the Whites; the
marked difference that the police saw in the original table has quite
disappeared. In the language that was used in §4.3, for both those with
and without work, the crime rate is independent of race. The reason for
the apparent association between race and crime that was suggested by
the first table is that the unemployment rate among the Blacks is 75%
(48 out of 64), whereas among the Whites it is only 121/2% (8 out of
64). A black person is six times more likely to be out of work than a
white person. Do not forget, the original figures have been massaged as
an aid to clarity.

This example is of the same form as the medical one but the
influence is not reversed by the inclusion of the additional factor, as it
was there. Instead, it is eliminated and replaced by a new one. Here we
have one factor, race, being blamed for crime, when the culprit is really
unemployment. Of course, we have to be careful, there may be some
other factor that has so far not been considered, which could change the
situation yet again. The Blacks in the study might be younger than
the Whites. Also it would be pertinent to ask how the 64 Whites and
64 Blacks were selected; were they randomly selected from a some
larger group, or were they from those 64 people who were stopped by
the police, some of whom were charged, others not? A sound socio-
logical study would need some clear thinking and experimentation in
the style of §8.5 may be difficult, if not impossible.

The lesson to be drawn is again that a na€ıve analysis of a
contingency table can be dangerous and the fact that a rate is high
in one group and low in another does not establish that the factor
defining the groups is responsible for the variation in the rate. Only a
carefully designed experiment that eliminated confounding can pro-
vide a reliable assessment of the reason for the variation in the rate.
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This is one reason, as we have said before, why sociological data, such
as ours on crime and race, are so difficult to interpret and why
sociology is, in some ways, a harder subject than physics. We will
return to this point when the scientific method is treated in Chapter 11.

False association may affect government policy. In Britain, a
proposal to charge university students for their education has been
defended on the grounds that graduates earn more than nongraduates.
The apparent association between graduation and earnings may be
explained by the factor of intelligence. Universities may select students
on the basis of their intelligence, and the real connection is between
earnings and intelligence.

It was remarked above that crime and race appeared to be
independent when employment was taken into account. Independence
has only been systematically studied in connection with two events, so
in the next section we look at the concept for three events, stimulated
by this example.

8.8 INDEPENDENCE

Independence for two eventswas studied in §4.3 and association in §4.4.
Two events, E and F, are said to be independent if your probability of
their both occurring is the product of their separate probabilities,

pðEFÞ ¼ pðEÞpðFÞ; (8.5)

for a fixed knowledge base. Itwas seen that thiswas equivalent to saying
that your probability of one event being true did not depend on the truth
of the other,

pðE jFÞ ¼ pðEÞ: (8.6)

Either of these definitions leads to a variety of other statements, such as
Ec and Fc being independent, or pðF jEÞ ¼ pðFÞ, reversing the roles of
the events in (8.6). It is not easy to go wrong with independence when
only two events are under consideration, but with three or more, the
analysis becomes subtler. When presented with a new book on proba-
bility or statistics, the first thing I do is to turn to the definition of
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independence for three events and see if the author has got it right; often
it is wrong, so I must be careful here.

Two events are independent if, whatever you learn about one, does
not affect your uncertainty about the other. It is this form of definition
that extends to three, or more, events. Events are independent, for a
fixed knowledge base, if information about the truth or falsity of any
set of them does not affect your uncertainty about the remainder. Thus,
the independence of three events, E, F, and G, implies that, being told
that both F is false and G is true, does not alter your uncertainty for E.
In symbols,

pðE jFcGÞ ¼ pðEÞ: (8.7)

The multiplication rule (§5.3) says that pðEFcGÞ ¼ pðFcGÞpðE jFcGÞ.
Using (8.7), we have pðEFcGÞ ¼ pðEÞpðFcGÞ. The definition of
independence just given also says that pðFc jGÞ ¼ pðFcÞ and a second
use of the product rule enables this to be written as
pðFcGÞ ¼ pðFcÞpðGÞ. Putting these together gives

pðEFcGÞ ¼ pðEÞpðFcÞpðGÞ: (8.8)

There are many statements such as (8.7) and (8.8), all of which
follow from the definition of independence. With two events, we saw
from the contingency table that they all stemmed from one statement,
Equation (8.5), but this is no longer true with more than two events; for
example, neither (8.7) nor (8.8) on their own is enough for independence
for three events. It is not even enough that the events be independent in
pairs. In words, it can happen that E andF are independent, so are F and
G, also G and E, yet the three are not. Here is an example with no
suggestion that the numbers about to be given correspond to any actual
case. It is derived from that of the previous sectionwith theminor change
that C means criminal and I innocent, its complement. Black or White,
B or W, and unemployed or employed, U or E, remain unaltered. A
population may be divided into four groups as follows:

White and employed, WE. Suppose these are all criminals, C.
They fiddle their income tax or defraud their employers.
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Black and employed, BE. These are all innocent, I. They are so
pleased to be in a job that they are careful never to give an
excuse for dismissal.

White and unemployed, WU. These are all innocent, I. They pay
no tax and have no one to defraud.

Black and unemployed, BU. These are all criminals, being bored
with the hopelessness of their situation.

This accounts for everyone. Next suppose there are 25 people in
each of the groups, 100 in all. Let us write out a list of the events and
their numbers:

WEC 25; BEI 25; WUI 25; BUC 25:

If you like, think of an urn with 100 balls, 25 of each type. The
probability of each single event is 1/2. For example, 50 out of the 100
areWhite, so p(W)¼ 1/2, and similarly, p(U)¼ p(C)¼ 1/2. Next take any
pair of events, U and C say; an inspection shows that they only occur
together in one of the four groups displayed above. In the case ofU and
C, only in the group BUC, from which it follows that p(UC)¼ 1/4¼
p(U)p(C) SO that U and C are independent. The same argument works
for any pair of events. It follows that the three events are pairwise
independent but in any reasonable meaning that we might attach to
independence, the three events are not independent. For example, as
soon as it is known that a person is both Black and employed, you know
for sure, with probability 1, that they are innocent. Your probability of
innocence has increased from 1/2 to 1 as a result of the knowledge that
they are Black and employed, in contradiction to the definition of
independence. While such extremes do not happen in practice, it is not
unusual for the association between pairs to be weak, near indepen-
dence, yet there exist strong connections within the triplet.

With this interpretation of independence, probabilities may be
calculated by the product rule without introducing conditions. Equa-
tion (8.8) gives an example for three events. Again, we repeat, this is
for a fixed knowledge base; if that changes, then independence may
arise or disappear. Thus, in the example just presented, W and E are
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independent, but if the knowledge base changes by learning that C is
true, they are highly dependent; an employed criminal is necessarily
White. True independence is a concept that introduces considerable
simplification into a problem because if it obtains one need only think
about the probabilities of the individual events. Provided that you have
described your uncertainties for E, F, and G through p(E), p(F), and
p(G), then all your uncertainties about the three events together are
described. Thus,

pðEFcGÞ ¼ pðEÞpðFcÞpðGÞ ¼ pðEÞ½1� pðFÞ�pðGÞ:

In contrast, without any independence, seven probabilities are required
before you have a complete description of your uncertainty surround-
ing three events, for example,

pðEÞ; pðF jEÞ; pðF jEcÞ; pðG jFEÞ; pðG jFcEÞ; pðG jFEcÞ; pðG jFcEcÞ;
obtained by taking the events E, F, and G in that order and displaying
how the uncertainty of one event depends on all the possibilities
for the previous events. The reduction from seven statements of
probability to three, due to independence, results in considerable
simplification.

8.9 CONCLUSIONS

The main lesson to be learnt from the material in this chapter is that the
relationship between two uncertain events is not always what it appears
to be because there may be a third event that influences them both and
distorts the apparent connection. Thus the connection between treat-
ment and recovery of the patients may be completely changed by
consideration of the patient’s sex or the apparent dependence of crime
on race can be destroyed by the inclusion of unemployment. Although
we have not explored cases where there are four or more events, the
reader will appreciate that the more events that are taken into consid-
eration, the more complicated is the process of trying to understand
what is truly happening. No new concepts are involved, only increased
complexity.
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In this chapter and the preceding ones, attention has been confined
to events that can assume only two values, true or false, but the ideas
extend, as explained in the next chapter, to quantities that can assume a
range of values beyond two, and that are uncertain for you. Thus we
can pass from simple recovery to degrees of recovery; or the yield,
instead of being high or low, may be measured in kilograms per
hectare. Yet more complexity arises as a result and there are real
difficulties in appreciating the connections between several quantities.
Scientists have developed methods for handling large numbers of
quantities, but they are necessarily complicated and need the utmost
care in interpretation. I was once asked to investigate allergies in a data
set with a large number of factors that might possibly trigger a smaller
number of types of allergy. I declined because of the complexity of the
problem and the consequent small probability of reaching a reasonably
firm conclusion. The proper understanding of allergies is likely to
come through an attempt to understand the allergic process, rather than
through massive contingency tables, just as progress in cancer therapy
appears to be coming through a study of how cells become cancerous,
rather than from data on cancer patients. A good theory is better than a
lot of data without a theory.

Alternative medicines, that have become so popular recently, are
full of associations that are of doubtful validity. A friend recently told
me that bananas produce mucus when eaten, an association that may
well be true, but how could it have been established without very
careful experimentation, an activity that practitioners of alternative
medicine do not engage in as often as regular doctors, or by under-
standing the physiological process of mucus production? When any-
one asserts that “A is associated with B”, a good riposte is “how do you
know?” When I tried this on my friend, she replied that she experi-
enced increased mucus whenever she ate a banana, ignoring the fact
that one experience is not enough to establish a relation, just as one
throw of the pin landing uppermost does not convince you that the next
will also land in the same fashion (see §7.2).

My friend’s reaction to her personal experience is understandable
because we all find it easier to pay attention to what we directly
encounter than to careful and numerous studies performed elsewhere.
Today a newspaper has a story of a mother and father whose two
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children were vaccinated and subsequently developed autism, from
which the parents concluded that the vaccine causes autism, despite the
fact that the analysis of thousands of vaccinated children has revealed
no evidence of a link with autism. In effect, the parents are saying that
their two children count more than thousands of others; of course they
do to them, but for the rest of us they are just two out of thousands. One
of the hopes I have for this book is that it will enable you to assess
beliefs more sensibly than these parents and you will appreciate the
value of proper, scientific methods.
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CHAPTER9

Variation

9.1 VARIATION AND UNCERTAINTY

Variation often gives rise to uncertainty. Though we can recognize a
group of objects called teapots, the variation present from one teapot to
another results in our being uncertain whether we shall spill some of
the tea when first pouring from a strange pot, for some pots are good
pourers, some are not. More seriously, all biological material exhibits
variation; even the simple influenza virus varies, with the consequence
that we are uncertain what vaccine to use against it. Human beings
show variation that we rightly cherish, yet it gives rise to uncertainty,
whether in what size of trousers a retailer should stock, or in a
stranger’s reaction to a request.

There are only a few topics where variation is not present.
Precision engineering is capable of making objects, like the balls in
the urn, that are, for practical purposes, indistinguishable and portray
no obvious variation. One atom of an isotope of hydrogen is regarded
as the same as any other atom and the behavior of the isotope in the
presence of oxygen can be predicted perfectly. We can say, in the spirit
of §7.3, that one atom can be exchanged for another. Physics and
chemistry are both founded on this lack of variation that partly explains
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why physical scientists were so uncomfortable with quantum physics
and its unpredictability. It also helps to explain why those two subjects
have advanced more than others, like biology, because they are not
hampered by variation and so have less uncertainty. Biology is now
advancing more quickly since some aspects of it have been reduced to
the chemistry of amino acids. However, the laws of genetics contain
randomness and the resulting variation is basic to the concept of
evolution, where variants more suited to their environment stand a
better chance of producing offspring that survive and breed.

Variation produces uncertainty because you cannot be sure what
the variable material will do. Uncertainty inevitably necessitates
description in terms of probability, hence probability is an essential
tool in the handling of variation. This chapter is devoted to a study of
variation and probability, beginning with a simple example, the
familiar balls in an urn. Before doing so, we need to look at the
rule of the extension of the conversation again because it plays a key
role in the analysis and provides another form of Bayes rule. In
equation (5.7) of §5.6, the rule was presented as extending from
one event E to include another event F, with its complement Fc;
and in §8.1 it was mentioned that, just as the basic rules applied to any
number of events, not just two, so would the extension rule. It is the
precise form of this that needs to be discussed. Consider events
F1;F2; . . . ;Fn, which are exclusive (§5.2) in that at most one of
them can be true, and also exhaustive, in that one of them must be
true, or they exhaust the possibilities; they are said to form a partition
of the events. Clearly the original pair, F and Fc, form a partition.
Consider the events EF1;EF2; . . . ;EFn. They are exclusive but do not
exhaust the possibilities since Ec might be true. What they do exhaust
is E since they describe all the ways that Emight occur. By the addition
rule, Equation (8.2) of §8.1, for n events,

pðEÞ ¼ pðEF1Þ þ pðEF2Þ þ � � � þ pðEFnÞ: (9.1)

In words, if the events Fi form a partition, p(E) is equal to the sum of n
terms of which a typical one is p(EFi). By the product rule,
pðEFiÞ ¼ pðE jFiÞpðFiÞ, so the general form for the rule of the
extension of the conversation is as follows:
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If, on some knowledge base, events F1;F2; . . . ;Fn form a partition
and E is another event, p(E) is equal to the sum of n terms, of which a
typical one is pðE jFiÞpðFiÞ. It is this form that will be repeatedly used
in the rest of the book.

Bayes rule, applied separately to each member of the partition, and
omitting reference to the knowledge base, says

p Fi jEð Þ ¼ p E jFið Þp Fið Þ=p Eð Þ:

In words, your prior p Fið Þ is multiplied by your likelihood p E jFið Þ and
divided by p Eð Þ, your probability of obtaining evidenceE. This last term
is difficult to think about but can be obtained from the prior and
likelihood by use of the extension of the conversation from E to include
the partition (9.1). It is this form of Bayes rule that is commonly used in
statistics (Chapter 14). There is an equivalent way of approaching this
form. For eachFi, p Fi jEð Þ is the product of the prior and the likelihood,
divided by the same term, pðEÞ for each i. But we know the p Fi jEð Þ
must add to one since the Fi form a partition. So if all the products are
added, the result may be divided by some value to make the total one.
Clearly this total is just that given by the extension of the conversation
(9.1). Bayes rule can therefore be expressed by saying

p Fi jEð Þ / p E jFið Þp Fið Þ;

where the symbol / means “is proportional to”. This form is
especially attractive because it clearly demonstrates that your posterior
probabilities depend on your likelihood and your prior, and on nothing
else.

9.2 BINOMIAL DISTRIBUTION

Take our usual urn containing a vast number of balls, identical except
that a known proportion u are colored red, the rest white, and suppose
you take one ball at random, then your probability that it will be red is
u. Generally, if you take n balls from the urn at random, you will have a
Bernoulli series (§7.4) in which the withdrawals are exchangeable and
your probability for any outcome of the n drawings depends, not on the
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order of red and white balls, but only on the number, say r, of red balls
out of the n. Even with u and n fixed, the number r of red balls will be
variable and uncertain. We now calculate your probability of r red
balls, given n and u, which, in the standard notation, is pðr j n; uÞ, the
presence of u after the vertical line reminding us that u is supposed
known, as well as n. There is also an unstated knowledge base, which
incorporates things like the withdrawals being random. Take an
example of drawing 6 balls from the urn and determine your proba-
bility of just one red, and therefore 5 white balls; n¼ 6, r¼ 1. One way
this can happen is to have the red ball appear first, followed by the
5 white, with probability uð1� uÞ5 by the multiplication rule for
the random (and therefore independent) drawings, as in §7.4. There
are 6 suchpossibilities, for the single red canappear in any of 6 positions,
and each has the same probability, so pðr ¼ 1 j n ¼ 6; uÞ ¼ 6uð1� uÞ5
by the addition rule. This method works for any values of r and n. The
product urð1� uÞn�r is obvious, but the number of ways of obtaining
r red in n drawings is a little tricky, so will be omitted.

Here is a numerical example with u ¼ 1=3 and n¼ 6. Your
probabilities are given to two significant figures; that is, two digits
after the 0’s, if any, that follow the decimal point (§2.9).

Number of red balls 0 1 2 3 4 5 6

Probability 0.088 0.26 0.33 0.22 0.082 0.016 0.0014

Thus your probability of 1 red ball, when 6 are drawn from an urn
with one third of the balls red, is 0.26, as the reader can verify by
putting u ¼ 1=3 in the expression 6uð1� uÞ5. The table shows that 1, 2,
or 3 red balls are each quite probable but 0, 4, or 5 are somewhat
unusual and having every ball red, r¼ 6, is most surprising. The
numbers here reflect your uncertainty when 6 balls are removed
randomly from the urn, but if you were repeatedly to remove 6 and
recognize the connection between these ideas and frequency expressed
in the law of large numbers (§7.6), then, in the long run, you would
have exactly 2 red out of the 6 in 33%, or one third, of the time. Here
we have variation, one drawing of 6 balls typically differing from the
result of another 6, so that the variation and the uncertainty are
intimately related.
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A useful way of looking at this situation, which generalizes to
many others, is to note that there are 7 exclusive events in the table,
which exhaust the possibilities and so form a partition. They may be
written E0, E1 up to E6, where Er corresponds to r red balls; thus, from
the table pðE3 j n ¼ 6; u ¼ 1=3Þ ¼ 0:22. The 7 probabilities add to 1
(apart from rounding errors) and we say the total probability of 1 is
distributed over the 7 values that form the partition. Generally, if there
are a finite number of events, which are exclusive (only one can be
true) and exhaustive (one must be true), then the corresponding set of
probabilities is said to form a probability distribution. Since this is a
book about probability, we shall typically drop the adjective and refer
to a distribution. The distribution tabulated above is an example of a
binomial distribution that applies whenever there is a fixed number,
here 6, of observations, each of which can result in an event being true
or false (red or white). The chance (§7.8) of truth is the same for each
observation (here u¼ 1/3) and the events are independent. The bino-
mial distribution relates to a Bernoulli series (§7.4) where the
exchangeable property reduces consideration to the number of true
events, not their order. The number of observations, n, is termed the
index of the binomial and the chance of truth (red), u, is called the
parameter. The distribution tabulated above has index 6 and parameter
1/3. The variation in the number of red balls, when a fixed number of
balls is withdrawn, is described by the binomial distribution.

The number r of red balls can take any value from 0 to n inclusive,
with probabilities p(r) for you, omitting the conditions from the
notation. The idea generalizes to every quantity that can take a finite
number of possible values with probabilities assigned by you to each
value. Such a quantity is called an uncertain quantity. Thus the number
of red balls is an uncertain quantity and the probabilities form your
distribution of that quantity. (The term random variable often replaces
uncertain quantity.) An event can be considered as an uncertain
quantity taking two values, 1, true and 0, false, so that an uncertain
quantity is a generalization of an uncertain event and its distribution
generalizes the probability of an event. Most of the examples consid-
ered in Chapter 1 concern uncertain quantities or can easily be
extended to do so. Thus the uncertain event of “rain tomorrow” can
be extended to “millimeters of rain tomorrow” (Example 1 of §1.2) or
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the event of “ace” to the number on the card (Example 7). The amount
of inflation (Example 10) or the proportion of HIV (Example 11) are
examples of quantities which are uncertain.

The binomial distribution is relevant to many practical situations. If
you observe a number n of people taken at random, called a sample of
people, then r, the number of women, will have a binomial distribution
with index n and parameter u¼ 1=2, or slightly less than

1=2 if the sample
is of babies, or more than 1=2 if it is of persons more than 80 years of
age. If, for the same people, the gene with alleles A or a, with A
dominant, were investigated, then the number r of double recessives
aa, often thosewith a defect, will be binomial with parameter u2, where
u is the proportion of alleles a in the population from which the sample
was taken. If n observations are made of the fall of a ball in roulette,
played in a reputable casino, then r, the number of balls falling in slot
22, is binomial with index n and parameter u¼ 1=37 if there are 37
slots. Notice that in these examples three requirements for the binomial
are satisfied: the number n is fixed, the individual occurrences are
random, and you have the same, known probability u of the outcome
under consideration (sex, defective or 22) for each occurrence. A more
common situation is where these conditions obtain except that u is
unknown to you and is a chance, about which you have a probability
distribution. As an example, consider the case at the beginning of this
paragraph when sex is replaced by voting intent, with only two
candidates and the “don’t knows” omitted. Then u is unknown and
you can apply Bayes rule to modify your opinion of it after hearing the
intentions of the voters. Notice that the samples must be taken at
random to preserve exchangeability. It would not be correct to ask all
members of a household since there exists a tendency for members to
be in agreement within households.

Although we shall not explore the point in any detail, it is worth
noting why n is fixed in this, and other, examples. Suppose the balls
were taken from the urn until you had two red balls in succession, and
then stopped. There would be a distribution for the total number of red
balls withdrawn but it would be different from the binomial obtained
when the number of withdrawn balls was fixed. For example, your
probability of finishing with one red ball is zero, compared with 0.26 in
our binomial example with n¼ 6. It is not unknown for people to
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sample until they reach a situation that is favorable to them, two
consecutive reds in our example. It is then incorrect to treat the sample
as binomial. On the other hand, a useful practice in medical trials is to
stop when the evidence is thought enough to establish the merit, or
inadequacy, of the drug under test. This is permissible provided the
correct probability is used. The point is treated in more detail under the
term “optional stopping” in §14.3.

9.3 EXPECTATION

A distribution for an uncertain quantity is a rather complicated affair,
even in the binomial case with n¼ 6 it consists of 7 numbers, adding to
one, and it would be desirable to encapsulate the main features of a
distribution in far fewer numbers. In doing this, some knowledge of the
distribution will be lost, but there will be an increase in understanding.
In this section the most important feature of an uncertain quantity and
your distribution for it will be developed. Again we resort to our
familiar urn, but it will be used somewhat differently from the last
section and to emphasize the difference, and hopefully prevent confu-
sion, a slight change in notation will be employed.

Consider an urn containing a known number m of balls, identical
except for the fact that s of them are scarlet, the rest white. If s is
unknown to you, it is an uncertain quantity and you will have a
distribution for it, p(s), being your probability that the number of
scarlet balls is s. Suppose that one ball is to be drawn at random from
the urn and denote by S the event that it is scarlet. What is your
probability for this when s is uncertain? (There is an unstated knowl-
edge base that includes m, the total number of balls in the urn.) If the
number of scarlet balls in the urn were known to you, the answer would
be simple from the basic definition of probability in §3.3,
pðS j sÞ ¼ s=m. This suggests that it might be worthwhile extending
the conversation from S to include s. Using the general form at the end
of §9.1 to calculate p(S) it is necessary to evaluate the products
pðS j sÞpðsÞ for each value of s and add over all values of s from 0
tom. Since pðS j sÞ ¼ s=m, the products to be added reduce to sp(s) and
their sum has to be divided by m. The sum of the products sp(s) is
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called your expectation of the uncertain quantity s and will be denoted
by E and not confused with the use of E for an event, or for evidence.
Often E is called the expected value of s. Generally, for any distribution
of an unknown quantity, the result of taking the probability of any
value of the quantity, multiplying it by the value, and adding all the
products, is called the expectation of the uncertain quantity. Since
every distribution can be conceptually associated with the random
withdrawal of a ball from an urn, in the manner employed here, the
idea is of wide applicability. Part of its importance lies in the fact that if
the quantity, s, is known, your probability for the scarlet ball is s=m,
whereas when unknown, it is E=m, replacing the unknown value s by
the known expectation E. As far as the random withdrawal of one ball
is concerned, the uncertain state of the urn can be replaced by an urn
with a known number E of scarlet balls. When we discuss decision
analysis in §10.4, we encounter another case where uncertainty can be
replaced by expectation without any loss of power. Of course, some
features of a distribution are lost if only expectation is employed, but it
is far and away the most important feature of a distribution, or of the
quantity to which it relates. In many cases, as with the urn, it provides
all the information you need. So important is it that other names are in
use. It is sometimes called your prevision of the uncertain quantity,
your vision of it before determining its true value. When referring to a
distribution, without having any particular quantity in mind, it is often
called the mean of the distribution. The same term is frequently used
for the quantity, thus we talk about the mean income or the mean size
of family.

The connection between probability and expectation is even closer
than the development just given suggests. We saw in §9.2 that one
could associate any event Awith a quantity taking the value zero if A is
false, and one if true, these being the appropriate limits of your
probability for A. What is your expectation of this quantity? Recall
we have to take each value of the quantity, multiply by its probability,
and add the resulting products. Here

E ¼ 0� ½1� pðAÞ� þ 1� pðAÞ ¼ pðAÞ;
so that your expectation and your probability are identical. Some
writers have based their whole treatment of uncertainty on expectation,
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rather than on probability. This is entirely satisfactory, but we have
chosen not to adopt that approach for three reasons:

1. It can happen that the quantity can take so many values that the
sum of all the products becomes unwieldy. This is essentially a
mathematical reason and, in that language, the sum diverges.

2. We have seen that it is often hard to assess probability (§§3.5 and
5.6). It is even harder to assess expectation since a quantity can
assume so many values, whereas probability is just expectation
for a quantity that can only assume two, 0 and 1.

3. Expectation can be more easily misunderstood than probability.
Suppose a standard die is sensibly rolled, then you will ordinarily
associate probability 1=6 with each of the possible values 1, 2, 3,
4, 5, 6 for the number of spots that might appear uppermost when
the die comes to rest, and hence have expectation (1þ 2þ 3þ 4
þ 5þ 6)/6¼ 31=2. Yet in the ordinary use of the English lan-
guage, you will never “expect” to see 31=2 spots because it is
impossible. However, if you were to receive $1 for every spot you
would reasonably expect to receive $31=2. I once experienced
communication problems with an official because I had said 21=2
defectives were expected in a batch of 100 components. He was
never convinced and went around his department joking about
the statistician who was half defective.

There is an alternative interpretation of expectation but this is left
until another distribution has been discussed in §9.4. Notice that the
concept of expectation, as presented here, is not just a convenient
quantity but arises naturally from a probability rule, namely the
extension of the conversation. Also its derivation has nothing to do
with frequency, the ball being withdrawn only once. Compare the
comments in the final paragraph of §3.4.

9.4 POISSON DISTRIBUTION

Suppose you are a telephone operator who handles calls for an emer-
gency service and are beginning a tour of duty of 2 hours. You will be
uncertain about the number of calls youwill have to deal with during the
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tour and will therefore have a probability distribution for that number as
an uncertain quantity. Table 9.1 gives a possible distribution.

For example, your probability of just 4 calls is 0.20, which can also
be interpreted by considerations of frequency in §7.6 as meaning that,
over a long sequence of tours, when conditions remain stable, you can
anticipate 4 calls on about 20% of tours. Notice that more than 10 calls
(>10) is thought to be a very rare event and all values above 10 have
been lumped together. Again the probabilities add to 1 and they can be
partially added, for example, your probability of eight or more calls, a
busy tour, is 0.030þ 0.013þ 0.0053þ 0.0028¼ 0.051, or roughly 1 in
20 tours are anticipated to be busy.

The tabulated distribution has been derived from two assumptions:

1. For any small period of time, like 5minutes the chance of a call is
the same, irrespective of which 5minutes in the 2 hours is being
considered.

2. This chance is independent of all experiences of calls before the
5minute period.

The first assumption says roughly that the demands for the
emergency service are constant, and the second that what has
happened so far in your tour does not affect the future. Notice
that the assumptions are similar to those for the binomial distribution,
the constancy of u and the random withdrawals. In practice, neither of
the assumptions may be exactly true, but experience has shown that
small departures do not seriously affect the conclusions and that
larger departures can be handled by building on cases where they do,
rather as exchangeable series can be built on the Bernoulli form
(§7.5). As a result, the ideas presented here are basic to many
processes occurring naturally.

A distribution resulting from the assumptions is called a Poisson
distribution, after a French mathematician of that name, and depends
on only one value, the chance mentioned in the first assumption, called

TABLE 9.1 Poisson distribution with expectation 4

Number of
calls

0 1 2 3 4 5 6 7 8 9 10 >10

Probability 0.018 0.073 0.15 0.20 0.20 0.16 0.10 0.060 0.030 0.013 0.0053 0.0028
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the parameter of the Poisson. The tabulation above is for the case
where the chance is about 1=6. Notice that, in the description of the
parameter, the unit, here 5minutes, is vital, for 1minute the parameter
would be about 1=30, a fifth of the previous value.

There is an alternative parametric description of the Poisson
distribution that is often more convenient and uses the expectation,
or mean, of the distribution. For that just tabulated, the expectation is

0� 0:018þ 1� 0:073þ 2� 0:15þ � � � þ 10� 0:0053þ 11�0:0028;

where the dots signify that the values from 3 to 9 calls have to be included
and where values in excess of 10 have been replaced by 11. A simple
exercise on a calculator shows that the sum is 4.03. Because the
probabilities have been given only to two significant figures and that
all values in excess of 10havebeenput together, this result is not exact and
the correct value is exactly 4. The tabulation above is for a mean of four
calls in a 2 hour period. It is intuitively obvious and can be rigorously
proved that if you expect 4 calls in 2 hours, you expect 1 in 1=2 an hour and
1=6 in the 5minute period above. Recall comment 3 in §9.3.

The Poisson distribution, or a close approximation to it, occurs
very frequently in practice. It is a good approximation whenever
there is a very small chance of an event occurring, but lots of
opportunities when it might occur, and where one happening does
not interfere with another. There are lots of 1minute periods when a
call might be received but a very small chance of one in any such
period. In the example, 120 such periods each with chance about
4=120¼ 1=30. There is little chance of your falling ill but there are
lots of people who could fall ill, so illnesses in a population often
satisfy a Poisson distribution. An example of this appears in §9.10.
Historically, an early instance was deaths from the kick of a horse in
the Prussian cavalry, where there were lots of soldiers interacting
with horses, providing many opportunities for, but few casualties
from, horse kicks. Indeed, the Poisson distribution is so ubiquitous
that any departure from it gives rise to suspicions that something is
amiss. Childhood deaths from leukemia near nuclear power plants
provides an example, clusters of cases suggesting departure from the
Poisson assumptions.
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There is another way of thinking about the Poisson distribution that
sheds further light on what is happening. To see this, suppose you are
the operator on your shift of 2 hours, expecting 4 calls, and suppose,
instead of fixing the duration and seeing how many calls arise, you
think about the next call and wait to see how much time elapses before
it occurs. You might query whether there is time for a cup of coffee
before the phone rings. The second of the two assumptions above
means that at any time, say 3.45, what has happened before then does
not affect your uncertainty about the future, so forget the past and at
3.45 wait until the next call comes. Will you have to wait 1minute,
2minutes, or more? The number of minutes is, for you, an uncertain
quantity and you will have a distribution for it. What can be said about
this distribution? Common sense suggests that if you expect to receive
4 calls in 2 hours, you expect to wait half an hour for that one call. Here
is a case where common sense is correct and generally if you expect C
calls in an hour, you expect to wait 1=C hours for the first one. But now
look at the situation in a different way and askwhat is themost probable
time, to the nearestminute, that youwill need towait for that call?Will it
be 1minute, 2minutes, or perhaps 30minutes, the expected time? The
answer surprisesmost people for it is 1minute.As the time increases, the
probability of your having to wait until then decreases, so that, in
particular, the expected time has small probability. Here is an example
where, for most people, common sense fails and our basic idea of
coherence provides a different answer, an answer that stands up to
rigorous scrutiny. The incorrect, common sense has led to the belief that
the calls should be spread out somewhat uniformly, rather than occurring
in clusters. In fact, even in a Poisson distribution, clusters often arise
simply because small intervals between calls are more probable than
large ones. This clustering has led to a popular tradition that events occur
in threes; a tradition that comes about because of your large probabilities
for small intervals. Clusters are natural and it does not require a special
explanation to appreciate them. This is why it is hard to separate real
clusters from the ones that occur solely from the Poisson distribution, as
with leukemia mentioned in the last paragraph.

There is another interpretation for expectation that deserves notice.
In your role as an operator, coming on duty at 16.00, you can expect
4 calls before you have a break at 18.00. Instead of just one specific tour
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of duty, suppose you are employed over a long period and accumulate
1000 tours. You expect 4000 calls in all and, in an extension of the lawof
large numbers in §7.6, you will actually experience something very
close to 4000. In otherwords, the expectationof 4 is a long-term average.
This interpretation is not as useful as the earlier one, referring to a
specific tour, because it requires not just stability over 2, but over
2000 hours. It also confuses probability as belief with frequency, a
confusion, which, as we saw in §7.2, is often misleading.

9.5 SPREAD

Your expectation of an uncertain quantity says something about what
you anticipate or, in the frequency interpretation, tells you what might
happen on the average. But there is another important feature of an
uncertain quantity and that is its variation, referring to the departure, or
spread, of individual results from your expectation. A simple way of
appreciating the variation is to suppose the uncertain quantity is
observed twice; for example, take the 6 balls from the urn as in
§9.2 and observe the number of red balls; then repeat with a further 6. It
will be rare that you obtain the same number of red balls on both
occasions, the difference providing a measure of the variation, or
spread. The operator experiencing two tours of duty will rarely have
the same number of calls in the first as in the second. Exactly how the
difference is turned into a measure of spread, or how it is employed
when there are several observations, not just two, is an issue that is too
technical for us to pursue here. The measure of spread ordinarily used
is called the standard deviation. It is discussed further in §9.9. Instead
we concentrate on a result that requires no technical skill beyond the
appreciation of a square root. Recall (§2.9) that the square root of a
number m is that number, written

p
m or m1=2, which, when multiplied

by itself,
p
m�p

m is equal to m. Thus the square root of 9 is 3 since
3� 3¼ 9. Of course, typical square roots are not integers or even
simple fractions, a result that caused much distress in classical Greece,
so that

p
2, for example, is about 1.41.

Let us return to making several observations on an uncertain
quantity, in the last paragraph we took just two. Throughout the
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treatment that follows it is supposed that the observations obey two
conditions:

1. Your distribution of the uncertain quantity remains fixed.
2. You regard the observations as independent (on a given knowl-

edge base).

These are similar to the conditions that, in a different context, lead to
the Poisson distribution. In the case of 6 balls drawn from the urn,
condition (1) means the constitution of the urn remains fixed and your
selection continues to be random. (2) demands that you do not allow the
result of the first draw to affect the second. In the Poisson case with the
emergency service, the second tour of duty is not influenced by the first,
asmight happenwere there to be a serious fire extending over both tours.

Under these conditions, let x and y be two observations of the
uncertain quantity. Then, as already suggested, the difference x� y tells
us something about the spread, whereas xþ y reflects the total behavior.
Clearly the latter hasmore spread than x or y. Thus,with the urn, the total
number of red balls from two sets of 6 canvary between 0 and 12, rather
than 0 to 6 for a single observation. The key question is how much does
the spread increase in passing from x to xþ y? The answer is that for any
reasonable measure, including the one hinted at above, but not devel-
oped for technical reasons, the spread is multiplied by

p
2. This is a

special case of the square-root rule,which says that ifm observations are
made, under conditions (1) and (2), then the spread of the total of those
observations is

p
m times that of each individual observation. The

example had m¼ 2. The important feature here is that the variability
of the total ofm observations is notm times that of any one, but only

p
m

times.
p
m is much smaller than m; for example,

p
25 is only 5.

The square-root rule is often presented in a slightly different way
which agrees more with intuition. When we study science in §11.11,
we will see that a basic tenet of the scientific method is the ability to
repeat experiments. If the experiments obey the conditions above as
they often do, then scientists will sensibly take the average of the
observations in each of the m experiments, in preference to a single
one. The average is the total divided by m, and since the spread of the
total is

p
m times that of a single observation, the spread of the average
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must be
p
m, divided by m, or that of one observation divided by

p
m.

(
p
m=m ¼ 1=

p
m since m ¼ p

m�p
m). Thus the square-root rule

says that the variation of the average is that of one observation
divided by

p
m, so the scientists’ use of repetition is effective in

reducing variation, dividing it by
p
m. In this form, the square-root

rule was, for many years, regarded by some experimental scientists as
almost the only thing they needed to know about uncertainty.
Although this is no longer true, it remains central to an understanding
of variability. If 16 observations of the same quantity are made, the
variability, or spread of the average is only one quarter that of a single
observation.

The occurrence of the square root explains a phenomenon that we all
experience when repetitions of an activity can be less interesting than
doing it for the first time and ultimately can sometimes become of no
interest at all. To divide the variation by 2, we need 4 repetitions; to divide
it by 2 again, dividing by 4 in all, we need 16 repetitions so that the second
halving in variation requires 12¼ 16� 4 repetitions rather than the 4
required first time. It expresses a law of diminishing returns, observation
16 havingmuch less effect than observation 2. The square-root rule is not
universal for, as we have emphasized, it requires independent and
identical repetitions; but it does occur frequently and is very useful.

Although the spread of the average decreases as the number of
repetitions increases, according to the rule, the expectation of the
average remains the expectation of any single observation, as is
intuitively obvious. Let us see how these ideas work, first for the
binomial distribution (§9.2) where u is the parameter and n the index,
as when randomly removing n balls from an urn in which the
proportion red is u. It was seen in §9.3 that, for a single ball, the pro-
bability of being red, u, and the expectation were the same. The
expectation of the total number of red balls is therefore nu. Calculation
shows that the spread of the number of red balls from n drawings is the
square root of nuð1� uÞ, in accordance with the square-root rule.
(Readers who want to know where the uð1� uÞ comes from will find
an explanation at the end of this section.) In particular, there is no
spread when u¼ 1 or u¼ 0, with all balls of the same color, red or white
respectively, for the two extreme cases. The Poisson distribution is
even simpler, for if the expected number in a fixed period of say 1 hour
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is E, then over m hours the expected number is mE. Calculation shows
that the spread for the 1 hour is

p
E, so that over m hours, is

p
(mE),

again in accord with the square-root rule. In §9.10 the use of these
results will be discussed. In the meantime here is an example of how
variation can be handled with profit, but before presenting it, we
promised to show the origin of uð1� uÞ above. The demonstration can
be omitted without disturbing subsequent understanding.

Your probability of drawing a red ball from the urn is u, and it was
shown in §9.3 that if a quantity is defined as 1 if the ball is red, and 0 if
white, your expectation of the quantity is also u. More abstract
language concerns a quantity, which is 1 if an event is true and 0 if
false, when your probability and your expectation are the same. How
far does the quantity depart, or spread, from its expectation? Clearly
1� u if the event is true and 0� u if false. Interest centers on the
amount of the departure, not its sign, so we square the departures,
getting ð1� uÞ2 with probability u and u2 with probability ð1� uÞ. The
expected spread is, on multiplying the values by your probabilities and
adding, ð1� uÞ2u þ u2ð1� uÞ. The first term is uð1� uÞ times ð1� uÞ;
the second is uð1� uÞ times u, so that on addition the total multiple of
uð1� uÞ is 1� u þ u ¼ 1, leaving the final expectation as uð1� uÞ.
Having used squares, the units will be wrong, so take the square root,
obtaining ½uð1� uÞ�1=2 as promised. Notice that the role of the square
here has nothing to do with the square-root rule; it is introduced
because we are interested in the magnitude of the departure from
expectation, and not in its sign.

9.6 VARIABILITY AS AN EXPERIMENTAL TOOL

Although in many ways variability, and the uncertainty it produces, is a
nuisance, it can be exploited to provide valuable insights into matters
of importance. Here is a very simple example of a procedure that is
widely used in scientific experiments. An agricultural field station
wishes to compare the yields of two varieties of wheat and, to this end,
sows one variety in one half of a field and the second in the other half.
As far as possible the two halves are treated identically, applying the
same fertilizers and the same herbicides at the same times, ensuring
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that the two conditions of identical and independent repetitions are
satisfied, except for the varietal difference. Suppose the yield is
132 tonnes for one variety and 154 for the other, then is the second
variety better, or is the difference of 22 tonnes attributable to natural
variation that is present in the growing of wheat? One way to
investigate this is to divide each half of the field devoted to a single
variety into two equal parts, each a quarter of the total, and to harvest
the parts separately. Suppose the results are 64 and 68 for the first
variety, totaling 132, and 74 and 80 for the second. The two differ-
ences, of 4 and 6, give an indication of the natural variation since the
same varieties are being compared. The original difference of 22
between varieties is much greater than these, suggesting there is a real
difference between the varieties, not attributable to natural variation.
But stay, there is a slip there, this last difference of 22 is based on half
fields, the others on quarter fields, so a correction is needed. Each yield
based on half the field is the sum of two yields from the two quarters
that make up the half, and therefore, by the square-root rule, has

p
2

times the spread of a yield based on a quarter. Therefore the varietal
difference of 22, based on halves, has

p
2 times the spread associated

with the natural differences, of 4 and 6, within the varieties. Dividing
22 by

p
2 gives about 15, a figurewhich is comparablewith the 4 and 6.

Being much larger than either of these, the suggestion is that there
probably is a real difference between the two varieties because of the
inflation from 4 and 6 to 15.

The discussion in the last paragraph is a very simple example of a
technique called analysis of variance. (Variance is just a special
measure of variation; it is the square of the standard deviation
mentioned in §9.5.) Here the variation present in a body of data,
the yields in the four quarters, is split up, or analyzed, into portions that
can each be attributed to different facets, natural variation and varia-
tion between varieties, that may be compared with one another. A
century ago it used to be common, when examining how different
factors affected a quantity, to vary one factor at a time. Modern work
has shown that this is inefficient and that it is better to vary all the
factors simultaneously in a systematic pattern, and then split up the
variability in such a way that the effects of the factors may be separated
into meaningful parts. Another advantage of this method over that in

9.6 VARIABILITY AS AN EXPERIMENTAL TOOL 205



which the factors are viewed separately is that the scientists can see
how factors interact, one with another. For example, it is possible that
neither factor on its own has any influence but both together can be
beneficial. In §8.9 mention was made of a claim that eating a banana
caused mucus. To test this one could vary the factor, banana, and
measure the variation in mucus, yet, remembering Simpson in §8.2, it
would be sensible to think of other factors that might be relevant, such
as time of day, other foods consumed besides banana, and variation
between individuals, and then devise an experiment that explored all
factors and analyzed the variation. Determining the connections
between bananas and mucus is not easy, and the same is true of
many claims of an association that are made. As we have said before, a
useful riposte to a claim is “how do you know?” Both Simpson’s
paradox and variation can make it hard to acquire sound knowledge.

9.7 PROBABILITY AND CHANCE

It was seen in Chapter 7 that if there is a series that you judge
exchangeable, the individual terms of which assume only two values,
1 or 0, true or false, success or failure, red or white, then you can regard
the series as a Bernoulli series, with chance u of red, about which you
have a probability distribution. This result of de Finetti is now applied
more generally. (Readersmay like to refer to §7.8 in order to clarify their
understanding of the distinction between the chance, and your probabil-
ity, of an event). Take an uncertain quantity, which can assume any
integer value, not just 1 or 0, and suppose you repeatedly observe it in a
series that you consider exchangeable. An example is provided by a
scientist who repeats the same experiment. Now concentrate on a
particular value of the quantity, say 5, and observe whether, for each
observation you get 5 or not; counting the former as a “success” and the
latter as a “failure”. Imagine playing roulette and always betting on 5.
You now have a series of successes and failures, which you judge
exchangeable, because the complete observations of the quantity were.
De Finetti’s result may be applied to demonstrate that there is a chance
such that your series of successes or failures is Bernoulli with that chance.
Denote this chance by u5 including the subscript 5 to remind us that
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success is obtaining 5. There is nothing special about 5, so that you have a
whole slew of u’s, one for each value of the quantity. Recalling from §7.8
that the chances correspond to limiting frequencies, they will all be
positive and add to 1. In other words, they form a chance distribution.

It has therefore been established that if you have an exchangeable
series, not simply of 0’s and 1’s, but of a quantity capable of assuming
many integer values, then there is a chance distribution such that
knowing it, you can regard the observations in the series as indepen-
dent with your probabilities given by the chances. For example, your
probability that the first observation is 2 and the second is 5 is u2u5 by
the product rule. This supposes that the chances are known. The
analysis when the chances are uncertain for you is more complicated.
Recall from §7.8 that chances are not expressions of belief but rather
you have beliefs about them. So here you will have beliefs about u2 and
u5. To analyze your beliefs about the observations, it will be necessary
to extend the conversation from the observations to include the
chances, in generalization of the method used in §7.8 when the
observations were only 0 or 1. The details are not pursued here.

The situation described in the last paragraph has found widespread
use but, as presented there, it has a difficulty that there are lots of
chances to think about, one for each value the quantity could possibly
take. It is hard to contemplate so many and make uncertainty state-
ments about them. It is often adequate to suppose all the chances are
known functions of a few other values. We illustrate this with the
Poisson distribution. Suppose that the operator experiences several
tours of duty that are thought of as exchangeable. Then there will be a
chance distribution of the numbers of calls per tour. But our operator in
§9.4 made two additional assumptions, numbered (1) and (2), about
independence and constancy within a tour. Adding these assumptions
to that of exchangeability, the chances become severely constrained so
that they are all functions of one value, the expectation E of the number
of calls in any tour. It is unfortunate that the description, let alone the
derivation, of these functions lies outside the modest mathematical
level of this book. E is called the parameter of the Poisson distribution.
Recall the tabulation in §9.4 for the Poisson distribution when E¼ 4.
Generally with an exchangeable series, the usual practice is to suppose
the chances are all functions of a small number of parameters. The
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Poisson has only one, E. The binomial has two, the index and what has
been denoted by u, though usually the index is known, so that u is the
sole parameter. In the example of §9.2 with n¼ 6, u1, the chance of 1
success, is 6uð1� uÞ5 and, if u is known, is your probability of 1
success. Many chance distributions depend on two parameters, one
corresponding to the expectation, the other to the spread. The Poisson
is exceptional in that the spread

p
E is itself a function of the

expectation E.
To recapitulate, a commonly used procedure is to have a series of

observations that you judge exchangeable, such as repetitions of a
scientific experiment, or a sample of households, with which, by de
Finetti’s result, you associate a chance distribution. By adding extra
assumptions, as with the Poisson, or just for convenience or simplicity,
you suppose these chances all depend on a small number, often two, of
parameters. The parameters are uncertain for you and accordingly you
have a probability distribution for them. Your complete probability
specification consists of this parametric distribution and the chance
distribution. With this convenient and popular model, you can update
your opinion of the parameters as members of the series are observed.
Thus with the Poisson parameter E, p(E) can be updated by Bayes rule,
on experiencing r calls in a tour, to give

pðE j rÞ ¼ pðr jEÞpðEÞ=pðrÞ;

where pðr jEÞ is the Poisson chance. Thus for E¼ 4, r¼ 7, it has the
value 0.060 from Table 9.1. Notice the difference between pðr jEÞ and
p(r). The latter is your probability for r calls when E is uncertain, and is
calculated by extending the conversation from r to include E, as in
§7.5. p(r) would be relevant when you were starting a tour with
uncertain expectation and wished to express your uncertainty about
the number of calls you might experience in the tour.

9.8 PICTORIAL REPRESENTATION

There are quantities that do not take only integer values. We met one in
§9.5 when considering the uncertainty about the time to the next phone
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call. At 3.45 this time can take any value, not just an integer. In
practice we measure it to the precision of a convenient unit, like a
minute, but in some situations more precision may be needed and
recording to the nearest second might be used. Such a quantity is said
to be continuous, whereas the integer-valued ones are discrete. To see
how the associated uncertainties can be handled, it is convenient to
use a pictorial representation. Figure 9.1 describes the Poisson
distribution with expectation 4 in Table 9.1. The horizontal axis
refers to the number of calls and upon this rectangles are erected,
each with base length of 1 and each centered on a possible number of
calls, 0, 1, 2, and so on. The height of the rectangle is the probability,
according to the Poisson with expectation 4, of the number of calls
included in the base. Thus that centered on r¼ 2 has height 0.15. The
vertical axis thus refers to probability. The important feature of this
manner of representing any distribution of an integer-valued,
uncertain quantity is that the area of the rectangles provides proba-
bilities, since the base of the rectangle is 1. The key element in the
interpretation of such figures is area.

This style of representation is now extended to continuous,
uncertain quantities, beginning with the time to wait for a call as
experienced by the operator. Table 9.2 provides your probabilities for
the 12, 10minute intervals within the 2 hours of the tour. Thus your
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FIGURE 9.1 Poisson distribution with E¼ 4 from Table 9.1.
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probability that you will have to wait between 40 and 50minutes for
the first call is 0.074. In addition, your probability of having to wait
more than 120minutes is 0.018. This event corresponds to having no
calls in the tour, agreeing with the corresponding entry in Table 9.1.
Since the tour ends at 2 hours, this value will be omitted from future
calculations. Figure 9.2 gives a pictorial representation along the lines
of Figure 9.1. Thus on the first interval from 0 to 10minutes is erected a
rectangle of height 0.0284, so that its area, in terms of minutes, is
0.284, your probability of waiting between 0 and 10minutes for the
first call. Remember that the important feature here is the area of the
rectangle, not its height. (The reason why the vertical axis is labeled
“density” is explained later.) Notice confirmation of the surprising fact
pointed out in §9.4 that the areas, and therefore the probabilities,
diminish as time increases. Thus there is a chance of more than a
quarter that the wait will be less than 10minutes, despite the fact that
only 4 calls are expected in 120minutes.

TABLE 9.2 Probabilities of the time to wait for the first call, divided into
10minute intervals with the upper limit of each interval given E¼ 4 for a tour
of 120minutes

Time 10 20 30 40 50 60 70 80 90 100 110 120

p 0.284 0.203 0.146 0.104 0.074 0.055 0.038 0.028 0.020 0.014 0.010 0.007

(in addition there is a probability of 0.018 of no calls in the tour.)
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FIGURE 9.2 Pictorial representation of Table 9.2.
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Figure 9.3 repeats Figure 9.2 with, superimposed upon it, the same
rectangular representation when intervals of 5, rather than 10, minutes
are used. Thus between 0 and 5 the rectangle has height 0.0307 and
therefore area 0.154, your probability of getting a call almost before you
have time to settle in. Between 5 and 10, the height is 0.0260, while the
area and probability is 0.130. The two probabilities add to give 0.284,
agreeing with Figure 9.2. Thus the two thinner rectangles, base 5, have
total area to match that of the thicker rectangle, base 10, and the three
heights are all about the same, around 0.03. Similar remarks apply to the
other pairs. Now imagine these procedures for 5minute and 10minute
intervals repeated for intervals of 1minute, then 1 second, continually
getting smaller. The rectangles will get thinner but their heights will
remain about the same, so that if we concentrate on the tops of them they
will eventually be indistinguishable from a smooth curve. This curve is
also shown in Figure 9.3. It starts at height 0.033, or exactly 4=120,
corresponding to an expectation of 4 in 120minutes, and descends
steadily. Although it has only been shown up to the end of the tour, it
continues beyond, as would be needed if the tour were longer.

It is this curve that is important. Its basic property is that the area
under the curve between any twovalues, say between 40 and50minutes,
is your probability of the quantity lying between those values, ofwaiting
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FIGURE 9.3 Pictorial representation of Table 9.2 with further division into
5 minute intervals and also the continuous density.
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more than 40 but less than 50minutes. It is sometimes described as a
curve of probability but it is not probability, it is the area under it that
yields our uncertainty measure. Here it will be referred to as a proba-
bility density curve, or since this is a book about probability, simply as a
density. (The familiar density ismass per unit volume; ours is probability
per unit of base.) It is often referred to as a frequency curve because if
youwere to observe the quantity on a series of occasions that you judged
exchangeable, the areaswould agreewith the frequencieswithwhich the
quantity lay between the boundaries of the areas.

9.9 PROBABILITY DENSITIES

There are three matters that need attention before we leave densities.
The first is to remark that the ideas of this section easily extend to two
uncertain quantities in a manner similar to the extension to two events
in Chapter 4. Denote the two quantities by X and Yand divide both their
ranges into intervals of equal, small lengths as in Figure 9.2. Next
consider the event that both X lies in a selected interval and Y in
another. Then we can think of X and Y lying in a square, bordered by
the two intervals, and can erect a “tower” on that square of a height
such that the volume of that tower is your probability that both X and Y
lie within the square base of that tower. This is the same procedure used
to construct Figure 9.2 with length of an interval replaced by area of a
square, and area of the rectangle erected on the interval by volume of
the tower erected on the square base. In this manner the height of the
tower is the density p(x, y) where (x, y) is any point in the base area.
The pictorial representation is not normally useful because volumes
are hard to picture, but the concept of density is most important. The
procedure adopted here extends to three, or more, quantities.

The second point is that the results developed in this book for
probabilities extend to densities. The point will now be demonstrated
for Bayes rule but it applies generally. Consider Figure 9.3 and denote
by w the width of the interval into which the range of the uncertain
quantity, X, the waiting time, has been divided. The figure shows the
cases w¼ 10, solid lines, and w¼ 5, dotted. If p(x) is the density at
value x of X, then p(x)w is your probability that X lies in the interval
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that contains x. In other words, p(x)w is a probability and obeys all the
rules of probability. Recall Bayes rule (§6.3), omitting reference to the
knowledge base,

p F jEð Þ ¼ p E jFð Þp Fð Þ=p Eð Þ;

and let E be the event that X lies in the interval of width w that contains
x. Then p E jFð Þ ¼ p x jFð Þw and p Eð Þ ¼ p xð Þw where p x jFð Þ and
p xð Þ are densities. Notice there are two densities for X here, one given
F, the other on the knowledge base, and the range has been divided into
intervals of the same width w. Inserting these values into the formula,
the ws cancel and

p E jFð Þ=p Eð Þ ¼ p x jFð Þ=p xð Þ;

exactly the same but with densities in place of probabilities. If F
similarly corresponds to a continuous quantity Y, the interval there will
occur on both sides of the equation and therefore again cancel. Hence
Bayes rule reads

p y j xð Þ ¼ p x j yð Þp yð Þ=p xð Þ:

The third matter is a variant of the addition rule that says that if Fi form
a partition, then p(E) is equal to the sum of the terms p(EFi) over all
values of i (§9.1). For a density p(x, y) of two uncertain quantities, X
and Y, we may sum over all values of y (the technical term is integrate)
to obtain the density of X alone, p(x). This is often called the marginal
density. The concept is frequently used in statistics, Chapter 14.

9.10 THE NORMAL DISTRIBUTION

This representation through a density is most useful, both to the
mathematician and to lay persons, for describing their uncertainties.
Figure 9.4 presents a typical density for incomes in a population. We
have deliberately refrained from giving the units since these will differ
from country to country. Recall the essential aspect is the area under
the curve between any two values, so that keeping the distance between
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these values constant, it is the height of the density that matters.
Starting from the left, the density begins with low values, showing that
few people have very small incomes. It rapidly ascends to a point
where there are many people with these incomes. The further descent
from the maximum is much slower than the ascent, showing that
incomes somewhat above the commonvalue do occur fairly frequently.
The curve continues for a very long way, showing that a few people
receive very high incomes. This type of income density is common in
market economies and large spread thought undesirable.

There is one type of density that is very important, both because it
has many simple, useful properties that make manipulation with it
rather easy, and because it does arise, at least approximately, in
practice. Two examples are shown in Figure 9.5. Features common
to both are symmetry about the maximum, in a shape reminiscent of a

D
en

si
ty

FIGURE 9.5 Normal densities with identical means, different spreads.
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FIGURE 9.4 Density of income distribution.
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bell, and continuing at very small values for a long way. The maximum
occurs at the mean, or expectation, so that the two in Figure 9.5 have
the same mean. They differ in their spread. As the density flattens out,
the value at the maximum necessarily decreases to keep the total area
at one. These are examples of a normal density, the name being
somewhat unfortunate because a density that is not normal, like that for
income, is not abnormal. An alternative name is Gaussian. Each
normal density is completely described by two parameters, its expect-
ation or mean and its spread. The latter can be described nonmathe-
matically in terms of the following property expressed in terms of a
measure of spread called the standard deviation, abbreviated to s.d.
(This was the measure used with the binomial, ½nuð1� uÞ�1=2 and the
Poisson

p
E, and also mentioned in §9.5.)

For any normal density the probability of being within 1 s.d. of the
mean is about 2=3, within 2 s.d. 19=20 and within 3 s.d. 997=1000.

Thus two-thirds of the total area under the curve is contained
within 1 s.d. Values outside 2 s.d. only occur with frequency 1=20, or
5%. This latter figure has been unduly popular with statisticians.
Values outside 3 s.d. are extremely rare, rather less than 3 in a thousand
occur there. Figure 9.6 illustrates this property. One important property
of the normal is that if X is a quantity with a normal distribution, then
rescaling it by multiplying by a constant a and relocating it by adding a
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FIGURE 9.6 Normal density with zero mean and unit s.d.
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constant b, results in another normal quantity whose expectation is
similarly rescaled and relocated and whose s.d. is multiplied by a, the
relocation having no effect on the spread.

Here are some reasons for the popularity of the normal distribution.
The binomial (§9.2) with index n and parameter u is, for large n,
approximately normal, the approximation being best around u¼ 1=2

and worst near 0 and 1. Similarly the Poisson is approximately normal
for large expectation E. This latter result can be illustrated with the
Poisson in Table 9.1 with mean, or expectation, 4. The s.d. is

p
E¼ 2,

so the values 2, 3, 4, 5, and 6 are within 2 s.d.’s of the mean. The total
probability of these is

0:15þ 0:20þ 0:20þ 0:16þ 0:10 ¼ 0:81;

rather larger than the value 2=3, about 0.67, quoted above. But recall
we are approximating a discrete quantity, number of calls with the
Poisson, by a continuous one, the normal. Looking at Figure 9.1, it will
be seen that the rectangle at r¼ 2 for the Poisson has only half its area
within 1 s.d. of 4. Therefore the probability at r¼ 2 of 0.15 should be
halved, as should the probability of 0.10 at r¼ 6. This reduces the total
probability of 0.81 above by 0.07þ 0.05¼ 0.12, yielding 0.69 in
excellent agreement with the normal value of 0.67. The halving
here may appear suspect but it is genuinely sound.

Suppose you take (almost) any quantity, make a number n of
observations of it that you judge exchangeable and then form their
average, their total divided by n; then this average will have, to a good
approximation, a normal distribution. Your expectation of the normal
will be the same as that of the original quantity, the s.d. will be that of
the original quantity divided by

p
n in accordance with the square-root

rule in §9.5. Since so many quantities are, in effect, averages, the
normal distribution occurs reasonably often, though there is a tendency
to use it even where inappropriate because of its attractive properties.
Doubtless this tendency will diminish now that our computing power
has increased. The result stated in the first sentence can be applied to
both the binomial and Poisson distributions to justify the assertions in
the previous paragraph about their approximations by the normal. Thus
the binomial is based on a quantity taking values 0 and 1 whose values
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are totaled to give the binomial. The average is just this total divided by
n, so the normal distribution for the average will translate, by the result
above, into a normal distribution for the total. The s.d. of the 0–1
quantity, we saw in §9.5, was ½uð1� uÞ�1=2. That for the average will
be ½uð1� uÞ=n�1=2 by the square-root rule, and that for the total

½nuð1� uÞ�1=2.
A classic example of a normal distribution is provided by the

heights of men in a population. The same remark applies to women but
since, in respect of height, men and women are not exchangeable, the
expectations are different, women being slightly shorter. The s.d.’s are
about the same. A similar normal property holds for most measure-
ments of lengths on people, like those of leg lengths. This fact is of use
to clothing manufacturers since they know, for example, that only
about 1 in 20 of the population will lie outside 2 s.d.’s of the mean.

9.11 VARIATION AS A NATURAL PHENOMENON

In §1.3, it was mentioned that people do not like uncertainty and often
invent concepts that appear to explain it. One instance of this is the
introduction of gods who control variable phenomena like the weather,
but we do not need to be as drastic as this, for people are prepared to see
real cause and effect where nothing but natural variation is present.
Here is an example that occurred recently and provoked action to
remove discrepancies, which was unnecessary because only natural
variation was present and the discrepancies explained in terms of it.
The original figures have not been used because to do so would involve
subtleties that might hide the key point to be put across. Effectively
the figures have been rounded to present equalities that were not there
originally but the conclusions are unaffected. Before entering into
the discussion recall several facts learnt earlier in this chapter. First, the
Poisson distribution is present when there are a lot of independent
occasions when something might happen but the chance of the
happening is small. In our example, there are a lot of people but
each has a small chance of dying from the disease being considered.
Second, the spread about the Poisson mean, expressed through the s.d.,
is equal to the square root of that mean. Finally, for expectations that
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are not too small, the Poisson distribution is well-approximated by the
normal, for which about 2 out of 3 of the observations lie within 1 s.d.,
and 19 out of 20, within 2 s.d. of the mean, or expectation. With all
these facts at our disposal, facts it might be pointed out that were likely
unknown to the participants in the study, we can proceed with the
example.

A disease had a death rate per year throughout a region of 125 per
100,000 people older than 30 years. The region was divided into 42
health authorities, each responsible for 100,000 such persons, and each
recorded the number of deaths in a year from the disease among people
older than 30 years in their area. There were therefore 42 instances of
variation about an expectation of 125 and it is reasonable to approxi-
mate the situation with 42 examples of a Poisson with mean 125.
Applying the square-root rule, the square root of 125 is about 11, so
that it would be anticipated that about two-thirds of the authorities
would have rates between 114 and 136, while only 1 in 20, just 2,
would have rates outside an interval of twice this width, from 103 to
147. In fact there were three, at 97, 148, and 150. This is in good
agreement with the Poisson proposal. Seeing these figures, the admin-
istrators in the health service were worried that two authorities had
death rates 50% greater than that of the best authority. The media looks
with horror at this, scents a story, and both groups try to find reasons for
the discrepancy. The administrators punished the apparent errant
authorities and praised the successful. In fact they were inventing
causes for a variation that is natural to the patterns of death. Random-
ness is enough explanation and it is doubtful if anything can be done
about that. Basically, the square-root rule was not appreciated.

Indeed, we can go further and say that if all, rather than two-thirds,
of the authorities had death rates within 1 s.d., that is between 114 and
136 as natural variation suggests, there would have been grounds for
suspecting that some falsification of the figures had occurred in order
to comply with standards laid down from on high. I once met such a
case, involving several producers that had agreed to provide their data
prior to the possible introduction of some legislation, The figures
were in too good agreement. Enquiry revealed that the producers had
got together and some had altered their results so that none appeared
out of line.
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There is more that can be said about the effect of natural variation.
Consider that “bad” health authority with 150 deaths and suppose
natural variation is allowed to operate. The result will be that next year
the Poisson will again obtain and your probability that, with your
expectation still at 125, of getting less than 150 deaths in that authority
is almost 1. In other words, the authority will improve without any
intervention. This gives bureaucrats a fine opportunity to castigate the
apparently errant authority, to enforce changes and then sit back and
think how clever they have been in reducing the rate, when nothing has
been accomplished except bullying of staff. A failure to recognize
natural variation may occur in many fields; education has obvious
parallels to health provision. A less obvious parallel is the Stock
Exchange, where some people are thought to be better at predicting the
market than others. Are they; or is it natural variation? Does manage-
ment recognize talent or does it just pick the best in the Poisson race?

My concern here is to emphasize that some variation is inherent in
almost any system and that its presence should not be forgotten. That is
not to say that all variation is natural, for one of the tasks of a
statistician is to sort out the total variation into component parts,
each having its proper attribution. A simple example of this was
presented in §9.6. In that agricultural example there was no inherent
measure of spread, as there was in the health example with the square-
root rule, and the natural variation had to be separately evaluated. No
doubt there are cases of death-rate variation that are causal and exceed
natural variation; my plea is for uncertainty to be appreciated as a
naturally arising phenomenon that can be handled by the rules of
probability. It appears to be a long way from the balls in urns to the
Poisson and the square-root rule but the connection is only coherence
exhibiting its strength. We often say “you are lucky” but how often are
we wrong and fail to recognize the skill involved?

9.12 ELLSBERG’S PARADOX

It has been emphasized in §2.5 that there is a distinction between the
normative, or prescriptive, approach to uncertainty adopted in this
book and the descriptive approach concerned with describing how
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people currently think about uncertainty. The concentration on nor-
mative ideas does not imply that descriptive analysis is without value;
on the contrary, the study of people making decisions in the face of
uncertainty may be very revealing in correcting any errors and
persuading them of the normative view. And, recalling Cromwell
(§6.8), it is possible that good decision makers may be able to
demonstrate flaws in the normative theory and, like the Church of
Scotland, I may be mistaken. The contrast between normative and
descriptive approaches is clearly brought out in paradoxes of the
Ellsberg type, discussed in this section. The results are not used in
what follows and may be omitted by those who do not like paradoxes.
Its presentation has been delayed until now because understanding
depends on the concept of expectation developed in §9.3.

Consider our familiar urn, this one containing 9 balls. (9 is used
because we want to divide by 3, which 10, or 100, do not do exactly.)
3 of the balls are red, the other 6 are either black or white, with the
number b that are black uncertain for you. One ball is to be drawn from
the urn in a manner that you think is random and you are asked to
choose between the two options displayed in Table 9.3.

Here U is a positive number representing a prize and 0 means no
prize. Thus option X gets you the prize if the withdrawn ball is red,
whereas Y rewards you if it is black; there is no prize with either option
if the ball is white. You are also asked to choose between two options in
Table 9.4 using the same urn under the same conditions.

TABLE 9.3 First pair of Ellsberg options

Withdrawn ball Red Black White

Option X U 0 0

Option Y 0 U 0

TABLE 9.4 Second pair of Ellsberg options

Withdrawn ball Red Black White

Option V U 0 U

OptionW 0 U U
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Thus option V rewards you provided the ball is red or white,
whereasW rewards if black or white. Note that you are not being asked
to compare an option in one table with any in the other. Everyone
agrees V is better than X andW than Y becausewhite balls pay out in the
former but not in the latter. No, you are asked to choose between X and
Y, and between V and W. What would you do?

Consider first the normative approach where the only thing that
matters is your probability p(U) that you will get the prize. Since you
are uncertain about the number of black balls, you will have a
distribution p(b) over the 7 possible values from 0 to 6, and p(U)
will depend on this. For option X, p(U) is 3=9 because of your belief in
the random withdrawal and the fact that the value of b is irrelevant. For
option Y the calculation must be more elaborate. If you knew the
number b of black balls, pðU j bÞ ¼ b=9, so if you extend the conver-
sation to include b, p(U) will be the sum of terms bp(b)=9 over the 7
possible values of b. The result will be E=9 where E is your expectation
for the number of black balls in the urn. (You may care to refresh your
memory by looking at the same argument in §9.3.) Consequently you
compare p(U)¼ 3=9 for X with E=9 for Y, and Y is preferred to X if
E > 3; if E < 3 you prefer X and with E¼ 3 you are indifferent
between X and Y. Exactly the same type of argument shows that W is
preferred to V if E > 3; if E < 3 you prefer V and with E¼ 3 you are
indifferent. Consequently your choices depend solely on the number of
black balls you expect to be in the urn and you either choose both X and
V, both Y and W, or express indifference in both cases.

We now pass to the descriptive approach. Several psychologists
have performed experiments with subjects, most of whom have no
knowledge of the probability calculus, and asked them to make the
choices between the same options, with the result that most prefer X to
Yand alsoW to V. This disagrees with the normative approach where a
preference for X, because the expectation of b is less than 3, must mean
a preference for VaboveW. The two approaches are therefore in direct
conflict. When the subjects are asked why they made their choices, the
usual reply is that they preferred X to Y because with X they knew the
numbers of balls in the urn that would cause them to win, namely 3,
whereas with Y they did not. The additional uncertainty with Y, over
that with X, was thought to be enough to make X the choice. Similarly
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W had 6 balls that would yield the prize, whereas with V the number,
9� b, is unknown, so W is preferred. We have a clear example of the
dislike of uncertainty (§1.3), here sufficient to affect choices.

Which is more sensible—the normative or descriptive attitudes?
Before we answer this, let us consider the nature of the disagreement
and notice that it concerns coherence. Suppose you, in the technical
sense, have seen a subject prefer X above Y; then you would see nothing
unsound in the choice, merely noting that the subject must have an
expectation for b of less than 3. Similarly if another subject has
preferred W to V, then you think it sensible with their expectation
being more than 3, so that both subjects are above criticism. But
suppose you see the same subject make both preferences, then you
think they are foolish, or incoherent, the first preference not cohering
with the second. Here is a clear example of a phenomenon that I think
is very common: the individual judgments, considered in isolation, are
often sound, the flaw is that the judgments do not fit together, they are
inconsistent, or, as we say, incoherent.

How does this incoherence arise? Both you and the subjects
recognize that the key element is the unknown number, b, of black
balls. The subjects worry about it and try to avoid it as much as they can
by choosing X and W. You, by contrast, face up to the challenge,
recognize that b is uncertain, and use a probability distribution for it.
(You go further and note that the whole distribution does not matter,
only the expectation is relevant, a point we return to below.) Now you
have a problem; what is your distribution? I put it to you that the
development in §3.4 is compelling and that you must have a distribu-
tion; the trouble is that you do not know how to assess it. Consider an
analogous situation in which you do not have to make a choice between
options but between two objects, the prize being awarded if you select
the heavier one. There is no doubt in your mind that associated with
each object there is a number called its mass but you do not know it. If
you could see the objects, you could guess their masses, though the
guesses would not be reliable. Were you able to handle them, better
guesses could be made, and if you had an accurate pair of scales, you
could do much better. Mass here is like probability in the options; you
know it exists but have trouble measuring it. In other words, the
normative person, you, knows how to proceed coherently with the
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options but has a measurement problem. In contrast, the subjects did
not know how to proceed and therefore shied away from options that
involved uncertainty, thereby becoming incoherent.

In the problem as presented here, it is somewhat artificial and all of
us would have difficulty with the measurement of p(b). A common
attitude is to say that you can see no reason as to why any one of the 7
possible values is more probable than any other, so use the classical
form of §7.1 with p(b)¼ 1=7 for all 7 values of b. The expectation is
then 3 and you would be indifferent between X and Y, and between V
and W. Most published analyses of the problem assume, sometimes
implicitly, that the classical form obtains. On the contrary, you might
receive information that the number of black balls had been selected by
throwing a fair die and equating b with the number showing on the die.
In that case the expectation is 31=2 (§9.3) leading to your choice of Y
rather than X, andW rather than V. In another scenario you might have
witnessed several random drawings from the urn and noticed the colors
of the exposed balls. You would then have updated your knowledge by
Bayes rule and have a distribution based on the data. An extreme
possibility is that you are told the values of b, when X and Vare selected
if you are told b¼ 0, 1, or 2; Y and W if b¼ 4, 5, or 6; and you are
indifferent if b¼ 3.

For anyone who is still unconvinced that the normative approach is
sensible and the subjects unsound in the Ellsberg scenario, consider the
following two arguments. First, suppose youwere informed of the value
of b, as at the end of the last paragraph, then whatever value it was you
would never choose both X and W as the subjects did; so why choose
them when uncertain about b? (We return to this point when the sure-
thing principle is discussed in §10.5.) Second, in the choice between X
and Y, thewhite balls do notmatter since in neither option do they yield a
prize, so that the final column of the table may be omitted. Similarly in
the choice between V and W, the white balls are irrelevant, always
producing the prize andagain the final columnmaybedeleted.When the
final columns are removed from both tables, the remaining tables are
identical. So if you choose the first row in one, you must do the same in
the other, and the subjects’ selection is ridiculous.

One final point before we leave Ellsberg. The paradox shows us
that the only aspect of the uncertainty that matters is your expected
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number of black balls, and that your actions should be based solely on
this number. This lesson is important because we shall see when we
come to decision analysis in § 10.4 that again it is only an expectation,
rather than a distribution, that is relevant. People often have difficulty
with the idea of making an important decision on the basis of a single
number, so let Ellsberg prepare you for this feature. Mind you, the
expectation has to be carefully calculated, as we shall see.
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CHAPTER10

Decision Analysis

10.1 BELIEFS AND ACTIONS

It is early morning, you are about to set off for the day and you wonder
whether to wear the light coat you took yesterday, or perhaps a heavier
garment might be more suitable. Your hesitation is due to your uncer-
tainty about the weather; will it be as warm as yesterday or maybe turn
cooler? We have seen how your doubts about the weather can be
measured in terms of your belief that it will be cooler, a value that
has been called probability, and we have seen how uncertainties can be
combinedbymeans of the rules of the probability calculus.We have also
seen how probabilities may be used, for example in changing your
beliefs in the light of new information, as a scientist might do in reaction
to an experimental result, or a juror on being presented with new
evidence, or as you might do with the problem of the coat by listening
to a weather forecast. But there is another feature of your circumstances
beyond your uncertainty concerning the weather, which involves the
consequences that might result from whatever action you take over
the coat. If you take a heavy garment in warm weather, you will be
uncomfortably hot and maybe have to carry it; whereas a light coat
would be more pleasant. If you wear the light coat and the weather is
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cold, you may be uncomfortably cold. In this little problem, you have to
do something, you have to act. Thinking about the act involves not only
uncertainty, and therefore probability, but also the possible conse-
quences of your action, being too hot or too cold. In agreement with
our earlier analysis of uncertainty, we now need to discuss the measure-
ment of how desirable or unpleasant the outcomes could be, to examine
their calculus, and, a new feature, to explore the manner in which
desirability and uncertainty may be combined to produce a solution to
your problemwith the coat. This is the topic of thepresent chapter, called
decision analysis because we analyze the manner in which you ought
sensibly to decide between taking the light or the heavy coat.

All of us are continually having to take decisions under uncertainty
about how to act, often a trivial one like that of the coat but
occasionally of real moment, as when we decide whether to accept
a job offer, or when we act over the purchase of a house. In all such
problems, apart from the uncertainties, there are problems with the
outcomes that could result from the actions that might be taken. The
intrusion of another aspect besides uncertainty has been touched on
earlier; for example, when it was emphasized how your belief in an
event E was separate from your satisfaction with E were it to happen.
The need for this separation was one reason why, in §3.6, betting
concepts were not used as a basis for probability, preferring the neutral
concept of balls in urns, because, in the action of placing a bet, two
ideas were involved, the uncertainty of the outcome and quality of that
outcome. An extreme example concerned a nuclear accident (Exam-
ple 13 of Chapter 1) where the very small probability needs to be
balanced against the very serious consequences were a major accident
to occur. In this chapter, decision analysis is developed as a method of
making the uncertainties and the qualities of the outcomes combine,
leading to a sensible, coherent way of deciding how to act. The method
will again be normative or prescriptive, not descriptive. The distinction
is here important because there is considerable evidence that people do
not always act coherently, so that there is potentially considerable
room for improvement in decision making by the adoption of the
normative approach. Incidentally, it will not be necessary to distin-
guish between a decision to act and the action itself, so that we can
allow ourselves the liberty of using the words interchangeably.
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All of us have beliefs that have no implications for our actions,
beliefs which exist purely as opinions separate from our daily activi-
ties. For example, I have beliefs about who wrote the plays ordinarily
attributed to Shakespeare but they have no influence on a decision
whether or not to attend a production of Hamlet, for the play is what
matters, not whether Shakespeare or Marlowe or the Earl of Oxford
wrote it. Sometimes beliefs can lie inactive as mere opinions and then a
circumstance arises where they can be used. Recently I read an article
about a person and, as a result, developed beliefs about her probity of
which no use was made. Later, in an election to the governing body of a
society to which I belong, her name appeared on the list of candidates
for election. It was then reasonable and possible to use my opinion of
her probity to decide not to vote for her. The important point about
beliefs, illustrated here, is not that they be involved in action, but that
they should have the potentiality to be used in action whenever the
belief is relevant to the act.

This chapter shows that beliefs in the form of probability are
admirably adapted for decision making. This is a most important
advantage that probability and its calculus have over other ways of
expressing belief that have appeared. For example, statisticians have
introduced significance levels as measures, of belief in scientific
hypotheses, but they can be misleading and lead to unsound decisions.
Computer scientists and some manufacturers use fuzzy logic to handle
uncertainty and action. This is admirable, at least in that it recognizes
the existence of uncertainty and incorporates it into product design, but
is mischievous in that it can mislead. The decision analysis presented
here fits uncertainty with desirability perfectly like two interlocking
pieces of a jigsaw puzzle. It does this by assessing desirability in terms
of probability and then employing the calculus of probability to fit the
two aspects of probability together.

10.2 COMPARISON OF CONSEQUENCES

The exposition of decision analysis begins by discussion of the
simplest possible case, from which it will easily be possible to develop
the general principles that govern more complicated circumstances. If
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only one action is possible, it has to be taken; there is no choice and no
problem. The simplest, interesting case then is where there are two
possible acts and one, and only one, of them has to be selected by you.
The two acts will be denoted by A1 and A2; A for action, the subscripts
describing the first and second acts, respectively. The simplest case of
uncertainty is where there is a single event that can either be true, E, or
false, E c. Therefore the first case for analysis is one in which two acts
are contemplated and the only relevant uncertainty lies in the single
event. The situation is conveniently represented in the form of a
contingency table (§4.1) with two rows corresponding to the two
actions and two columns referring respectively, to the truth and falsity
of E, giving the bare structure of Table 10.1.

It would not be right to think of A2 as the complement of A1 in the
sense of the action of not doing A1. If A1 is the action of going to
the cinema, A2 cannot be the action of not going to the cinema. On the
contrary, A2 must specify what you do if attendance is not at the cinema:
read a book, make love, go to the bar? Two actions are being compared.
We return to this important point in §10.11. Such a table, with two rows
and two columns, has four cells. Consider one of them, say that in the top,
left-hand corner corresponding to action A1 being taken when E is true.
Since the only uncertainty in the problem is contained in E, the outcome,
when A1 is taken and E occurs, is known to you and no uncertainty
remains. It is termed a consequence. This table has four possible
consequences; for example, in the right-hand bottom corner, you have
the consequence of taking A2 when E does not occur. I emphasize that a
consequence contains no uncertainty, it is sure, you know exactly what
will happen and if you did not, you would necessarily need to include
other uncertain events besides E, thereby increasing the size of the table.

It was mentioned above that consequences or, as they were called
there, outcomes, vary in their desirability; some, like winning the
lottery are good, others, like breaking your leg, are bad. What we seek

TABLE 10.1

E Ec

A1

A2
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is someway of expressing these desirabilities of sure consequences in a
form that will combine with the uncertainty. To accomplish this we
make the assumption that any pair of consequences, c1 and c2, can be
compared in the sense that either c1 is more desirable than c2, or c2 is
more desirable than c1, or they are equally desirable. This is surely a
minimal requirement, for if you cannot compare two completely
described situations with uncertainty absent, it will be difficult, if
not impossible, to compare two acts where uncertainty is present.
Notice that the comparison is made by you and need not agree with that
made by someone else, and in that respect it is like probability in being
personal. We will return to this important point in §10.7. There are
many cases in which the comparison demanded by the assumption is
hard to determine, but recall this is a normative, not a descriptive,
analysis, so that you would surely wish to do it, even if it is difficult.
The point is related to the difficulty earlier encountered of comparing
an event with the drawing of balls from an urn; you felt it was sensible,
but hard to do. After the analysis has been developed further, a return
will be made to this point and methods of making comparisons
between consequences proposed in §10.3.

A further assumption is made about the comparisons, namely that
they are coherent in the sense that, with three consequences, if c1 is
more desirable than c2 and c2 more desirable than c3, then necessarily
c1 is more desirable than c3. This is an innocuous assumption that finds
general acceptance, when it is recalled that each consequence is
without uncertainty. The following device may convince you of its
necessity. It will be used again in §10.12. To avoid repeatedly saying
“is more desirable than”, the phrase will be replaced by the symbol!.
Suppose the first two comparisons hold, c1 ! c2 and c2 ! c3 but you
think c3 ! c1 in violation of the third comparison. We aim to convince
you that, while each of the comparisons may be sensible on their own,
to hold all three of the comparisons in the last sentence at the same time
is absurd. Suppose you contemplate c3, c2 is more desirable than it (the
second comparison) and you would welcome a magician with a magic
wand who could replace c3 by c2. Similarly by the first comparison,
c1 ! c2, you might use the magician again to replace c2 by c1. Finally
by the third comparison c3 ! c1, the magician could be employed
again, to replace c1 by c3, which takes you back to where you started
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with c3, so that the magician has been employed three times to no avail.
The magician will likely have charged you for his services with the
wand, so you will have paid him three times with no improvement in
outcome. You are a perpetual moneymaking machine—how nice to
know you. The device will be referred to as a wand. An apparent
criticism of it will be discussed in connection with Efron’s dice in
§12.10. From now on it is supposed that consequences have been
coherently compared. Notice that this is an extension of the meaning of
coherence, previously used with uncertainty, to consequences.

Returning to Table 10.1 with its four cells occupied by four
consequences, one of the four must be the best in the comparisons
and one must be theworst. The decision problem is trivial if they are all
equal. So let us attach a numerical value of 1 to the best and 0 to the
worst, leaving at most two other consequences to have their numerical
values found by the following ingenious method. Consider any con-
sequence c that is intermediate between the worst and the best, better
than the former, worse than the latter. We are going to replace c by a
gamble that you consider just as desirable as c. Take a situation in
which you withdraw a ball at random from the standard urn, full of red
and white balls; if it is red, c is replaced by the best consequence, if
white by the worst. Clearly your comparison of the gamble with c will
be enormously influenced by the proportion of red balls in the urn, the
more the red balls, the better the gamble. If they are all red, you will
desert c in favor of the best; if all white, you will eagerly retain c. It is
hard to escape the conclusion that there is a proportion of red balls that
will make you indifferent between c and the random selection of a ball
with the stated outcomes. The argument for the existence of the critical
number of red balls is almost identical to the one used to justify the
measurement of probability in §3.4. If accepted, you can replace c by a
gamble where there is a probability, that is denoted by u, of attaining
the best (and 1� u of the worst), where u is the probability of
withdrawing a red ball equal, by randomness, to the proportion of
red balls in the urn. The number so attached to a consequence is called
its utility; the best consequence having utility 1, the worst 0, and any
intermediate consequence a value between these two extremes. What
this device does is to regard the sure consequence c as equivalent to a
value between the best and the worst, this value being a probability u,
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thereby providing a numerical measure of the desirability of c. The
nomenclature and the importance of utility is discussed in §10.7, for
the moment let us see how it works in the simple table above and, to
make it more intelligible, consider some special acts and events.

Before we do so, the reader should be warned that some people use
the term utility merely as a description of worth, without specifying
how the measurement is to be made. It is common, particularly in the
humanities, to dismiss such a view as utilitarian. The measurement of
utility by means of a gamble, as proposed here, is essential in justifying
the use of expectation (§10.9) and the reduction of a complex system to
a single number.

10.3 MEDICAL EXAMPLE

Suppose that you have a past history of cancer, you are currently sick
and it is possible that your cancer has returned and spread. This is the
uncertain event E, for which you will have a probability pðE jK Þ based
on the knowledge K that you currently have, a probability that will be
abbreviated to p because both E and K will remain unaltered through-
out the analysis and the results will thereby become easier to appre-
ciate. Notice that p has nothing to do with the probabilities
conceptually involved in the determination of your utilities; it purely
describes your uncertainty about the spread of cancer in the light of
what the doctors and others have told you. The complementary event
E c is that you have no cancer. Suppose further that there are two
medical procedures, or actions, that might be taken. The first A1 is a
comparatively mild method, whereas A2 involves serious surgery. Your
problem is whether to opt for A1 or A2. In practice there will be other
uncertainties present, such as the surgeon’s skill but, for the moment,
let us confine ourselves to E and the two procedures, leaving until later
the elaboration needed to come closer to reality.

With two acts and a single uncertain event, there are four conse-
quences that we list:

A1 and E: The mild treatment with the cancer present will leave you
seriously ill with low life expectancy.
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A1 and Ec: There is no cancer and recovery is rapid and sure.

A2 and E: The surgery will remove the cancer but there will be some
permanent damage and months of recovery from the operation.

A2 and Ec: No cancer but there will be convalescence.

The next stage is to assign utilities to each of these consequences.
First, you need to decide which is the best of these four conse-

quences. Since this is an opinion by “you” and people sensibly differ in
their attitudes toward illness, we can only take one possibility, but here
A1 and Ec is reasonably the best with a happy outcome from a minor
medical procedure. Similarly A1 and E is reasonably the worst. Notice
that all these judgments are by “you” and not by the doctors. You may
well like to listen to their advice when they may recommend one action
above the other, but you are under no obligation to adopt their
recommendation. This emphasizes the point we have repeatedly
made that our development admits many views; it merely tells you
how to organize your views, and now your actions, into a coherent
whole.

Having determined the best and worst of the four consequences and
assigned values 0 and 1, you need, using the procedure described
above, to assess utilities for the remaining two consequences arising
from action A2. The result will be a table (Table 10.2), as the earlier
one, but with probabilities and utilities included.

Here u and v are the utilities for the two consequences that might
arise from A2, p is the probability that you have cancer. Consider the
value u assigned to the consequence of serious surgery A2, which
removes the cancer E but leads to months of recovery. The method of
§10.2 invites you to consider an imaginary procedure that could
immediately take you to the best consequence (A1 and Ec) of rapid,

TABLE 10.2

E Ec

A1 0 1

A2 u v

p 1� p
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sure recovery, but could alternatively put you in the terrible position of
having low life expectancy with the cancer (A1 and E). Your choice of
the value u means that you have equated your present state (A2 and E)
to this imaginary procedure in which u is your probability of the best,
and 1� u of the worst, consequence. A similar choice with the
consequence A2 and Ec leads to the value v. Of course, the procedure
is fanciful in being able to restore the cancer but we often wish we had
a magic wand to give us something we greatly desire, while literature
contains many examples where the magic goes wrong. We return to
“wand” procedures in §10.12. Again youmight find it hard to settle on u
and v but it is logically compelling that they must exist. Furthermore,
once they are determined, the solution to your decision problem
proceeds easily, the utilities and probabilities can be combined, unlike
chalk and cheese, and the better act found, in away now to be described.

Consider the serious option A2, which, in its original form, can lead
to two consequences of utilities u and v but, by the wand device, can
each conceptually lead to either the worst or the best consequence with
utilities 0 and 1. Surely you would prefer the act that has the higher
probability of achieving the best, and thereby lower for theworst, so let
us calculate pðbest jA2Þ, the probability of the best consequence were
A2 selected. We do this by extending the conversation (§5.6) to include
the uncertain event E, giving

pðbest jA2Þ ¼ pðbest jE and A2ÞpðE jA2Þ þ pðbest jEc and A2ÞpðEc jA2Þ;
(10.1)

where all the probabilities on the right-hand side are known, either
from the utility considerations or from the uncertainty of E. Thus
pðbest jE and A2Þ ¼ u by the wand and pðE jA2Þ ¼ p by your original
uncertainty for E. Inserting their values, we have

pðbest jA2Þ ¼ upþ vð1� pÞ: (10.2)

It is possible to do the same calculation with A1 but it is obvious
there that A1 only leads to the best consequence if Ec holds, so

pðbest jA1Þ ¼ ð1� pÞ: (10.3)
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Since you want to maximize your probability of getting the best
consequence, where the only other possibility is to obtain the worst,
you prefer A2 to A1 and undergo serious surgery if (10.2) exceeds
(10.3). That is if

upþ vð1� pÞ > ð1� pÞ:

Recall that the symbol>means “greater than” (§2.9). Bravely doing a
little mathematics by first subtracting vð1� pÞ from both sides and
simplifying, yields

up > ð1� vÞð1� pÞ;

and then dividing both sides by ð1� vÞp, we obtain

u

1� v
>

1� p

p
(10.4)

as the condition for preferring the serious surgery. This inequality relates
an expression on the left involving only utilities to one on the right with
probabilities, namely the odds against (§3.8) the cancer having spread,
and says that the serious surgery A2 should only be undertaken if the
odds against the cancer having spread are sufficiently small,
the critical value u=ð1� vÞ involving the utilities. The odds against
are small only if the probability of cancer is large, so you would
undertake the serious operation only then. (Equation (10.4) can be
expressed in terms of probability, rather than odds, as
p > ð1� vÞ=ð1� vþ uÞ.) This result, in terms of either odds or
probability, is intuitively obvious, the new element the analysis
provides is a statement of exactly what is meant by large. There
are several aspects of this result that deserve attention.

10.4 MAXIMIZATION OF EXPECTED UTILITY

The method just developed has the important ability to combine two
different concepts, uncertainty and desirability. It demonstrates how
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we might simultaneously discuss the small probability of a nuclear
accident and the serious consequences were it to happen. In our little
medical example, it combines the diagnosis with the prognosis.
These combinations have been effected by using the language of
probability to measure the desirabilities, or utilities, and then
employing the calculus of probabilities, in the form of the extension
of the conversation, to put the two probabilities together. It is
because utility has been described in terms of probability that the
combination is possible. Some writers have advocated utilitarian
concepts in which utility is merely regarded as a numerical measure
of worth, the bigger the number, the better the outcome is. Our
concept is more than this, it measures utility on the scale of
probability. To help appreciate this point, consider a utilitarian
who attaches utilities 0, 1/2, and 1 to three consequences. This
clearly places the outcomes in order with 0 the worst, 1 the best,
and 1/2, the intermediate, but what does it mean to say that the best is
as much an improvement over the intermediate, as that is over the
worst, 1� 1/2¼ 1/2� 0? It is clear what is meant here, namely that
the intermediate is halfway between the best and the worst in the
sense that it is equated to a gamble that has equal probabilities of
receiving the best or the worst.

Having emphasized the importance of combining uncertainty
with desirability, let us look at how the combination proceeds,
returning to (10.2) above, which itself is an abbreviated form of
(10.1), and concentrating on the right-hand side, here repeated for
convenience,

upþ vð1� pÞ:

Expressions like this have been encountered before. In discussing
an uncertain quantity, which could assume various values, each with
its own probability, we found it useful to form the products of value
and probability and sum the results over all values, calling the result
the expectation of the uncertain quantity as in §9.3. The expression
here is the expectation of the utility acquired by taking action A2, or
briefly the expected utility of A2, since it takes the two values of
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utility, u and v, multiplies each by its associated probability, p and
1� p, and adds the results. Similarly (10.3) above is the expected
utility of A1, as is easily seen by replacing the utilities, u and v, in the
second row of Table 10.2 corresponding to A2 with those, 0 and 1, in
the first row for A1. Consequently the choice between the two acts
rests on a comparison of their two expected utilities, the recommen-
dation being to take the larger. This is an example of the general
method referred to asmaximum expected utility, abbreviated to MEU,
in which you select that action, which, for you, has the highest
expected utility.

10.5 MORE ON UTILITY

In obtaining the utilities in the medical example, attention was
confined to the four consequences in the table. It is often useful
to fit a decision problem into a wider picture and use other compari-
sons, partly because it thereby provides more opportunities for
coherence to be exploited. Here we might introduce perfect health
as the best consequence and death as the worst. (Let it be emphasized
again, this may not be your opinion, you may think there is a fate
worse than death.) The four consequences in the table could then be
compared with these extremes of 1 and 0, with the result as shown in
Table 10.3.

Here s and t replace 0 and 1, respectively; u and v will change but
the same letters have been used. Then A2 has the same expression for
its expected utility but that of A1 becomes spþ tð1� pÞ. Consequently

TABLE 10.3

E Ec

A1 s t

A2 u v

p 1� p
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A2 is preferred over A1 by MEU if

upþ vð1� pÞ > spþ tð1� pÞ
or ðu� sÞp > ðt � vÞð1� pÞ

on subtracting vð1� pÞ þ sp from each side of the inequality. Dividing
both sides of the latest inequality by ðt � vÞp, A2 is preferred if, and
only if,

u� s

t � v
>

1� p

p
; (10.5)

that is if the odds against cancer having spread are less than a function
of the utilities. This is the same as (10.4) when s¼ 0 and t¼ 1. Let us
look at this function carefully. Suppose each of the four utilities, s, t, u,
and v had been increased by a fixed amount, then the function would
not have changed since it involves differences of utilities. Suppose they
had each been multiplied by the same, positive number, then again the
function would be unaltered since ratios are involved. In other words, it
does not matter where the origin 0 is, or what the scale is to give 1 the
best, the relevant criterion for the choice of act, here ðu� sÞ=ðt � vÞ is
unaffected. We say that utility is invariant under changes of origin or
scale. In this it is like longitude on the earth; we use Greenwich as the
origin, but any other place could be used; we use degrees east or west
as the scale but we could use radians or kilometers at the equator.
Probability is firmly pinned to 0, false, and 1, true, but utility can go
anywhere and is fixed only when 0 and 1 have been fixed.

In themedicalexamplewetookasituation inwhichthebestandworst
of the four consequencesbothpertained to the same action.This neednot
necessarily be true, so let us take an example inwhich they are relevant to
different actions. The resulting table (Table 10.4) might look like this:

TABLE 10.4

E Ec

A1 s 1

A2 0 v

p 1� p
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where A1 with Ec is the best and A2 with E the worst, the other two
consequences having utilities s and v where the same letters are
retained, and they will be between 0 and 1, intermediate between the
worst and the best. Now something interesting happens. Suppose E
were true, then A1 is better than A2 since s exceeds 0; suppose E

cwere
true, then A1 is still better than A2 since 1 exceeds v; as a result,
whatever happens A1 is better than A2 and, adopting a charming
Americanism, you are on to a sure thing. (Notice that in the original
Table 10.2, A2 was better when E was true since u > 0, but A1 was
better when E was false since 1 > v. There was a real problem in
choosing between the acts.) A sure thing avoids MEU although MEU
would give the same result as the reader can easily verify. I was once
in the position of deciding whether to buy a new house or stay where
we were, and judged that a relevant factor was whether I was likely to
stay in my present job for the next 5 years or change jobs. If staying,
it was clearly better to buy, but after some thought we decided that
purchase was more sensible even if I did change jobs. We were on to a
sure thing.

10.6 SOME COMPLICATIONS

To appreciate another point aboutMEU let us return to (10.1) and notice
that it contains pðE jA2Þ, the probability of E were A2 to be selected;
similarly in considering A1, pðE jA1Þ would arise. In the medical
example it was tacitly assumed that these two probabilities were equal;
the choice of action, rather than the action itself, not influencing your
cancer. There are situations in which they can be different. Consider
the action of buying a new washing machine, where there is a choice
between twomodels, A1 being cheap andA2 more expensive. The prime
uncertain eventE for you is a serious failurewithin a decade. Ordinarily
pðE jA1Þ > pðE jA2Þ on the principle that the more expensive machine
is less likely to fail. (Notice that this is a likelihood comparison, so
“likely to fail” is correct.) If this were not so, A1 is a sure thing under
reasonable conditions. Even when the choice of act influences the
uncertainty, MEU still obtains, as can be seen from (10.1). If p1 and p2
are your probabilities of E given A1 and given A2, respectively then,
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generalizing Table 10.3, A1 is preferred to A2 if, and only if,

sp1 þ tð1� p1Þ > up2 þ vð1� p2Þ; (10.6)

which does not simplify in any helpful way.
In this general case, the sure-thing principle does not necessarily

obtain. To see this take the utilities in Table 10.4, where we observed
the principle, but replace p by p1 ¼ p E jA1ð Þ and p2 ¼ p E jA2ð Þ as in
(10.6). Consider the numerical values

s ¼ 1=4; v ¼ 3=4; p1 ¼ 4=5; p2 ¼ 1=5

with u ¼ 0 and t ¼ 1 as in Table 10.4. Inserting all six values into
(10.6) we have

1=4� 4=5þ 1=5 > 3=4� 4=5

that simplifies to 8 > 12 that is not true, so that A2 is preferred over A1.
This despite A1 being preferred both when E is true ðs ¼ 1=4; u ¼ 0Þ
and when false ðt ¼ 1; v ¼ 3=4Þ, so the principle is violated. Notice
that this is despite the losses s – u and t – v, being the same at 1/4,
whether E is true or false. The explanation lies in the fact that Ec, which
is where the larger utilities, t and v arise, has greater probability when
A2 is taken, 4/5, than when A1 is selected, 1/5. Short cuts, like the sure-
thing principle, can be dangerous, only MEU can be relied upon.

A serious limitation of the decision analysis so far presented is that it
only involves one uncertain event. However, the extension to any
number is straightforward. Suppose there are two events, E and F.
These yield four exclusive and exhaustive (§9.1) possibilities EF, EF c,
E cF, and E cF c, and the decision table has four columns and hence eight
consequences. Assign 4 probabilities to the events, in the case where
choice of action does not affect the uncertainty, or 8 when it does. Also
assign 8 utilities, when the expected utility for an action, corresponding
to a row, can be calculated by multiplying the utility in each column by
its corresponding probability and adding the 4 results, as in the general
extension of the conversation in §9.1. This calculation is done for each
row and that action (row) is selected of higher expected utility. Clearly
this method extends to any number of actions and we may omit the
mathematics.GenerallyMEUcovers all situationswhere a single person
“you” is involved. We have seen the difficulties with two persons,
exemplified by the prisoners’ dilemma in §5.11.
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Finally a warning that is addressed to pessimists. There are many
treatments of decision analysis that do not speak in terms of utility but
rather use losses. To see how this works, suppose you knew which
event was true, equivalently which column of the decision table
obtained. Then, all uncertainty being removed, you can choose among
the decisions, the rows of the table, naturally selecting that of highest
utility, any other act resulting in a loss in comparison. Thus the general
form of Table 10.3 supposes, in accord with Table 10.2, that if E is true,
A2 is the better act. Then u exceeds s and A1 would incur a loss ðu� sÞ
in comparison. Similarly, if Ec is true and A1 the better act, again as in
Table 10.2, t exceeds v and A2 will incur a loss ðt � vÞ. A loss is what
you suffer, in comparison with the best, by not doing the best. The
attractive feature of losses is that the general solution we found,
expressed in (10.5), only involves the losses, not the four separate
utilities, resulting in a reduction from 4 utilities to only 2 losses and
even then only their ratio is relevant. As a result of the simplicity of
losses over utilities, the former have become popular; unfortunately
they have a serious disadvantage. To see this, notice that the general
solution (10.5) only applies when the events have the same uncertainty,
expressed through the probability p there, for all acts. When this is not
true and the uncertainties are different at p1 and p2, the general solution
is provided by (10.6), which is not expressible solely in terms of losses.
Readers might like to convince themselves of this, either by doing a
little mathematics or by choosing two different sets of utilities (s, t, u, v)
with the same losses ðu� s; t � vÞ and observing that (10.6) will not
yield the same advice in the two sets despite the identity of the losses. It
is usually better to assign utilities directly to consequences, rather than
relate consequences by considering differences.

10.7 REASON AND EMOTION

Let us leave the more technical considerations of utility and how it is
used in decision analysis; instead let us contemplate the concept itself.
The first thing to note is that utility applies to a consequence,which itself
is the outcome of a specific act when a specific event is true. A
consequence, alternatively called an outcome, can have many aspects.
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For example, in the cancer problem discussed above, there was a
consequence, there described as A1 and Ec, where the mild treatment
had been applied and no cancer found, so that recovery is sure. But you
may wish to take into account other aspects of this outcome besides the
simple recovery, like the occurrence of your silver wedding anniversary
nextmonth that youwould nowbe able to enjoy. If a decisionwas togo to
the opera, the quality of the performance would enter into your utilities,
as well as the cost of the ticket. Generally, you can include anything you
think relevant when contemplating a consequence. For example, people
often bet when, on amonetary basis, the odds are unfavorable. This may
be coherent if account is taken in the utility of the thrill of gambling,
where awin of 10 dollars is not just an increase in assets but is exciting in
the way that a 10 dollar payment of an outstanding debt would not be.
There are connections with the confusion between uncertainty and
desirability (§3.6). In summary, a consequence can include anything;
in particular it can include emotions and matters of faith.

Throughout this book we have applied reasoning, first to the
uncertainties and now to decision making in the face of that uncer-
tainty. We have avoided concepts like faith and emotions, concentrat-
ing entirely on coherence, which is essentially reason. Coherence
generalizes the logic of truth and falsity to embrace uncertainty and
action. But in utility, a concept derived entirely by reasoning, we see
that it is possible, even desirable, to include ideas beyond reason. We
can take account of the silver wedding, the thrill of a gamble, or my
preference for Verdi over Elton John (§2.4). Indeed, we not only can
take, but must take, if our decision making is truly to reflect our
preferences. It has repeatedly been emphasized that probability is
personal; we now see the same individuality applies to utility. The
distinction between the two is that probability includes beliefs,
whereas utility incorporates preferences. The distinction between
the two is not sharp and I may say that I believe Verdi is a better
artist than John, though the contrast is more honestly expressed by
saying that I prefer Verdi to John. A key feature is that an approach
using pure reason has led to the conclusion that something more than
pure reason must be included. This may be expressed in an epigram:

Pure reason shows that reason is not enough.
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My personal judgment is that this result is very important. The
reasoning process is essentially the same throughout the world,
whereas emotions and faiths vary widely. What is being claimed
here is that persons of all faiths can use the reasoning process,
expressed through MEU, to communicate. This is done by each faith
incorporating its own utilities and probabilities into MEU. On its own,
MEU does not eliminate differences between emotions, as has been
seen in the prisoners’ dilemma (§5.11), but it may lessen the impact of
the differences by providing a common language of communication,
so important if several faiths are to coexist in peace.

We have seen that your uncertainties can, and indeed should, be
altered by evidence, and that the formal way to do this is by Bayes rule.
Utilities can also be affected by evidence, though the change here is
less formal. For example, your utility for classical music will typically
be influenced by attendances at performances of it. Or your love of
gambling will respond to experiences at the casino. Evidence therefore
plays an important role in MEU. This will be discussed in more detail
when the scientific method is studied in Chapter 11. Evidence is
especially important when it can be shared, either by direct experience,
or through reliable reporting. It was seen in §6.9 that the shared
experience of drawing balls from an urn led to disparate views of the
constitution of the urn approaching agreement. It is generally true that
shared evidence, coherently treated, brings beliefs and preferences
closer together. In contrast, there are beliefs and preferences that are
not based on shared evidence. Orthodox medicine is evidence-based,
but alternative medicine relies less on evidence and so does not fit so
comfortably within MEU. This is not to dismiss alternative medicine,
only to comment that individual uncertainties and utilities will neces-
sarily differ among themselves more than when shared evidence is
available.

10.8 NUMERACY

There is a serious objection to our approach that deserves to be
addressed. We have seen that a consequence may be a complicated
concept involving many different features, some, like money, being
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tangible, but others, like pleasure derived from a piece of music,
intangible. These features may be important but imprecise. The
objection questions whether it is sensible to reduce such a collection
of disparate ideas to a single number in the form of utility; is not this
carrying simplicity too far? We have encountered in §3.1 a similar
objection to belief being reduced to a number, probability. Here the
idea is extended even further to embrace utility and the combination of
utility and probability in expected utility. A complicated set of ideas is
reduced to a number; is it not absurd? If we set aside those people who
hate arithmetic and cannot do even simple mathematics, rejoicing in
their innumeracy, there are three important rejoinders to these protests.

The first is the one advanced in §3.1 when countering the similar
objection in respect of probability; namely that, in any situation save
the very simplest, one has to combine and contrast several aspects.
Numbers combine more easily, and according to strict rules, than any
other features. In decision analysis, it is necessary to deal with several
consequences that have to be contrasted and combined. Thus in the
medical example of §10.3 there were four, rather different, conse-
quences that had first to be compared, and then some combinations
calculated so that you could choose between the two actions contem-
plated. Numbers do the combining more effectively than any other
device. A sensible strategy would therefore try reducing the compli-
cated consequences to numbers and see what happens. The result of
doing this, MEU, has much to recommend it and works very well
provided some limitations, explored in §10.11, are appreciated.

This is certainly the most powerful argument in support of
numeracy but there is a second argument that depends on the
recognition that the utility is not, and does not pretend to be, a
complete description of the consequence. It is only a summary that is
adequate for its purpose, namely to act in a particular context.
Similarly, the price of a book is a numerical description that takes
into account tangibles, like the number of pages, but also intangibles
like its popularity. Nevertheless it is adequate for the purpose of
distribution among the public, without describing all aspects of the
book. Neither utility nor price, which may well be different, capture
the total concept of a consequence or a book; they provide a summary
that is adequate for their intended purpose.
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The third reason for reducing all aspects of decision analysis to
numbers is that, properly done, it overcomes the supreme difficulty, not
just of combining beliefs, or contrasting preferences in the form of
consequences, but of combining beliefs with preferences. This has
historically proved a hard task. The solution proposed here is to
measure your preferences in terms of gambles on the best and worst,
so introducing probabilities, the measure that has already been used for
beliefs. By doing this, the two numerical scales, for beliefs and for
preferences, are the same and can, therefore, be combined in the form
of expected utility, where the expectation incorporates your belief
probabilities and the utility includes your preferences. Notice that the
amalgam of beliefs and preferences comes about through a rule of
probability; namely the extension of the conversation, as displayed in
Equation (10.1) of §10.3. It is the ingenious idea of measuring
preferences on a scale of probability that enables the combination
to be made, and the manner of its making is dictated by the calculus of
probability. It is not necessary to introduce a new concept in order to
achieve the combination, for the tool is already there. Alternatively
expressed, the use of expectation arises naturally and its use does not
involve an additional assumption.

The proceedings in a court of law show how these numerate ideas
might be used. The legal profession wisely separates the two aspects of
belief and decision (§10.14). In the trial, it is the responsibility of the
jury to deal with the uncertainty surrounding whether or not the
defendant is guilty. It is usually the judge who decides what to do
when the verdict is “guilty”. Our solution, which has considerable
difficulties in implementation but is sound in principle, is to have the
jury express a probability for guilt, instead of the apparently firm
assertion. The judge would then incorporate society’s utilities with the
probability provided and decide on the sentence by maximizing
expected utility. The key issue here is the combination of two different
concepts.

Underlying these ideas is the assumption that the jury acts as a
single person, a single “you”. The agreement is normally effected in
the jury room. We have little to say formally about the process of
reaching agreement, beyond remarking that the members will have
shared evidence that, as with the urns (§6.9), encourages beliefs to
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converge. A similar problem on a larger scale arises when society
presents a view from among the diverse opinions of its members.
Democracy currently seems the best way of achieving this, leading to
the majority attitude often being accepted. We might note that some
legal systems have moved toward the acceptance of majority, rather
than unanimous, verdicts by a jury.

10.9 EXPECTED UTILITY

The analysis in this chapter has introduced two ideas: utility and
expected utility. Returning to Equation (10.1), here repeated for
convenience,

pðbest jA2Þ ¼ pðbest jE and A2ÞpðE jA2Þ þ pðbest jEc and A2ÞpðEc jA2Þ;

the first probability on the right-hand side is a utility, namely that of the
consequenceE andA2, whereas the lone probability on the left we called
an expected utility. (Equation (10.2) may provide further clarification.)
We now demonstrate that the utility is itself an expectation. Because, in
the demonstration, the conditions,E andA2, remain fixed throughout, let
them effectively be forgotten by incorporating them into the knowledge
base so that the utility pðbest jE and A2Þ above is written p(best). Now
suppose that, in your formulation of the decision problem, you felt thatE
was not the only relevant, uncertain event but that you ought to think
about other uncertainties. Thus, in the medical example of §10.3, you
might, in addition to the uncertainty about your cancer, feel the
surgeon’s expertise is also relevant. In other words, you feel the need
to extend the conversation to include F, the event that the surgeon was
skilled. This gives

pðbestÞ ¼ pðbest jFÞpðFÞ þ pðbest jFcÞpðFcÞ: (10.7)

Now let us look at the first probability on the right-hand sidewhich,
in full, is

pðbest jEF and A2Þ
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on restoring E and A2. This is your utility of the consequence of taking
decision A2 with E and F both true. Similar remarks apply to
pðbest jFcÞ, with the result that the utility p(best), on the left-hand
side of (10.7) is revealed as an expected utility found by taking the
product of a utility pðbest jFÞ with its associated probability p(F) and
adding the similar product with Fc.

The argument is general and the conclusion is that any utility,
taking into account only E, is equal to an expected utility when
additional notice is taken of another event F. In fact, any utility is
really your expectation over all the uncertainties you have omitted
from your decision analysis. Thus the two terms, utility and expected
utility are synonymous. It is usual to use the former term when
uncertainty is not emphasized and use the adjective only when it is
desired to emphasize the expectation aspect. Whether you include F, or
generally how many uncertainties you take into account, is up to you
and is essentially a question of how small or large (§11.7) is the world
you need.

10.10 DECISION TREES

This is a convenient place to introduce a pictorial device that is often
very useful in thinking about a decision problem, using Table 10.3 as
an example. The fundamental problem is a choice between A1 and A2.
This choice is represented by a decision node, drawn as a square,
followed by two branches, one for A1 and one for A2, as in Figure 10.1.
If A1 is selected, either E or Ec arises, where the outcome, unlike a
decision node, is not in your hands but rests on uncertainty and is
therefore represented by a random node, drawn as a circle, followed by
two branches, one for E, one for Ec (Figure 10.1). Their respective
probabilities may be used as labels for the branches. The case (§10.6)
where these may depend on the act has been drawn. Similar nodes and
branches follow from A2. Finally, at the ends of the last 4 branches we
may write the utilities of the 4 consequences, like fruit on the tree, and
Figure 10.1 is complete. It is called a decision tree but, unlike nature’s
trees, it grows from left to right, rather than upright, the growth
reflecting time, the earlier stages on the left, the final ones, the
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consequences, on the right. Clearly any number of branches, corre-
sponding to acts, may proceed from a decision node, not just two as
here, and any number, corresponding to events, from a random node.
Although time flows from left to right, the analysis proceeds in reverse
time order, from right to left, from the imagined, uncertain future
back to now, the choice of act. To see how this works, consider the
upper, random node, that flowing from A1, where the branches
following, to the right, can be condensed to provide the expected
utility sp1 þ tð1� p1Þ (cf. Equation (10.6)) on multiplying each utility
on a branch by its corresponding probability and adding the
results. Similarly at the random node from A2 there is an expected
utility up2 þ vð1� p2Þ and, going back to the decision node, the choice
between A1 and A2 is made by selecting that with the larger expected
utility. The general procedure is to move from right to left, taking
expectations at a random node and maxima at a decision node.

It is easy to see how to include another event in the tree as in §10.9.
Consider the upper branches in Figure 10.1 proceeding through A1 and
E. Another random node followed by two branches, corresponding to
the extra events F and Fc, may be included as in Figure 10.2 with
utilities s1 and s2 at their ends, replacing the original utility s. Again we

A1 

A2 

p2 

p1 

1–p2 

1–p1 

E 

E 

E c 

E c 

s 

t 

u 

v 

FIGURE 10.1 Decision tree for the situation in §10.6.
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proceed from the far right, obtaining at the random node for F and Fc,
expected utility

s1pðF jEÞ þ s2pðFc jEÞ

that, we saw in §10.9, equals s, and we are back to Figure 10.1. Similar
extensions may be made at the three other terminations of Figure 10.1.
Notice again, the equivalence between the expected utility and the
original utility.

The real power of a decision tree is seen when there is a series of
decisions that have to be made in sequence, one after another, with
uncertain events occurring between. Without going into detail and
exhibiting the complete, large tree, consider a medical example where,
as above, there is initially a choice between two treatments A1 and A2.
Let us follow A1 and suppose event E occurs, that the patient develops
complications, when a further decision about treatment may need to be
made. Suppose treatment B is selected and event F then occurs. The
corresponding part of the tree is given in Figure 10.3. Probabilities may
be placed on the branches proceeding from the random node. In
principle the tree could continue forever with a contemplated series
of acts and events but, in practice, it will be expedient to stop after a
few branches. When it does, utility evaluations may be inserted at the
right-hand ends. In the example, it is natural to stop after F. Analysis of
the tree is simple in principle: proceed from right to left, at each
random node calculate an expected utility, at each decision node select

A1 

s1

p1 

s2 

p (F |EA1) 

p (F c |EA1) 

E 

F 

F c 

FIGURE 10.2 Decision tree with event F included.

u(A1EBF)

p(E|A1) p(F|A1EB) 

A1 E B F 

FIGURE 10.3 Decision tree with event E, B and F included.
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the branch with maximum expected utility. In the example of Fig-
ure 10.3, at the final, random node the probability on each branch, of
which only one is shown, is multiplied by the terminal utility and the
results added, giving the expected utility of B. With a similar
procedure for the actions alternative to B, that act among them of
maximum expected utility may be selected. This maximum effec-
tively replaces the branches labeled B and F in Figure 10.3, and we
are back to the simple form of Figure 10.1, except that we have only
drawn the uppermost sequences of branches, and a choice made, as
there, between A1 and A2.

Notice how the analysis of the tree proceeds in reverse time order,
from the acts and events in the future back to the present decisions.
This is reflected in an issue that applies generally in life and is captured
succinctly in the epigram:

you cannot decidewhat to do today until youhave decidedwhat
to do with the tomorrows that today’s decisions might bring.

A beautiful example of this is to be found in §12.3 where a decision
is taken that, in the short term is disadvantageous but, in the long term,
yields an optimum result. The medical example of Figure 10.3 illus-
trated this, for a choice between A1 and A2 now depends on events like
E and what act, like B, will be necessary to take tomorrow. The
construction of a decision tree demands that you think not solely in
terms of immediate effects but with serious consideration of longer
term consequences. Of course the tree will have to stop somewhere but
the timescale depends very much on the nature of the problem. The
little problem of which coat to wear need scarcely go beyond that day,
but decision problems about nuclear waste may need to consider
millennia.

10.11 THE ART AND SCIENCE OF DECISION ANALYSIS

The construction of a decision tree is an art form of real value, even
when separated from the numeracy of the science of probabilities and
utilities, and the analysis through maximization of expected utility.
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Thinking within the framework of the tree encourages, indeed almost
forces, you to think seriously about what might happen and what the
consequences could be if it did. Then again, like all good art, it is a fine
communicator in that it clearly presents to another person the problem
laid out in a form that is easily appreciated. Even if the reader is
uncomfortable with numeracy, despite the persuasive arguments that
have been used here, such a person can value the clarity of the tree.
They might also be impressed by the power and convenience that trees
offer. Decisions today affect decisions tomorrow. Events today affect
events tomorrow. The numerical approach offers a principled way to
combine these factors to make a sound recommendation for what to do
now. I look forward to an enlightened age when it will be thought
mandatory for any proposal for action to be accompanied by its
decision tree.

Unfortunately, the happy situation of the last sentence will not
easily come about because people in power perceive a gross dis-
advantage in trees and their associated probabilities and utilities;
namely that trees expose their thinking to informed criticism. Partly
this arises for the reason just given, that a decision tree is good art and
therefore a good communicator exposing the decision maker’s think-
ing to public gaze. But there is more to it than that, for the study of the
tree reveals what possible actions have been considered and how one
has been balanced against another. Also the tree tells us what uncertain
events have been considered: did a firm take into account accidents to
the work force, or only shareholders’ profits? This is before numeracy
enters and the uncertainties and consequences measured. Were they to
be included, then the exposure of the decision maker’s views would be
complete. Although probabilities have made some progress toward
acceptance so that, for example, one does see statements about the
chance of dying from lung cancer, utilities are hardly ever mentioned,
in my view because they expose the real motivations behind a
recommendation for action. An example will be met in §14.6, where
the current financial crisis is discussed. The bankers’ decision-making
may not have used MEU, but even if it did the bankers have been silent
about their utilities.

The introduction of decision trees, while it would go some way to
make society more open, would expose a more fundamental difficulty,
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the difference between personal and social utility, between the desires
of the individual and those of society. This is a conflict that has always
been with us and is clearly exposed by the apparatus of a decision tree.
Here is an example. An individual automobile driver, unencumbered
by speed limits, may feel that his utility is maximized by driving fast.
Partly to protect others on the road and partly because such a driver
may underestimate the danger to himself of driving fast, we have
agreed democratically to speed limits, and to fines for speeders. We
pay police to enforce these laws, and we pay fines if we speed and are
caught.We do so in order to change the individual utilities of drivers, to
make it individually optimal for them to drive more slowly.

The two utilities, of the individual and of society, are in conflict and
my own view is that a major unresolved problem is how to balance the
wishes of the individual against those of society. This is another aspect
of the point mentioned in §5.11 that the contribution that the methods
here described make toward our understanding of uncertainty and its
use in decision analysis, do not apply to conflict situations. Our view is
personalistic. This is not to say that the ideas cannot be applied to
social problems, they can; but they do not demonstrate how radically
different views may be accommodated. The way we proceed in a
democratic society is for each party to publish its manifesto, or
platform, and for the electorate to choose between them. An extension,
in the spirit of this book, would be for the platforms to include
probabilities but especially utilities. While this system may be the best
we have, it has defects and there is a real need for a normative system
that embraces dissent and is not as personalistic as that presented
here, though recall that the “you” of our method could be a
government, at least when it is dealing with issues within the country.
It is principally in dealing with another government that serious
inadequacies arise.

Our study of decision analysis does reveal one matter that is often
ignored, especially in elections. However you structure decision
making, either in the form of a table or through a tree, the choice
is always between the members of a list of possible decisions from
which you select what you think is the best. To put it differently, it
makes no sense to include another row in your table, or another branch
in your tree, corresponding to “do something else”. Nor, when the
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uncertain events are listed, does it make sense to include “something
else happens.” In both cases it is essential to be more specific, for
otherwise the subsequent development along the tree cannot be
foreseen, nor the numeracy included. It is not sensible, as a politician
suggested, to distinguish between known unknowns and unknown
unknowns. Everything is a choice between what is available. We have
mentioned that the construction of a decision tree is an art form and one
of the main contributions to good art is the ability to think of new
possibilities. Scientific method is almost silent on this matter, except to
make one aware of the need for innovation, yet it is surely true that
some good decision making has come about through the introduction
of a possibility that had not previously been contemplated. However,
once ingenuity has been exhausted, only choice remains:

One does not do something because it is good, but because it is
better than anything else you can think of.

In particular, you should vote in an election and choose the party
that you judge to be the best, for to deny yourself the choice allows
others to select.

A related merit of decision trees is that they encourage you to think
of further branches, either relating to an uncertain event or to another
possible action. For example, it has been suggested that good decision
makers are characterized by their ability to think of an act that others
have not contemplated. It is even possible that the art of making the
tree is more important than the science of solving it by MEU. Of
course, one has to balance the complication that arises from including
extra branches against the desire for simplicity.

10.12 FURTHER COMPLICATIONS

Before we leave decision analysis, there is one matter, more technical
in character, that must be mentioned. To appreciate this, return to
Figure 10.3, which is part of a decision tree in which action A1 resulted
in an event E, to which the response was a further act B, followed by an
event F, so that the time order proceeds from left to right. Here A1 is the
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first, and F the last, feature. At the end of the tree, on the right, it is
necessary to insert a utility in the form of a number. The point to make
here is that this utility, describing the consequence of acts A1 and B
with events E and F, could depend on all four of these branches, though
not, of course, on other branches like A2, which do not end at the same
place. Mathematically the utility of a consequence is a function of all
branches that lead to that consequence; here uðA1;E;B;FÞ. Thus it
would typically happen that A1, a medical treatment, would be costly in
time, money, and equipment, resulting in a loss of utility in comparison
with a simpler treatment like A2. Exactly how this is incorporated into
the final utility is a matter for further discussion; all that is being said
here is that the cost should be incorporated. Similarly E may have
costs, both in terms of hospital care and through long-term effects.

Similar remarks apply to the probabilities on the branches ema-
nating from random nodes. They can depend on all branches that
precede it to the left, before it in time. We have repeatedly emphasized
that probability depends on two things: the uncertain event and the
conditions under which the uncertainty is being considered. The latter
includes both what you know to be true and what you are supposing to
be true. This applies here and, for example, at the branch labeled with
the uncertain event F, the relevant probability is pðF jA1;E;BÞ since
A1, E, and B precede F and you are supposing them to be true. Similarly
you have pðE jA1Þ. It often happens that some form of independence
obtains, for example that given E and B, F is independent of A1. This
can be expressed in words by saying that the outcome of the second act
does not depend on the original act but only on its outcome. We may
then write pðF jE;BÞ, omitting A1. Such independence conditions play
a key role in decision analysis, in particular, making the calculations
much simpler than they otherwise would be.

Many people are unhappy with the wand device that was used to
construct our form of utility, so let us look at it more carefully and use
as an example a situation where you are trying to assess the utility of
your present state of health. Here you are asked to contemplate a magic
wand, which would restore you to perfect health but might go wrong
and kill you. You are being asked to compare your present state with
something better and with something worse, the comparison involving
a probability u that the wand will do its magic, and 1� u that it will
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cause disaster. With perfect health having utility 1, disaster utility 0, u
is the least value you will accept before using thewand and is the utility
of your present state. Many people object to the use of an imaginary
device, or what is often called a thought experiment, namely an
experiment that does not use materials but only thinking. Since you
have of necessity to think about a consequence, the procedure may not
be unreasonable. Recall too, the point made above, that we have to
make choices between actions, so that anyone who objects to wands
must produce an alternative procedure. Indeed, there are two questions
to be addressed:

1. How would you assess the quality of a consequence?
2. How would you combine this with the uncertainty?

As has been said before, utility as probability answers the second
question extremely well. As to the first, notice that the wand at least
provides a sensible measure. If your current state of health is fairly
good, the passage to perfect health would not be a great improvement,
so only worth a small probability of death. The last phrase means 1� u
is small and therefore u is near one. On the contrary, if you are in severe
pain, perfect health would be a great advance, worth risking death for,
and 1� u could be large, u near 0. So things go in the right direction,
but there is more to it than that, for the probability connection enables
us to exploit the powerful, basic device of coherence.

To see how this works consider four consequences labeled A, B, C,
andD, the more advanced the letter in the alphabet, the better it is, so A
is the worst, utility 0; D is the best, utility 1. B and C are the
intermediates with utilities u and v, respectively, with u less than v.
(See Figure 10.4). These values will have been obtained by the wand
device using A andD as before. Now another possibility suggests itself;
since B is an intermediate between A andC, why not consider replacing
B by a wand that would yield C with probability p and A with

0 u v 1 

A B C D 

FIGURE 10.4 Comparison of four utilities.
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probability 1� p. How should p relate to u and v? This is easily
answered, for you have just agreed to replace B by a probability p of C,
and previously you have agreed to replace C by a probability v of D.
Putting these two statements together by the product rule, you must
agree that B can be replaced by a probability pv of D. (In all these
replacements, the alternative is A.) But earlier B had been equivalent to
a probability u of D, so therefore

u ¼ pv or p ¼ u=v:

You may prefer to use a tree as in Figure 10.5 with random nodes
only and the probabilities, necessarily adding to 1, at the tips of the
tree. These considerations lead to the following practical device: Use
three wands to evaluate u, v, and p; then check that indeed p¼ u/v. If it
does, you are coherent; if not, then you must need to adjust at least one
of u, v, and p so that it is true for the adjusted values and coherence is
obtained. Without coherence, you would be a perpetual, money-
making machine (see §10.2).

There is more, for consider replacing C by a wand with probability
q of D and 1� q of B. How is q related to u and v? Since B can be
replaced by a probability 1� u at A, C must be equivalent to a
probability ð1� qÞð1� uÞ of A by the product rule again. But you
previously agreed that C could be replaced by 1� v at A, so

ð1� qÞð1� uÞ ¼ 1� v or 1� q ¼ ð1� vÞ=ð1� uÞ;

A 

A 

D 

1–v 
p(1–v)

pv 

1–p 

1–p 

p 

C 

B 

v 

FIGURE 10.5 Tree representation for utility comparison.
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and a further coherence check is possible. The important, general
lesson that emerges from these considerations is that if you need to
contemplate several consequences (at least four) then there are several
wands that you can use, not just to produce a utility for each conse-
quence but also to check on coherence. Indeed, as with probability,
there is a very real advantage in increasing the numbers of events and
consequences, because you thereby increase the opportunities for
checks on coherence. The argument is essentially one for coherence
in utility, as well as in probability, resulting in coherence in decision
analysis.

10.13 COMBINATION OF FEATURES

The ability to combine utility assessment with coherence becomes
even more important when the consequences involved concern two, or
more, disparate features. To illustrate, consider circumstances that
have two features, your state of health and your monetary assets. To
keep things simple, suppose there are two states of health, good and
bad; and two levels of assets, high and low. These yield four conse-
quences conveniently represented in Table 10.5.

The consequence of both good health and high assets is clearly the
best; that of bad health with low assets the worst, so you can ascribe to
them utilities 1 and 0, respectively and derive values u and v for the
other two, as shown in the table. Notice this table differs from earlier
ones in that no acts are involved. Suppose you are in bad health with
high assets, utility v, and that u¼ v, then you would be equally content,
because of the same utility, with good health and low assets. Expressed
differently, you would be willing to pay the difference between high

TABLE 10.5 Consequences with two features

Assets

Health Low High

Good u 1

Bad 0 v
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and low assets to be restored to good health. If v exceeds u, v > u, you
would not be prepared to pay the difference; but if u exceeds v, u > v,
you would be willing to pay even more.

In reality assets are on a continuous scale and not just confined to
two values; similarly health has many gradations. It is then more
convenient to describe the situation as in Figure 10.6 with two scales,
that for assets horizontally, increasing from left to right; that for health
vertically, the quality increasing as one ascends. In this representation
you would want to aim top-right, toward the northeast, whereas
unpleasant consequences occur in the southwest. Without any consid-
eration of uncertainty or any wands, you could construct curves, three
of which are shown in the figure, upon any one of which your utility is
constant, just as u might equal v in the tabulation. Moving along any
one of these curves, as from A to B in the figure, your perception of
utility remains constant and the loss in assets results in an improvement
in health. Movement in the contrary direction might correspond to
deteriorations in health caused by working hard in order to gain
increased assets. The same type of figure will be found useful
when financial matters are studied in §14.6.

The further northeast the curves are, the higher your utility on
them, and to compare the values on different curves you could use a
thought experiment of the type already considered. For example,
suppose you are at P with high assets but intermediate health, you

Assets

H
ea

lth

B

A

P

R

Q

FIGURE 10.6 Curves of constant utility with increasing health and increasing
assets.
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might think of an imaginary medical treatment that could either
improve your health to Q or make it worse at R, but costing you
money, so, losing you assets. What probability of improvement would
persuade you to undertake the treatment? There are many thought
experiments of this type that would both provide a utility along a curve
and also check on coherence. What this analysis finally achieves is a
balance between health and money, effectively trading one for the
other. Modern society uses money as the medium for the measurement
of many things, whereas decision analysis uses the less materialistic
and more personal concept of utility. People who have a lot of money
often say “money isn’t everything”, which is true, but utility is
everything because, in principle, it can embrace the enjoyment of a
Beethoven symphony or the ugliness of a rock concert, thereby
revealing an aspect of my utility. One aspect that is too technical to
discuss in any detail here is the utility of money or, more strictly, of
assets. Typically you will have utility for assets like that shown in
Figure 10.7, where you attach higher utility to increased assets, but the
increase of utility with increase in assets flattens out to become almost
constant at really high assets. For example, the pairs (A, B) and (P, Q)
in the figure correspond to the same change of assets but the loss in
utility in passing from A to B is greater than that from P to Q. For most
of us, the loss of 100 dollars (from P to Q, or A to B) is more serious
when we are poor at A, than when we are rich at P. A utility function
like that of Figure 10.7 can help us understand lots of monetary
behavior and is the basis, often in a disguised form, of portfolio

Assets
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FIGURE 10.7 Curve of increasing utility against increasing assets.
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analysis when one spreads one’s assets about in many different
ventures. Notice that we have used assets, not as often happens, gains
or losses, in line with the remarks in §10.6. It is where you are that
matters, not the changes. Another feature of Figure 10.7 is that utility is
always bounded, by 1 in the figure. There are technical reasons why
this should be so and the issue rarely arises in practice.

The discussion around Figure 10.6 revolved around two features,
there health and money, but the method extends to any number of
features, though a diagrammatic representation is not possible. The
idea is to think of situations that, for you, have the same utility, forming
curves in Figure 10.6, but imagined surfaces with more than two
features, finally using thought experiments to attach numerical values
to each surface. Here is an example which arose recently in Britain,
where “you” is the National Health Service (NHS). Thus we are talking
about social utility, rather than the utilities of individuals (see §10.11).
The three features are money, namely the assets of the NHS, the degree
of multiple sclerosis (MS), and the degree of damage to a hip. Notice
that we do not need to measure these last two features, any more than
we did health in the earlier example, utility will do that for us in the
context of a decision problem. The decision problem that arose was
inspired by the introduction of a new drug that was claimed to be
beneficial to those with a modest degree ofMS but was very expensive.
There were doubts concerning how effective it was, but let us ignore
this uncertainty while we concentrate on the utility aspects. The NHS
decided the drug was too expensive to warrant NHSmoney being spent
on it. This decision naturally angered sufferers from MS who pointed
out that the expected improvement in their condition would enable
them to work and thereby save the NHS on invalidity benefit. Where,
you may ask, does the hip damage come in? It enters because the
money spent on one patient with MS could be used to pay for 10
operations to replace a hip. So the NHS effectively had to balance 10
good hips against one person relieved of MS. Other features in lieu of
hips might have been used, for the point is that in any organization like
the NHS, there are only limited resources and, as a result, hips and MS
have to be compared. Our proposal is that the comparison should be
effected by utility, and the suggestion made that this utility be
published openly for all to see and comment upon. One can understand
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the distress to sufferers from MS by the denial of the drug but equally
the discomfort of 10 people with painful hips has to be thought about.
People are very reluctant to admit that there is a need for a balancing
act between MS and hips, but it is so. Utility concepts are a possible
way out of the dilemma, though, as mentioned before, they do not
resolve the conflict between personal and social utility.

10.14 LEGAL APPLICATIONS

Consider the situation in a court room, where a defendant is charged
with some infringement of the law, and suppose it is a trial by jury.
There is one uncertain event of importance to the court—Is the
defendant guilty of the offence as charged?—which event is denoted
by G. Then it is a basic tenet of this book that you, as a member of the
jury, have a probability of guilt, pðG jK Þ, in the light of your back-
ground knowledge K . (There are many trials held without a jury, in
which case “you” will be someone else, like a magistrate, but we will
continue to speak of “juror” for linguistic convenience.) We saw in
§6.6 how evidence E before the court would change your probability to
pðG jEK Þ using Bayes rule. The calculation required by the rule needs
your likelihood ratio pðE jGK Þ=pðE jGcK Þ, involving your probabili-
ties of the evidence, both under the supposition of guilt and of
innocence, Gc. It was emphasized how important it was to consider
and to compare evidence in the light both of guilt and of innocence.

Before evidence is presented, it is necessary to consider carefully
what your background knowledge is. As a member of the jury, you are
supposed to be a representative of society and to come to court with the
knowledge that a typical member of society might possess. As soon as
the trial begins, you will learn things, like the formal charge; and you
will also see the defendant, so enlarging K . At this point you may be
able to contemplate a numerical value for your probability. For
example, if the charge is murder, where all admit that a person was
killed, you may feel it reasonable to let pðG jK Þ ¼ 1=N, where N is
the population of the country towhich the law pertains, on the principle
that someone did the killing and until specific evidence is produced,
no person is more probable than any other. (The law says all are
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innocent until proved guilty but that is not satisfactory since it says
pðGc jK Þ ¼ 1 in default of Cromwell’s rule, for someone did the
killing.) If evidence comes that the killing was particularly violent and
must have been committed by a man, you may wish to replace N by the
number of adult males.

There are cases where the assignment of the initial probabilities,
pðG jK Þ, is really difficult. Suppose the charge is one of dangerous
driving in which all accept that a road accident occurred with
the defendant driving. Also suppose the only point at issue is whether
the defendant’s behavior was dangerous or whether some circum-
stance arose which he could not reasonably have foreseen. One
suggestion is to say that initially you have no knowledge and both
possibilities are equally likely, so pðG jK Þ ¼1/2. But this is hardly
convincing since several different circumstances might equate to the
defendant’s innocence, so why not put pðG jK Þ ¼ 1=ðnþ 1Þ if you
can think of n different circumstances?

A possible way out of difficulties like these is to recognize that
your task as a juror is to assess the defendant’s guilt in the light of all
the evidence, so that fundamentally all that you need is pðG jEK Þ,
where E is the totality of the evidence. The point of doing calculations
on the way as pieces of evidence arrive is to exploit coherence and
thereby achieve a more reasonable final probability than otherwise. As
a result of these ideas, one possibility is to leave pðG jK Þ until K has
been inflated by some of the evidence, sufficient to give you some
confidence in your probability, and only then exploit coherence by
updating with new evidence. There is no obligation to assess every
probability; we have a framework which can be as big or as small as
you please, increased size having the advantage of more coherence.
The situation is analogous to geometry. You might judge that a carpet
will fit into a room, or you may measure both the carpet and the room
and settle the issue. The measurement uses geometrical coherence,
direct judgment does not but may be adequate. The ideas here are
related to the concepts of small and large worlds (§11.7).

In using the coherence argument in court, a difficulty can arise
when two pieces of evidence are presented. Omitting explicit reference
to the background knowledge in the notation, because it stays fixed
throughout this discussion, the first piece of evidence, E1, will change

10.14 LEGAL APPLICATIONS 261



your probability to pðG jE1Þ. When the second piece of evidence E2 is
presented, a further use of Bayes rule will update it to pðG jE1E2Þ and
the relevant likelihood ratio will involve pðE2 jGE1Þ and pðE2 jGcE1Þ.
(To see this apply Bayes rule with all probabilities conditional on at
least E1.) To appreciate what is happening, take the case where the two
pieces of evidence are of different types. For example, E1 may refer to
an alibi and E2 to forensic evidence provided by a blood stain. If you
judge them to be independent (§4.3) given guilt and also given
innocence, so that pðE2 jGE1Þ ¼ pðE2 jGÞ, the updating by E2 is
much simpler since E1 is irrelevant. In contrast, take the position
where they are both alibi evidence, then you may feel that the two
witnesses have collaborated and the independence condition fails.
In which case you might find it easier to consider E1E2 as a single piece
of evidence and update p(G) to pðG jE1E2Þ directly without going
through the intermediate stage with only one piece of evidence.
Independence is a potentially powerful tool in the court room but it
has to be introduced with care.

At the end of the trial the jury is asked to pronounce the defendant
“guilty” or “not guilty”; in other words, to decide whether the charge is
true or false. According to the ideas presented in this book, the
pronouncement is wrong, for the guilt is uncertain and therefore
what should be required of the jury is a final probability of guilt.
Hopefully this might be near 0 or 1, so removing most of the
uncertainty, but society would be better served by an honest reflection
of indecision, such as probability 0.8. Actually the current requirement
for “guilt” is “beyond reasonable doubt” in some cases and “on the
balance of probabilities” in others. For us, the latter is clear, probability
in excess of one half, but the former, like most literary expressions, is
imprecise and senior judges have been asked to say what sort of
probability is needed to be beyond reasonable doubt; essentially what
is “reasonable”? The value offered may seem low, a probability of 0.8
frequently being proposed. A statistician might say at least 0.95. I think
the question of guilt is wrongly put and that the jury should state their
probability of guilt.

There is an interesting separation of tasks in an English court,
where the jury pronounces on guilt but the judge acts in passing
sentence, which is automatic in the case of a “not guilty” verdict. This
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is somewhat in line with the treatment in this book, the jury dealing
with probability, the judge dealing in decision making. If judges are to
act coherently they will need utilities to combine with the probability
provided by the jury. The broad outlines of these utilities could be
provided by statute, though the judge would surely need some freedom
in interpretation since no drafting can cover all eventualities. As an
example, I suggest that instead of saying that a maximum fine for an
offence should be 100 dollars, perhaps 1% of assets might be a more
reasonable maximum, so that a rich person’s illegal parking could have
a significant effect on reducing taxes. The point here is that a fine is not
a way of raising money but a deterrent, so that 100 dollars deters the
poor more than the rich. Utility considerations could also reflect
findings in penology.

The thesis of this book impinges on court practice in other ways.
The law at the moment rules that some types of evidence are
inadmissible, so that they are denied to the jury, though the judge
may be aware of them in passing sentence. However, it was seen in
§6.12 that data, or evidence, is always expected to be of value, in the
sense that your expected value of the information provided by evidence
is always positive; so that, as a member of the jury, you would expect
the inadmissible evidence to help you in your task. Evidence has a cost
that needs to be balanced against the information gain, using utility
considerations as in §10.13. Hence the recommendation that flows
from our thesis is that the only grounds for excluding evidence are on
grounds of cost. It has been argued by lawyers that evidence should be
excluded because jurors could not handle it sensibly. This is a valid
argument in the descriptive mode but ceases to be true in the normative
position. When the jurors are coherent, all evidence might be admitted.

Another way in which probability could affect legal practice is in
respect of the double jeopardy rule whereby someone may not be tried
twice for the same offence. If new evidence arises after the completion
of the original trial and is expected to provide a lot of information, then
the court’s probability will be expected to be changed. The present rule
may partly arise through the jury’s being forced to make a definite
choice between “guilty” and “not guilty” and the law’s natural
reluctance to admit a mistake. With an open recognition of the
uncertainty of guilt by the jury stating a probability, what had been
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perceived as a mistake becomes merely an adjustment of uncertainty.
The case for every juror, and therefore every citizen, having an
understanding of uncertainty and coherence becomes compelling.

There is one aspect of the trial that our ideas do not encompass and
that is how the individual jurors reach agreement; how do the twelve
“yous” become a single “you”? This was mentioned in §10.8. A rash
conjecture is that if coherence were exploited then disagreement might
be lessened. Another feature of a trial that needs examination in the
light of our reasoned analysis is the adversarial system with prosecu-
tion and defense lawyers; a system that has spread from the law to
politics in its widest sense where we have pressure groups whose
statements cannot be believed because they are presenting only one
side of the case. After all, there is another method of reaching truth that
has arguably been more successful than the dramatic style that the
adversarial system encourages. It is called science and is the topic of
Chapter 11.

The above discussion only provides an outline of how our study of
uncertainty could be used in legal contexts, namely as a tool that
should improve the way we think about the uncertain reality that is
about us. While it is no panacea, it is a framework for thinking that has
the great merit of using that wonderful ability we have to reason, which
yet enables our emotional and other preferences to be incorporated.
The calculus of probability has claim to be one of the greatest of human
kind’s discoveries.
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CHAPTER11

Science

11.1 SCIENTIFIC METHOD

The description of uncertainty, in the numerical form of probability,
has an important role to play in science, so it is to this usage that we
now turn. Before doing so, a few words must be said about the nature
of science, because until these are understood, the role of uncertainty
in science may not be properly appreciated.

The central idea in our understanding of science, and one that
affects our whole attitude to the subject, is that

The unity of all science consists alone in its method, not in its
material.

Science is a way of observing, thinking about, and acting in the
world you live in. It is a tool for you to use in order that you may enjoy
a better life. It is a way of systematizing your knowledge. Most people,
including some scientists, think that science is a subject that embraces
topics like chemistry, physics, biology but perhaps not sociology or
education; some would have doubts concerning fringe sciences like
psychology, and all would exclude what is ordinarily subsumed under
the term “arts”. This view is wrong, for science is a method, admittedly
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a method that has been most successful in those fields that we normally
think of as scientific and less so in the arts, but it has the potentiality to
be employed everywhere. Like any tool, it varies in its usefulness, just
as a spade is good in the garden but less effective in replacing a light
bulb. The topic of this chapter is properly called the scientific method,
rather than science, but the proper term is cumbersome and the shorter
one so commonly used that we shall frequently speak of “science”
when precision would really require “scientific method”.

In the inanimate world of physics and chemistry, the scientific
method has been enormously successful. In the structure of animate
matter, it has been of great importance, producing results in biology
and allied subjects. Scientific method has had less impact in fields
where human beings play an important role, such as sociology and
psychology, yet even there it has produced results of value. Until
recently it has had little effect on management, but the emergence of
the topic of management science testifies to the role it is beginning to
play there, a role that may be hampered by the inadequate education
some managers have in mathematical concepts. We have already noted
in §6.5 how probability, which as we shall see below is an essential
ingredient in scientific method, could be used in legal questions where
its development is influenced by the conservatism of the legal profes-
sion. Politics and warfare have made limited use of the method. The
method has made little contribution to the humanities, though
indirectly, through the introduction of new materials developed by
science, it has had an impact on them. For example, the media would
be quite different without the use of the technological by-products of
science, like television and printing. Even the novel may have changed
through being produced on a word processor rather than with a pen.

11.2 SCIENCE AND EDUCATION

The recognition that science is a method, rather than a topic, has
important consequences, not least in our view of what constitutes a
reasonable education. It is not considered a serious defect if a chemist
knows nothing about management, or a manager is ignorant of
chemistry, for some specialization is necessary in our complicated
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world. But for anyone, chemist or manager, to know nothing of the
scientific method is to deprive them of a tool that could prove of value
in their work. It used to be said that education consisted of the three
R’s, reading, writing, and arithmetic, but the time may have come to
change this, and yet preserve the near-alliteration, to reading, writing,
and randomness, where randomness is a substitute for probability
and scientific method; for, as will be seen, uncertainty, and therefore
probability, is central to the scientific approach. To lack a knowledge of
scientific method is comparable in seriousness to a lack of an ability to
read, or to write. Just as the ability to write does not make you a writer,
neither does the understanding of scientific method make you a
scientist; what it does is enable you to understand scientific arguments
when presented to you, just as you can understand writing. All of us
need to understand the tool, many of us need to use it.

It is not only the ability to use the scientific method that is lacking
but also the simpler ability to understand it when it is used. It is easy to
appreciate and sympathize with a mother whose young child is given
a vaccine and then, a few months later, develops a serious illness,
attributing the former as the cause of the latter. Yet if that mother
has a sound grasp of the scientific method (not of the science of
vaccination) she would be able to understand that the evidence for
causation is fragile, and she would see the social implications of not
giving infants the vaccine. We must at least understand the tool, even if
we never use it. Here is a tool that has been of enormous benefit to all of
us, has improved the standard of living for most of us, and has the
potentiality to enhance it for all, yet many people do not have an
inkling of what it is about. We do not need to replace our leaders by
scientists, that might be even worse than the lot we do have, but we do
require leaders who can at least appreciate, but better still use, the
methodology of science.

In this connection it is worth noting that many scientists do not
understand scientific method. This curious state of affairs comes about
because of the technological sophistication of some branches of
science, so that some scientists are essentially highly skilled techni-
cians who understandably do not deal with the broad aspect of their
field but rather, are extremely adept at producing data that, as we shall
see, play a central role in science. There is a wider aspect to this. Some
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philosophers of science see the method as a collection of paradigms;
when a paradigm exhibits defects, it is replaced by another. Scientific
method is seen at its height during a paradigm shift but many scientists
spend all their lives working within a paradigm and make little use of
the method. My own field of statistics is currently undergoing a
paradigm shift that is proving difficult to make. An eminent scientist
once said that it is impossible to complete the introduction of a new
paradigm until the practitioners of the old one have died. Another,
when asked advice about introducing new ideas, said succinctly
“Attend funerals”. But this is descriptive; we shall see later that
change is integral to normative science.

The appreciation that science is a tool can help to lessen the
conflict that often exists between science and other attempts to
understand and manage the world, such as religion. There is no conflict
between a saw and an axe in dealing with a tree; they are merely
different tools for the same task. Similarly there is no conflict at a basic
level between a scientist and a poet. Conflict can arise when the two
tools produce different answers, as when the Catholic religion gave
way and admitted, on the basis of scientific evidence, that the sun, and
not the earth, was the center of the solar system. Poetry can conflict
with science because of its disregard of facts, as when Babbage
protested at Tennyson’s line “Every moment dies a man, every
moment one is born,” arguing that one and one-sixteenth is born;
or when a modern poet did not realize there is a material difference
between tears of emotion and those caused by peeling onions.

Let us pass from general considerations and ask the question: If
science is a method, of what does it consist and, more specifically,
what has it to do with uncertainty?

11.3 DATA UNCERTAINTY

One view is that scientific pronouncements are true, that they have the
authority of science and there is no room for uncertainty. Bodies falling
freely in a vacuum do sowith constant acceleration irrespective of their
mass. The addition of an acid to a base produces salt and water. These
are statements that are regarded as true or, expressed differently, have
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for you probability 1. Many of the conclusions of science are thought
by all, except by people we would regard as cranks, to be true, to be
certain. Yet we should recall Cromwell’s rule (§6.8) and remember that
many scientific results, once thought to be true, ultimately turned out
to need modification. The classic example is Newton’s laws that
have been replaced by Einstein’s, though the former are adequate for
use on our planet. Then there are statements about evolution like
“Apes and men are descended from a common ancestor”, which for
almost everyone who has contributed to the field are true, but where
others have serious doubts, thereby emphasizing that probability is
personal. There may be serious differences here between the descrip-
tive and normative views. However, most readers will have proba-
bility nearly 1 for many scientific pronouncements. The departure
from 1, that you recognize as necessary because of Cromwell, is
so slight as to be ignored almost all the time. It is not here that
uncertainty enters as an important ingredient of the scientific method
but elsewhere.

Anything like a thorough treatment of scientific methodology
would take too long and be out of place in a book on uncertainty.
Our concern is with the role of uncertainty, and therefore of probabil-
ity, in science. A simplified version of the scientific method notes three
phases. First, the accumulation of data either in the field or in the
laboratory; second, the development of theories based on the data; and
third, use of the theories to predict and control features of our world. In
essence, observe, think, act. None of these phases is productive on its
own, their strengths come in combination, in thinking about data and
testing the thoughts against reality. The classic example of the triplet is
the observation of the motions of the heavenly bodies, the introduction
of Newton’s laws, and their use to predict the tides. Some aspects of the
final phase are often placed in the realm of technology, rather than
science, but here we take the view that engineering is part of the
scientific method that embraces action as well as contemplation.
The production of theories alone has little merit; their value mainly
lies in the actions that depend on them.

Immediately the three aspects are recognized, it becomes clear
where one source of uncertainty is present—in the data—for we have
seen in §9.1 that the variation inherent in nature leads to uncertainty
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about measurements. Scientists have always understood the variability
present in their observations and have taken serious steps to reduce it.
Among the tools used to do this are careful control in the laboratory,
repetition in similar circumstances, and recording associated values
in recognition of Simpson’s paradox. The early study of how to handle
this basic variation was known as the theory of errors because the
discrepancies were wrongly thought of as errors; as mistakes on the
scientist’s part. This is incorrect and we now appreciate that variation,
and hence uncertainty, is inherent in nature. Referencewas made above
to the mother whose child became seriously ill after vaccination.
To attribute cause and effect here may be to ignore unavoidable
variability. The scientific method therefore uses data and recognizes
and handles the uncertainty present therein.

To a scientist, it is appalling that there are many people who do not
like data, who eschew the facts that result from careful observation and
experiment. Perhaps I should not use the word “facts” but to me the
observation that the temperature difference is 2.34 �C is a fact, despite
the next time the observation is 2.71 �C. The measurement is the fact,
not the true temperature. We are all familiar with the phrase, “Do not
bother mewith facts, my mind is made up”. It is a natural temptation to
select the “facts” that suit your position and ignore embarrassing
evidence that does not. Some scientists can be seen doing this, my
position is that this is a description of bad science; normative scientists
are scrupulous with regard to facts, as will be demonstrated in §11.6.
The best facts are numerical, because this permits easier combination
of facts (§3.1), but there are thosewho argue that some things cannot be
measured. Scientific method would dispute this, only admitting that
some features of life are hard to measure. Older civilizations would
have used terms like “warm”, “cold” to describe the day, whereas
nowadays we measure using temperature expressed in degrees, and
when this proves inadequate we include wind speed and use wind chill.
Yes, some things are hard to measure, and until the difficulty is
overcome it may be necessary to use other methodologies besides
science. We do not know how to measure the quality of a piece of
music, though the amount of money people are prepared to pay to hear
Elton John, rather than Verdi (§2.4), tells us something, though surely
not all, about their respective merits.
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From a scientific viewpoint, the best facts, the best data, are often
obtained under carefully controlled conditions such as those that are
encountered in a laboratory. This is perhaps why laypersons often
associate science with white-coated men and women surrounded by
apparatus. There are many disciplines where laboratory conditions
would not tell all the story and work in the field is essential; then, as we
have seen in §8.2, other factors enter. Herein lies an explanation of why
physics and chemistry have proceeded faster in scientific development
than botany or zoology, which have themselves made more progress
than psychology or sociology, and why the scientific method finds
little application in the humanities. Recall that science is a method and
does not have a monopoly on tools of discovery, so its disappointing
performance in the humanities is no reflection on its merit elsewhere,
anymore than a spade is unsound because it is of little use in replacing
a light bulb.

11.4 THEORIES

When scientists have obtained data, what do they do with them? They
formulate theories. This is the second stage in the method, where the
hard evidence of the senses is combined with thought; where data and
reason come together to produce results. To appreciate this combina-
tion it is necessary to understand the meaning of a theory and the role it
plays in the analysis. One way to gain this appreciation is to look at
earlier work before the advent of modern science.

Early man, the hunter, must have been assiduous in the gathering
of data to help him in the hunt and in his survival. He will have noted
the behavior of the animals, of how they responded to the weather
and the seasons, of how they could be approached more effectively to
be killed. All these data will have been subject to variation, for an
animal does not always respond in the same way, so that the hunter
will have had to develop general rules from the variety of observa-
tions in the field. From this synthesis, he must have predicted what
animals were likely to do when engaged in the future. Indeed, we can
say that one of the central tasks of man must always have been to
predict the future from observations on the past. Let us put this
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remark into the modern context of the language and mode of thinking
that has been developed in this book. Thinking of future data, F say,
which is surely uncertain now, and therefore described by probabil-
ity, is dependent on past data, D, in the form pðF jDÞ, your proba-
bility of the future, given your experience of the past. Expressed in
modern terms, a key feature of man’s endeavor must always have
been, and remains so today, to assess pðF jDÞ.

The same procedure can be seen later in the apprenticeship system
where a beginner would sit at the foot of the master for a number of
years and steadily acquire the specific knowledge that the latter had. In
the wheelwright’s shop, he would have understood what woods to use
for the spokes, that different woods were necessary for the rim and how
they could be bent to the required shape, so that eventually he could
build as good a wheel as his mentor. Again we have pðF jDÞwhere F is
the apprentice’s wheel and D those of the master that he has watched
being built, using past data on the behavior of the woods to predict
future performance of the new wheel.

The situation is no different today when a financial advisor tries to
predict the future behavior of the stock market on the basis of its past
performance; or when you go to catch the train, using your experience
of how late it has been in the past; or when a farmer plants his seed
using his experience of past seasons. Prediction on the basis of
experience is encapsulated in a probability, though it is not a proba-
bility you can easily assess or calculate with. Conceptually it is an
expression of your opinion of the future based on the past. How does
this differ from science? As a start in answering this question, let us
take a simple example that has been used before but we look at it
somewhat differently. The example, as a piece of science, is ridicu-
lously simple, yet it does contain the basic essentials upon which real
science, with its complexity, can be built. Remember that simplicity
can be a virtue, as will later be seen when we consider real theories,
rather than the toy one of our example.

We return to the urn of §6.9, containing a large number of balls, all
indistinguishable except that some are colored red, some white, and
from which you are to withdraw balls in a way that you think is
random. This forms part of your knowledge base and remains fixed
throughout what follows. Suppose you have two rival theories, R that
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the urn contains two red balls for every white one, and W that the
proportions are reversed with two white to every red (§6.9), conve-
niently calling the first the red urn, the second the white one. Suppose
that you do not know whether the urn before you is the red or the white
one. It will further be supposed that your uncertainty about which urn
it is, is captured by your thinking that they are equally probable, though
this is not important for what follows. In other words, for you p(R)¼
p(W)¼ 1=2. Now suppose that you have taken a ball from the urn and
found it to be white, this being the past data D in the exposition above,
and enquire about the event that the next ball will be red, future data F.
Recall that earlier we used lowercase letters for experiences with the
balls, reserving capital letters for the constitutions of the urns, so that
past data here is w and you are interested in the future data being r. In
probability terms, you need pðr jwÞ. In §7.6 we saw how to calculate
this by extending the conversation to include R and W, the rival
possibilities, so that

pðr jwÞ ¼ pðr jR;wÞpðR jwÞ þ pðr jW ;wÞpðW jwÞ: (11.1)

When this situation was considered in §6.9, our interest lay in
pðR jwÞ, your probability, after a white ball had been withdrawn,
that the urn was red, and its value was found, by Bayes rule, to be 1=3,
down from its original value of 1=2. Similarly pðW jwÞ ¼ 2=3, is up
from 1=2. These deal with two of the probabilities on the right-hand
side of (11.1) but here our concern is primarily with the other two.
Let us begin with pðr jR;wÞ; in words, the probability that the future
drawing will yield a red ball, given that the urn is the red one from
which a white ball has been drawn. Now it was supposed that the urn
contains a large number of balls, so that the withdrawal of one ball, of
whatever color, has no significant effect on the withdrawal of another
ball and the probability of getting a future red ball remains the same
as before, depending only on whether it was the red R or the white W
urn. In our notation, pðr jR;wÞ ¼ pðr jRÞ or, better still, using the
language of §4.3, r and w are independent, given R. Once you know
the constitution of the urn, successive withdrawals are independent, a
result which follows from your belief in the randomness of the
selection of the balls. The same phenomenon occurs with the white
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urn and the remaining probability on the right, pðr jW ;wÞ will
simplify to pðr jWÞ. It is this conditional independence that we
wish to emphasize, so let us display the result:

pðr jR;wÞ ¼ pðr jRÞ: (11.2)

Now translate this result back into the language of the scientific
method, where we have already met past data D, which in the urn
example is w, and the future data F, here r, so that all that is lacking is
the new idea of a theory. It does not stretch the English language too far
to say that you are entertaining the theory that the urn is red, and
comparing it with an alternative theory that it is white. If we denote a
theory by the Greek letter theta, u, we may equate R with u andW with
uc. Here uc is the complement of u, meaning u is false, or uc ¼ W is
true. Accepting this translation, (11.2) says

pðF j u;DÞ ¼ pðF j uÞ;

or that past and future data are independent, given u. The same result
obtains with uc in place of u.

This is the important role that a theory plays in the manipulation
of uncertainty within the scientific method, in that it enables the
mass of past data D to be forgotten, in the evaluation of future
uncertainty, and replaced by the theory. Instead of pðF jDÞ all you
need is pðF j uÞ. This is usually an enormous simplification, as in the
classic example mentioned above where past data are the vast
number of observations on the heavenly bodies, the theory is that
of Newton, and parts of the future data concern prediction of the
tides. We have emphasized in §2.6 the great virtue of simplicity.
Here is exposed a brilliant example where all the observations on the
planets and stars over millennia can be forgotten and replaced by a
few simple laws that, with the aid of mathematics and computing,
can evaluate the tides.

There is a point about the urn discussion that was omitted in order
not to interrupt the flow but is now explored. Although r and w are
independent, given R, according to (11.2), they are not independent,
given just K . The reader who cares to do the calculations in (11.1) will
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find that pðr jwÞ ¼ 4=9, down from the original value of p(r)¼ 1=2, the
withdrawal of a white ball making the occurrence of a red one slightly
less probable. This provides a simple, yet vivid, example of how
independence is always conditional on other information. Here r and w
are dependent given only the general knowledge base, which is here
that the urns are either 2/3 red or 2/3 white and that thewithdrawals are,
for you, random. Yet when, to that knowledge base, is added the theory,
that R obtains, they become independent. Much writing about proba-
bility fails to mention this dependence and talks glibly about indepen-
dence without reference to the conditions, so failing to describe an
essential ingredient of the scientific method. The urn phenomenon
extends generally when F and D are dependent on the apprentice’s
knowledge base, but are independent for the scientist in possession of
the theory.

Returning to the scientific method, it proceeds by collecting data in
the form of experimental results in the laboratory, as in physics or
chemistry, or in the field, as in biology, or by observation in nature, as
in sociology or archaeology. It then studies what is ordinarily a vast
collection of information. Next, by a process that need not concern us
here because it hardly has anything to do with uncertainty, a theory is
developed, not by experimentation or observation, but by thought.
In this process, the scientist considers the data, tries to find patterns in
it, sorts it into groups, discarding some, accepting others; generally
manipulating data so that some order becomes apparent from the
chaos. This is the “Eureka!” phase where bright ideas are born out of a
flash of inspiration, Most flashes turn out, next day, to bewrong and the
idea has to be abandoned but a few persist, often undergoing substan-
tial modification and ultimately emerge as a theory that works for the
original set of data. This theory goes out into the world and is tested
against further data. Neither observation nor theory on their own are of
tremendous value. The great scientific gain comes in their combina-
tion; in the alliance between contact with reality and reasoning about
concepts that relate to that reality. The brilliance of science comes
about through this passage from data to theory and then, back to more
data and, more fruitfully, action in the face of uncertainty. Let us now
look at the role of uncertainty not only in the data, where its presence
has been noted, but in the theory.
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11.5 UNCERTAINTY OF A THEORY

As mentioned in the first paragraph of §11.3, many people think that a
scientific theory is something that is true, or even worse, think that any
scientific statement has behind it the authority of science and is
therefore correct. Thus when a scientist recently said that a disease,
usually known by its initials as BSE, does not cross species from cattle
to humans, this was taken as fact. What the scientist should have said
was “my probability that it does not cross is . . . ”, quoting a figure
that was near one, like 0.95. There is a variety of reasons why this was
not done. That most sympathetic to the scientist, is that we live in
a society that, outside gambling, abhors uncertainty and prefers an
appearance of truth, as when the forecaster says it will rain tomorrow
when he really means there is a high probability of rain. A second
reason why the statement about BSE was so firm is that scientists, at
the time, had differing views about the transfer across species, so that
one might have said 0.95, another 0.20. We should not be surprised at
this because, from the beginning, it has been argued that uncertainty,
and therefore probability, is personal. The reason for the possible
difference is that the data on BSE were not extensive and, to some
extent, contradictory and, as wewill see below, it is only on the basis of
substantial evidence that scientists reach agreement. Scientists do not
like to be seen disagreeing in public, for much of what respect they
have derives from an apparent ability to make authoritative statements,
which might be lost if they were to adopt an attitude less assertive. A
third, related reason for scientists often making a firm statement, when
they should incorporate uncertainty, is that they need coherently to
change their views yet they like to appear authoritative, or feel the
public wants them to be. This change comes about with the acquisition
of new data and the consequent updating by Bayes rule. If the original
statement was well supported, then the change will usually be small,
but if, as with BSE, the data are slight, then a substantial shift in
scientific opinion is reasonable. It is people with rigid views who are
dangerous, not those who can change coherently with extra data. I was
once at a small dinner party when a senior academic made a statement,
only to have a young lady respectfully point out that was not what he
had said a decade ago. He asked what he had said, she told him, he
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thought for a while and then said “Good, that shows I have learnt
something in the last ten years”. Scientists, and indeed all of us, do not
react to new information as much as we ought, instead adhering to
outmoded paradigms. A fourth, and less important, reason for making
firm statements is that scientists commonly adopt the frequency view
of probability (§7.7), which does not apply to a specific statement
about a disease because there is no obvious series in which to embed it.
This reason will be discussed further when significance tests are
considered in §§11.9 and 14.4.

The truth of the matter is that when it is first formulated, and in
the early stages of its investigation, any theory is uncertain with the
originator of the theory having high probability that it is true, whereas
colleagues, even setting aside personal animosities, are naturally scep-
tical. It is only with the accumulation of more data that agreement
between investigators can be attained and the theory given a probability
near to 0 or 1, so that, in the latter case, it can be reasonably asserted to be
true,whereas in the former, it can be dismissed. To see how thisworks let
us return to the urns with two “theories”, R andW. In §6.8 we saw that in
repeated drawings of balls from the urn, every red ball doubled the odds
in favor of it being the red urn and every white ball halved the odds. If it
really was the red urn, R, with twice as many red as white balls, in the
long run there would be twice as many doublings as halvings and the
odds on R would increase without limit. Equivalently, your probability
of R would tend to 1. Similarly were it the white urn W, its probability
would tend to 1. In other words, the accumulation of data, in this case
repeatedwithdrawals of balls from the urn, results in the true theory,R or
W, being established beyond reasonable doubt, to use the imprecise,
legal terminology, or with probability almost 1.

Another illustration of how agreement is reached by the accumu-
lation of data, even though there was dispute at the start, is provided by
the evaluation of a chance in §7.7. Recall that, in an exchangeable
series of length n, an event had occurred r times and it was argued that
ðnf þ mgÞ=ðnþ mÞ might be your probability that it would occur next
time; here m and g referring to your original view and f ¼ r=n. As the
length n of the series increases, nf and n become large in comparison
with mg and m so that the expression reduces almost to nf=n ¼ f ,
irrespective of your original views.
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11.6 THE BAYESIAN DEVELOPMENT

To see how this works in general, take the probability of future data,
given the theory and past experience, pðF j u;DÞ, which, as was seen in
§ 11.4, does not depend on the past data, so may be written pðF j uÞ. We
now examine how this coheres with your uncertainty about the theory,
pðu jDÞ. Since D, explicitly or implicitly, occurs everywhere as a
conditional, becoming part of your knowledge base, it can be omitted
from the notation and can (nearly) be forgotten, so that you are left with
pðF j uÞ and pðuÞ. Applying Bayes rule in its odds form (§6.5, with a
change of notation)

oðu jFÞ ¼ pðF j uÞ
pðF j ucÞ oðuÞ:

Here your initial odds oðuÞ—which depends on past data omitted from
the notation—is updated by future, further data F, to revise your odds
to oðu jFÞ. “Future” here means after the theory u has been formulated
on the basis of past data. Suppose now that F is highly probable on u,
but not on uc; then Bayes rule shows that oðu jFÞ will be larger than
oðuÞ, because the likelihood ratio will exceed one, so that the theory
will be more strongly supported. (Recall, again from §6.5, that the
rule can be written in terms of likelihoods.) The result in the last
sentence may alternatively be expressed by saying that if u is more
likely than uc on the basis of F, its odds, and therefore its probability,
will increase. This is how science proceeds; as data supporting a
theory grows, so your probability of it grows. If the data do not
support the theory, your probability decreases. In this way Bayes and
data test a theory. Science proceeds by checking the theory against
increasing amounts of data until it can be accepted and BSE asserted
to cross species, or rejected, showing that it cannot. It is not until this
stage that scientific authority is really authoritative. Before then, the
statements are uncertain.

There are some details to be added to the general exposition just
given about the establishment of a theory. Notice that a theory never
attains a probability of 1. Your probability can only get very close to 1,
as a consequence of which scientific theories do not have the force of
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logic. It is true that 2� 2 ¼ 4 but it is only highly probable, on the
evidence we have, that Einstein’s analysis is correct. This is in
accordance with Cromwell’s rule and scientists should always remem-
ber they might be mistaken as they were with Newton’s laws. These
worked splendidly and with enormous success until some behavior of
the planet Mercury did not agree with Newtonian predictions, leading
ultimately to Einstein replacing Newton. In practice, the distinction
between logical truth and scientific truth does not matter, only
occasionally, as with Mercury, does it become significant.

To appreciate a second feature of the acquisition of knowledge
through Bayes, return to the urns and suppose the red theory, R, is
correct so that more red balls are withdrawn than white, with every red
ball doubling the odds, every white ball halving it. In the numerical
work it was supposed that you initially thought the two theories were
equally probable, p(R) ¼ p(W) ¼ 1=2. Consider what would happen
had you thought the red theory highly improbable, say p(R) ¼ .01,
odds of about 1 in 100; then the doubling would still occur twice as
often as the halving and the odds would grow just the same and truth
attained. The only distinction would be that with p(R) ¼ 0.01 rather
than 0.50, you would take longer to get there. Suppose the scientist
whose initial opinion had been equally divided between the two
possibilities had reached odds of 10,000 to 1, then his sceptical
colleague would be at 100 to 1 since the former has the odds of 1
to 1 multiplied by 10,000, whereas the latter with only one hundredth
but the same multiplication will be at 100 to 1. The two odds may seem
very different, but the probabilities 0.9999 and 0.9900 are not so very
different on a scale from 0 to 1. The same happens with a general
theory u, where people vary in their initial assessments pðuÞ, and it
takes more evidence to convince some people than others, but all get
there eventually, except for the opinionated one with pðuÞ ¼ 0 who
never learns since all multiplications of zero, remain zero.

An important question to ask is what constitutes a good theory? We
have seen that it is necessary for you to assess pðF j uÞ in order to use
Bayes rule and update your opinion about the theory in a coherent
manner, so youwould prefer a theory inwhich this can easily be done. In
other words, you want a theory that enables you to easily predict future
outcomes. One that fails to do so, or makes prediction very difficult, is
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useless. This is another reason for preferring simple theories. But there is
more to it than that for you need the likelihood ratio to update your odds.
Recall, from Bayes rule as displayed above, that this ratio is

pðF j uÞ=pðF j ucÞ;

where uc is the complement of u. (There are some tricky concepts
involved with uc but these are postponed until §11.8.) What happens is
that as each data set F is investigated, your odds are multiplied by the
ratio, so what you would like would be ratios that are very large or very
small, for these will substantially alter your odds, whereas a ratio
around 1 will scarcely affect it. Concentrating on very large values of
the ratio, what youwould likewould be a theory u that predicts dataF of
high probability, but with smaller probability were the theory false, uc.
A famous example is provided by the general theory of relativity, which
predicted that the trajectory of a beam of light would be perturbed by a
gravitational field as it passed by a massive object. Indeed, it predicted
the actual extent of the bending in an eclipse, so that when an expedition
was sent to observe the eclipse and found the bending to be what had
been predicted, pðF j uÞwas near 1, whereas other theories predicted no
bending, pðF j ucÞ near 0. The likelihood ratio was enormous and
relativity became not proved, but most seriously considered. A good
theory is one thatmakes lots of predictions that can be tested, preferably
predictions that are less probable were the theory not true. Bearing in
mind the distinction between probability and likelihood,what iswanted
are data that are highly likelywhen the theory is true, and unlikelywhen
false. A good theory cries out with good testing possibilities.

There are theories that lack possible tests. For example, re-
incarnation, which asserts that the soul, on the death of one animal,
passes into the birth of another. I cannot think of any way of testing
this, even if we remove the notion of soul and think of one animal
becoming another. The question that we have met before, “How do you
know that?”, becomes relevant again. There are other theories that are
destructible and therefore of little interest, such as “there are fairies at
the bottom of my garden”. This is eminently testable using apparatus
sensitive to different wavelengths, to sound, to smell, to any phenom-
enon we are familiar with. The result is always negative. The only
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possibility left is that fairies do not exhibit movement, emit light or
sound, do not do anything that is in our ken. If so, the fairy theory is
untestable and is as unsatisfactory as reincarnation. Of course, one day
we may discover a new sense and then fairies may become of interest
because they can be tested using the new sense but not for the moment.

11.7 MODIFICATION OF THEORIES

The above development of scientific method is too simple to cover every
case but our contention is that the principle, demonstrated with the urn of
twopossible constitutions, underlies every scientific procedure. There are
many technical difficulties to be surmounted, which are unsuitable for a
book at this level, but uncertainty is ever present in the early stages of the
development of any theory. Uncertaintymust be described by probability
if the scientist is to be coherent. Probability updates byBayes, so the ideas
already expounded are central to any investigation bearing the name of
science. Here we discuss two extensions of the Bayesian logic.

It often happens that, in testing a theory against future data, one
realizes that the theory as stated is false but that a modification might
be acceptable, so that the old theory is replaced by a new one. For
example, suppose that when taking the balls from the urn that might be
red R or whiteW, we find a blue ball. One immediate possibility is that
the blue has slipped into the urn by accident, so that this piece of data
can be ignored. Scientists, often with good reason, reject outliers, the
name given to values that lie outside what the theory predicts. Here the
blue ball might be regarded as an outlier. But if further blue balls
appear then both theories seem doubtful and it would be better to have
theories that admit at least three colors, or even four. There is a
fascinating problem that concerns how many different colors of balls
there are in the urns. This is a simplified version of how many species
are there, not in the urn, but on our planet.

Let us pursue another variant of the urn scenario in which 100, say,
balls have been taken, of which 50 are found to be red, and 50 white.
This is most improbable on both theories but immediately suggests the
possibility that the numbers of red and white balls in the urn are equal,
a “theory” that will be referred to as the intermediate possibility I.
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There are now three theories, R, W, and I, and it is necessary to revise
your probabilities. There are no difficulties with the data uncertainties,
thus pðw jRÞ ¼ 1=3 and pðw jWÞ ¼ 2=3, as before, and the new one,
pðw j IÞ ¼ 1=2, but the uncertainties for the three theories need care.
You need to assess your probabilities for them and, in doing so, to
ensure that they cohere with your original assessments for R and forW
before I was introduced. As an aid in reducing confusion, let your new
values be written with asterisks, p�ðRÞ; p�ðWÞ, and p�ðIÞ, necessarily
adding to 1, and consider how these must cohere with the values p(R)
and p(W), also adding to 1, before the desirability of including I arose.
In the former scenario, you were supposing that the event, R orW, was
true, probability 1, so if, in the extended case you were to condition on
this event, the new values should be the same as the old. That is, in the
new setup with I included, the probability of it being the red urn,
conditional on it being either the red or white urn—not the intermedi-
ate—must equal your original probability of it being red. In symbols

p�ðR jR orWÞ ¼ pðRÞ:

Similarly p�ðW jR orWÞ ¼ pðWÞ, though the first equality will auto-
matically make the second hold. These are the only coherence condi-
tions that must obtain when the scenario is extended to include I. The
condition may more simply be expressed by saying that p�(R) and
p�(W) must be in the same ratio as the original p(R) and p(W). (A proof
of this result is provided at the end of this section.) Here is a numerical
example. Suppose you originally thought p(R) ¼ 1/3. p(W)¼ 2/3, the
white urn being twice as probable as the red. Suppose the introduction
of the intermediate urn suggests p�ðIÞ ¼ 1=4. Then p�ðWÞmust still be
twice p�ðRÞ as originally. This is achieved with p�ðRÞ ¼ 1=4; p�ðWÞ ¼
1=2 and the three new probabilities add to one.

The need to include additional elements in a discussion often
arises, and the technique applied to the simple, urn example is
frequently used to ensure coherence. The original situation is described
as a small world. In the example it includes R,W, and the results, like r,
of withdrawing balls. The inclusion of additional elements, here just I,
gives a large world of which the smaller is a part. Coherence is then
reached by making probabilities in the large world, which are
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conditional on the small world, agree with the original values in the
small world, as expressed in the displayed equation above.

Even the most enthusiastic supporter of the thesis of this book
cannot simultaneously contemplate every feature of the universe. A
user of the scientific method cannot consider the butterfly flapping its
wings in the Amazon rain forest when studying human DNA in the
laboratory. It is necessary to embrace a small world that is adequate for
the purpose. We have seen from Simpson in §8.2, the dangers of
making the world too small. If it is made too big then it may become so
complex that the scientist has real difficulty in making sense of it.
Somewhere there is a happy, medium-sized world that includes
only the essentials and excludes the redundant. Here our normative
approach has little to say. There is art in finding an appropriate world.
Probability, utility, and MEU are powerful tools that need to be used
with discretion. Even a practitioner of the scientific method needs art.
There is further reference to this matter at the end of §13.3.

Here is a proof of the result stated above. The multiplication rule
(§5.3), says that, for any two events E and F, pðF jEÞ ¼ pðEFÞ=pðEÞ
provided p(E) is not zero. If F implies E, in the sense that F being true
necessarily means E is also true, then the event EF is the same as F and
the equation becomes pðF jEÞ ¼ pðFÞ=pðEÞ. Now R implies the event
“R or W”, so the displayed equation above can be written

p�ðRÞ=p�ðR orWÞ ¼ pðRÞ:

Interchanging the roles of R and W, we similarly have

p�ðWÞ=p�ðR orWÞ ¼ pðWÞ:

Dividing the term on the left-hand side of the first equation by the
similar term in the second equation, the probability p�(R orW) cancels,
and the result may be equated to the result of a similar operation on the
right-hand sides, with the result

p�ðRÞ=p�ðWÞ ¼ pðRÞ=pðWÞ;

as was asserted above.
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11.8 MODELS

One difficulty that often arises in applying the methods just expounded
is that, although a theory u may be precise and well defined, its
complement uc may not be. More correctly, although the theory
predicts future data in the form pðF j uÞ, it is not always clear what
data to anticipate if the theory is false and pðF j ucÞ, needed to form the
likelihood ratio, may be elusive. An example is provided by the theory
of relativity—what does it mean for future data at the eclipse if it is
false? One possibility is to see the eclipse experiment of §11.6 as a
contest between Einstein and Newton so that the two predictions are
compared, just as the red and white urns were, and Newton is thought
of as the complement of Einstein. This is hardly satisfactory because it
was already realized at the time of the experiment that something could
be wrong with Newton as a result of observations on the movement of
Mercury. A better procedure, and the one that is commonly adopted,
goes like this. In the eclipse experiment, relativity predicted the
amount of the bending of light to be 6 degrees, so that other possibilit-
ies are that the bending is any value other than 6; 5 or 7, or even 0 that
was Newton’s value. Consequently it is possible to think of the theory
saying the bending is 6, and the theory being false meaning the bending
is not 6. This means that the value 6 is to be compared, not with just one
value, but with several. We saw in §7.5 how this could be done with
a few alternatives and technical sophistications make it possible to
handle all values besides 6. Generally it happens in the context of a
particular experiment that the theory u implies a quantity, let us denote
it by another Greek letter f (phi), which has a definite value. You can
take all values of f other than this to constitute uc. In most experiments,
the data will contain an element of uncertainty so that you will need to
think about pðF jfÞ, rather than pðF j uÞ, and recognize that u implies a
special value for f. It is usual to denote this special value by f0.
The theory says f ¼ f0, the complement, or alternative, to the theory
says f 6¼ f0. We refer to the use of f as a model and f is called the
parameter of the model. In general, for an experiment the theory
suggests a model and your uncertainty is expressed in terms of the
parameter, rather than the theory. It will be seen how this is done in the
next section, but for the moment let us look at the concept of a model.
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The relationship between a theory and its models is akin to that
between strategy and tactics: strategy describing the overall method
or theory, tactics dealing with particular situations or models. In our
example, relativity is supposed to apply everywhere, producing
models for individual scenarios. One way of appreciating the dis-
tinction between a theory and a model is to recognize that a theory
incorporates an explanation for many phenomena, whereas a model
does not and is specific. The theory of general relativity applied to the
whole universe and, when applied to the eclipse, predicted a bending
of 6 degrees. There was no theory that predicted 3 degrees, for
example. The model, by contrast, only applies to the eclipse and, in
that specific context, embraced both 6 degrees and 3 degrees.
Scientists have found models so useful as a way of thinking about
data that they have been extensively used even without a theory, just
as a military battle can use tactics without an overall strategy. Here is
an example. Consider a scientist who is interested in the dependence
of one quantity on several others, as when a manufacturer, using the
scientific method, enquires how the quality of the product depends on
temperature, quality of the raw material, and the operator of the
manufacturing process (§4.7). We refer to the dependent quantity,
and the explanatory quantities and seek to determine how the latter
influences the former, or equivalently, how the former depends on the
latter. The dependent quantity will be denoted by y and we will, for
ease of exposition, deal with two explanatory quantities, w and x.
Many writers use the term variable where we have used quantity.

Within the framework developed in this book, the dependence of
y on w and x is expressed through your probability of y, conditional
on w and x (and your knowledge base), pðy jw; xÞ and it is usual to
refer to this probability structure as the model. Notice that there are a
lot of distributions here, one for each value of w and x, so that the
model is quite complicated and some simplification is desirable. It
was seen in §9.3, and again in §10.4, that an important feature of a
quantity is its expectation, which is a number, rather than a possibly
large collection of numbers that is a distribution, so interest has
centered on Eðy jw; xÞ, what you expect the quantity to be for given
values of the explanatory quantities. Even the expectation is hard to
handle in general and a simplification that is often employed is to
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suppose the expectation of the dependent quantity is linear in the
explanatory quantities; that is

Eðy jw; xÞ ¼ awþ bx;

where a (alpha) and b (beta), the first two letters of the Greek
alphabet, are parameters, like f above. A useful convention has arisen
that the Roman alphabet is used for quantities that can be observed and
the Greek for quantities that are not directly observable but are integral
to the model, like the parameters. What the displayed equation says is
that if w is changed by a unit amount, and x remains constant, then you
expect y to change by an amount a, whatever value x takes or whatever
value w had before the change. A similar conclusion holds with the
roles of x and w reversed, but here the change in y is b.

We have continually emphasized the merits of simplicity, provided
it is not carried to excess, and here we have an instance of possible
excess, because the effect on y of a change in xmay well depend on the
value of w at the time of the change, a possibility denied by the above
model. For example, suppose you are interested in the dependence of
the amount, y, the product of a chemical process, on two explanatory
quantities, w the temperature of the reaction and x the amount of
catalyst used. It could happen that the efficacy of the catalyst might
depend on the temperature, a feature not present in the above model, so
that the simplicity of the model would then be an inadequate descrip-
tion of the true state of affairs. A valuable recipe is to keep things
simple, but not too simple. Another feature of the above model that
requires watching relates to the distinction made in §4.7 between “do
x” and “see x”. Does the model reflect what you expect to happen to y
when you see x change, or your expectation were you to make the
change, and instead “do x”?

When discussing Simpson’s paradox in §8.2, it was seen how the
relationship between two quantities could changewhen a third quantity
is introduced. A similar phenomenon can arise here, where the
relationship between y and w can alter when x is included. It does
not follow that even if

Eðy jw; xÞ ¼ awþ bx;
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and therefore, if x ¼ 0

Eðy jw; x ¼ 0Þ ¼ aw;

that, when x is unstated,

Eðy jwÞ ¼ aw:

Even if Eðy jwÞ is linear, as in the original model with w and y, so that

Eðy jwÞ ¼ a�w;

it does not follow that a ¼ a�. Recall that a is the change you expect in y
were w to change by a unit amount to wþ 1, when x is held fixed. In
contrast, a� is the change you expect in y were w to change by a unit
amount, when nothing is said about x. It is easy to construct examples in
which the quantities, a and a�, are different, but it suffices to remark that
our original example with Simpson’s paradox will do, for the change in
recovery(y)wentonewaywhenonlytreatment(w)wasconsidered,but the
oppositewaywhensex (x)was includedaswell.Thus in that casea anda�

had opposite signs, an apparently effective treatment becoming harmful.
Models have been used with great success in many applications of

the scientific method and I have no desire to denigrate them, only to
issue a word of caution that they need careful thought and can carry the
virtue of simplicity too far. Models are no substitute for a theory, any
more than tactics are for a strategy; it is best to have an overall strategy
or theory that, in particular cases, provides tactics or model. This is
why a scientist, properly “a user of the scientific method”, likes to have
a general explanation of a class of phenomena, of how things work,
rather than just an observation of it working. The model may show y
increases with w, but it is preferable to understand why this happens.

11.9 HYPOTHESIS TESTING

It was mentioned in the last section that a theory u often leads, in a
particular experiment, to a model incorporating a parameter f, the truth
of the theory implying that the parameter has a particular value, f0,
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so that investigating the theory becomes a question of seeing whether
f0 is a reasonable value for f. The same situation arises with models
that are not supported by theory, when a particular parametric value
assumes especial importance. For example, in the linear model

Eðy jw; xÞ ¼ awþ bx;

a ¼ 0might be such a special value, saying thatw has no effect on your
expectation of y, assuming x held fixed. Such situations have assumed
considerable importance in some branches of science, so much so that
some people have seen in them the central core of the scientific
method. From the viewpoint developed here, this centrality is wrong.
Nevertheless the topic is of considerable importance and therefore
merits serious attention. We begin with an example.

In Example 4 of Chapter 1, the effect of selenium on cancer was
discussed. In order to investigate this a clinical trial is set up with some
patients being given selenium and others a placebo. It is not an easy
matter to set up a trial in which one can be reasonably certain that any
effects observed are truly due to selenium and not due to other spurious
causes. A considerable literature has grown up on the design of such
trials, and it can be taken that a modern clinical trial takes account of this
work and is capable of proper interpretation. Thedesignneed not concern
us here; all we need is confidence that any observed difference between
the two sets of patients is due to the seleniumandnot due to anything else.
This difference is reflected in the parameter, referred to previously as f,
of interest. In this formulation the value f ¼ 0 is of special interest
because, if correct, it would mean that selenium had no effect on cancer,
whereas a positive valuewould indicate a beneficial effect and a negative
one a harmful effect. Incidentally, the trial would hardly have been set up
if the negative value was thought reasonably probable. In our notation
pðf < 0 jK Þ is small. All procedures that are widely used develop their
own necessary nomenclature, which is now introduced.

The value of special interest f0 is called the null value and the
assertion that f ¼ f0, the null hypothesis. In what follows it will be
supposed that f0 ¼ 0, as in the selenium example. The nonnull values
of the parameter are called the alternatives, or alternative hypotheses,
and the procedure to be developed is termed a test of the null
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hypothesis. A convenient way of thinking about the whole business is
to regard the null hypothesis as an Aunt Sally, or straw man, that the
trial attempts to knock down. In the selenium trial, the hope is that the
straw man will be overthrown and the metal shown to be of value. If a
theory has provided the null value, then every attempt at an overthrow
that fails, thereby enhances the theory, and some philosophers have
considered this the main feature of the scientific method. Notice that
the use of the straw man does not make explicit mention of other men,
of alternative hypotheses.With these preliminaries, we are ready to test
the null, that the null hypothesis is true, the parameter assumes the null
value, f ¼ 0; against the alternative that it is false, the parameter is not
zero, written f 6¼ 0.

We know how to do this, for if we think of f ¼ 0 as corresponding
to the red urn, R, and f 6¼ 0 to the alternative possibility of a white urn,
W, then

oðf ¼ 0 jDÞ ¼ pðD jf ¼ 0Þ
pðD jf 6¼ 0Þ oðf ¼ 0Þ;

where o denotes the odds. The ratio of probabilities is the likelihood
ratio and D denotes the data from the trial. In words, the equation
expresses your opinion, in the form of odds of the null hypothesis on
the basis of the results of the trial, appearing on the left, in terms of the
same odds before the trial, on the right. The latter, multiplied by the
likelihood ratio, expresses how the probability of the data on the null
hypothesis differs from that on the alternative. In other words, the
analysis for the two possible urns is analogous to null against alterna-
tive, showing how your opinion is altered by the withdrawal of balls,
here replaced by looking at the patients in the trial. Remember that all
odds and probabilities are also conditional on an unstated knowledge
base, here dependent on the careful design of the clinical trial.

It was seen in the casewith the urns in §11.4 that everywithdrawal of
a red ball, more probable onR than onW, enhanced your probability that
it was the red urn; while every white ball reduced that probability.
Similarly here, data more likely on the null than on the alternative give a
likelihood ratio in excess of one and the odds, or equally, the probability,
of the null is increased; whereas if the alternative is more likely, the
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probability is decreased. (Notice the distinction between likely and
probable.) And just as you eventually reach assurance aboutwhich urn it
is by taking out a lot of balls, you eventually learn whether the null is
reasonably true by performing a large trial. You eventually learn if the
selenium is useless, or effective; being either beneficial f > 0, or
harmful f < 0. Many clinical trials do not reach such assurance and
many tests of a theory are not conclusive. However repeated trials and
tests, like repeated experiences with balls, can settle the issue. It is
important to bear inmind, aswas seen in §11.4, that some people will be
more easily convinced than others. Bayes’s result displayed above
describes the manner in which a null value, or a theory, can be tested.
Before the subject is left, three matters deserve attention.

The first has already been touched upon, in that people will start
from differing views about the null, some thinking it highly probable,
others having severe doubts, yet others being intermediate. This
reflects reality but their differences will, as we have seen, be ironed
out by the accumulation of data and the multiplying effect of the
likelihood ratio.

The second matter is a variant of the first in that people will differ in
their initial probabilities for the data when the alternative is true, the
denominator in Bayes rule, pðD jf 6¼ 0Þ, and may also have trouble
thinking about it. To see how thismay be handled, consider the selenium
trial where there are two possibilities, that the selenium is beneficial,
f > 0, or harmful, f < 0. Replace these by f ¼ þ1 and f ¼ �1,
respectively, a simplification that in practice is silly and is introduced
here only for ease of exposition, the realistic case involving mathe-
matical technicalities. The procedure in the silly case carries over to
realism. Now extend the conversation to include the possible alter-
native values of f,

pðD jf 6¼ 0Þ ¼ pðD jf ¼ þ1Þpðf ¼ þ1 jf 6¼ 0Þ
þ pðD jf ¼ �1Þpðf ¼ �1 jf 6¼ 0Þ:

It ordinarily happens that the twoprobabilities of thedata on the right
are easily obtained for they are, in spirit, similar to the numerator of the
likelihood ratio pðD jf ¼ 0Þ. It is the other two probabilities on the right
that can cause trouble. In the selenium case, pðf ¼ þ1 jf 6¼ 0Þ is
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presumably large because the trial was set up in the expectation that
selenium is beneficial. Necessarily pðf ¼ �1 jf 6¼ 0Þ is small, the two
adding to one. With them in place, the calculation can proceed. People
may disagree, but again Bayes rule can eventually lead to reasonably
firm conclusions.

11.10 SIGNIFICANCE TESTS

The third matter is quite different in character, for although the setting
up of a null hypothesis and its attempted destruction, occupies a central
role in handling uncertainty, most writers on the topic do not use the
methods based on Bayes rule just described, instead preferring a
technique that commits a variant of the prosecutor’s fallacy (§6.6),
terming it not just a test (of the null hypothesis) but a significance test.
(Recall that mathematicians often use a common word in a special
setting, so it is with “significance” here, so do not attach much of its
popular interpretation to this technical usage.) To see how a signifi-
cance test works, stay with the selenium trial but suppose that the
relevant data, that were writtenD, consist of a single number, written d.
For example, d might be the difference in recovery rates between
patients receiving selenium and those on the placebo. The discussion
of sufficiency in §6.9 is relevant. There it was seen that not all the data
from the urns were needed for coherent inference, rather a single
number sufficed. Again the argument to be presented extends to
cases where restriction to a single number is unrealistic. If the null
hypothesis, f ¼ 0, is true, then your probability distribution for d is
pðd jf ¼ 0Þ and is usually available. Indeed it is the numerator of the
likelihood ratio just used. This distribution expresses your opinion that
some values of d have high probability, whereas others are improbable.
For example, it will usually happen, bearing in mind you are supposing
f ¼ 0 and the selenium is ineffectual, that you think values of the
difference d near zero will be the most probable, while large values of d
of either sign will be improbable. The procedure used in a significance
test is to select, before seeing the data, values of d that, in total, you
think have small probability and to declare the result “significant” if
the actual value of d obtained in the trial is one of them. Figure 11.1
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shows a possible distribution for you, centered around d¼ 0, with a set
of values in the tails that you deem improbable (see also Fig. 9.6). The
actual probability you assign to this set is called the significance level
and the result of the trial is said to be significant if the difference d
actually observed falls in this set. For historical reasons, the signifi-
cance level is denoted by the Greek letter alpha, a. To recapitulate, if
the trial result is one of these improbable values then, on the idea that
improbable events don’t happen, or at least happen rarely, doubt is cast
on the assumption that f ¼ 0 or that the null hypothesis is true.
Referring to the figure, if d lies in the tails by exceeding þc, or being
less than � c, an improbable event for you has happened and doubt
may be cast on the null hypothesis or, as is often said, either an
improbable event has occurred or the null hypothesis is false.

Let us look at some features of this popular method. The most
attractive is that the approach uses your probabilities for d only when
f ¼ 0, the alternatives f 6¼ 0 never occur and the difficulties men-
tioned above of assessing probabilities for nonzero values do not arise.
This makes the significance test rather simple to use. A second feature
is that the only probability used is a, the level. Some users fix this
before the trial results and, for historical reasons again, use three values
0.05, 0.01, and 0.001. Others let a be the least value that produces
significance for the observed value of d, corresponding in the example
to c being selected to beþd or �d. Evidence against the null is held to
be strong only if the value of a produced this way is 0.05 or less. A
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FIGURE 11.1 Probability distribution of d on the null hypothesis, with the tails
for a significance test shaded.
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third feature is that the test does not only use your probability of the
difference observed in the trial, as does Bayes, but instead your
probability of the set of improbable values, in the example those
exceeding c without regard to sign. This has been elegantly expressed
by saying that a significance test does not use only the value of d
observed, but also those values that might have occurred but did not.

The first two features make a significance test simple to use and
perhaps account for its popularity. It is this popularity that has virtually
forced me to include the test in a book about uncertainty. Yet, from our
perspective, the third feature exposes its folly because it uses the
probability of an aspect of the data, lying in the tails of your distribution,
when the null hypothesis is true, rather than what our development
demands, your probability that f ¼ 0 given the data. This is almost the
prosecutor’s fallacy, confusing pðd jf ¼ 0Þwith pðf ¼ 0 j dÞ, replacing
d in the first probabilitywith values of d in the set. The contradiction goes
even deeper than this because the significance test tries to make an
absolute statement about f ¼ 0, whereas Bayes makes statements
comparing f ¼ 0 with alternatives f 6¼ 0. There are no absolutes in
this world, everything is comparative; a property that a significance test
fails adequately to recognize. This section has dealt onlywith one type of
significance test. There are other significance tests, that also employ the
probability distribution of the data on the null hypothesis, where the null
hypothesis has amore complicated structure than that treated here. Their
advantages and disadvantages are similar to those expounded here.
There is more on significance tests in §14.4.

11.11 REPETITION

An essential ingredient of the scientific method is the interaction
between observation and reason. The process begins with the collec-
tion of data, for example, in the form of experiments performed in a
laboratory, which are thought about, resulting in the production of a
theory, which is then tested by further experimentation. The strength of
science lies in this seesaw between outward contact with reality and
inward thought. It is not practical experience on its own, or deep
contemplation in the silence of one’s room, that produces results, but
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rather the combination of the two, where the practitioner and the
theorist meet. A typical scenario is one in which a scientist performs an
experiment and develops a theory, which is then investigated by other
scientists who attempt to reproduce the original results in the labora-
tory. It is this ability to repeat, to verify for yourself, that lies at the
heart of the scientific method. The original experiments may have been
done in Europe, but the repetitions can be performed in America, India,
China, or Africa, or anywhere else, for science is international in
methodology and ultimately everywhere the same after sufficient
experimentation. Of course, since the results are developed by human
beings, there will be differences in character between the sciences of
Pakistan and Brazil, but Newton’s laws are the same in the dry deserts
of Asia as in the humidity of the Amazon.

The simplest form of repetition, exemplified by the tossing of a
coin, is captured by the concept of exchangeability (§7.3), where one
scientist repeats the work of another, tossing the coin a further time. It
has been shown in §11.5 how each successful repetition enhances the
theory by increasing its probability, or odds, by the use of Bayes rule.
Pure repetition, pure exchangeability, rarely happens and more com-
monly the second scientist modifies the experiment, testing the theory,
trying in a friendly way to destroy it and being delighted when there is
a failure to do so. Experience shows that exchangeability continues to
be basic, only being modified in ways that need not concern us here, to
produce concepts like partial exchangeability. Often the repetition will
not go as expected, and in extreme cases the theory will be abandoned.
More often the theory will be modified to account for the observations
and this new theory itself tested by further experimentation. It has been
seen how this happens in the example of §11.7. Repeatability is a
cornerstone of the scientific method and the ability of one scientist to
reproduce the results of another is essential to the procedure.

It is this ability to repeat earlier work, often in a modified form, that
distinguishes beliefs based on science from those that do not use the
rigor of the scientific method. An illustration of these ideas is provided
by the differences between Chinese and Western medicines, with
acupuncture, for example, being accepted in the former but regarded
with suspicion in the latter. If A is the theory of acupuncture, then
roughly p(A) is near 1 in China and small in theWest, though the actual
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values will depend on who “you” are that is doing the assessing. The
scientific procedure is clear; experiences with the procedure can be
examined and trials with acupuncture carried out. The results of some
trials have recently been reported and suggest little curative effects
save in relief from dental pain and in the alleviation of unpleasant
experiences resulting from intrusive cancer therapies. These have the
effect of lowering p(A) by Bayes, or modifying the theory, limiting its
effect to pain relief. The jury is still out on acupuncture, but there is no
need for China and the West to be hostile. The tools are there for their
reconciliation. Incidentally, this discussion brings out a difference
between a theory and a model. The evidence about the benefits to
dental health of acupuncture is described by a model saying how a
change in one quantity, the insertion of a needle, produces a change in
another, pain; but there is only the vaguest theory to explain how the
pain relief happens or how acupuncture works.

The preceding argument works well where laboratory or field
experiments are possible but there are cases where these are non-
existent or of limited value. Let us take an example that is currently
giving rise to much debate, the theory of evolution of life on this planet,
mainly developed by Darwin. The first point to notice is that Darwin
followed the procedure already described in that he studied some data,
part of which was that from the journey on the “Beagle”, developed his
theory, and then spent several years testing it, for example, by using
data on pigeons, before putting it all together in his great book, “The
Origin of Species”; a book which is both magnificent science and great
literature. The greater part of the book is taken up with the testing, the
theory occupying only a small portion of the text. This commonly
happens because a good theory is simple, as when three rules describe
uncertainty or E¼mc2 encapsulates relativity. However, Darwin’s
examples were mostly on domestic species. More complete testing
involved extensive investigations of fossils that cannot be produced on
demand, as can results in a laboratory. One would have liked to have a
complete sequence from ape to man, whereas one was dependent on
what chance would yield from digs based on limited knowledge.
The result is that although it was known what data would best test
the theory of evolution, in the sense of giving a dramatic likelihood
ratio, these data were not available. Nevertheless data have been
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accumulating since the theory become public, likelihood ratios eval-
uated, and probabilities updated. The result is the general acceptance
of the theory, at least in modified forms which are still the subjects
of debate. Incidentally, support for evolution was provided by ideas of
Mendelian genetics that supplied a mechanism to explain how the
modification of species could happen.

Creationists, and others opposed to Darwin, often say that evolu-
tion is only a theory. In this they are correct but then so is relativity or
any of the other ideas that make science so successful, producing
results that the creationists enjoy. A distinction between many theories
and that of evolution is that the data available for testing the latter
cannot be completely planned. Evolution is not a faith because it can
be, and has been, tested, whereas faith is largely immune to testing. It is
public exposure to trial, this attempted destruction of hypotheses, that
helps make science the great method that it is.

11.12 SUMMARY

This chapter is concluded by a recapitulation of the role of uncertainty
in scientific method, followed by a few miscellaneous comments. The
methodology begins with data D, followed by the development using
reason of a theory u, or at least a model, and the testing of theory or
model on further data F. There is then an extra stage, discussed in
Chapter 10, of action based on the theory or model. The initial
uncertainty about u is described by pðu jDÞ, your probability of the
theory based on the original data. Ordinarily this probability will vary
substantially from scientist to scientist but will be updated by further
data F using Bayes rule

pðu jD;FÞ ¼ pðF j uÞpðu jDÞ=pðFjDÞ:

(Recall that typically F and D will be independent given u.) As data F
accumulate with successive updatings, either u comes to be accepted,
or is modified, or is destroyed. In this way general agreement among
scientists is reached. At bottom, the sequence is as follows: Experience
of the real world, thought, further experience, followed by action. The
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strength of the method lies in its combination of all four stages and
does not reside solely in any subset of them.

The simple form of Bayes rule just given hides the fact that, in
addition to pðF j uÞ, you also need pðF j ucÞ, your probability of the data
assuming the theory is false. The odds form shows this more clearly:

oðu jFÞ ¼ pðF j uÞ
pðF j ucÞ oðuÞ;

absorbing D into the knowledge base. The scientific method is always
comparative and there are no absolutes in the world of science. It
follows from this comparative attitude that a good theory is one that
enables you to think of an experiment that will lead to data that are
highly probable on u, highly improbable on uc, or vice versa, so that
the likelihood ratio is extreme and your odds substantially changed.
One way to get a large likelihood ratio is to have pðF j uÞ ¼ 1, because
since pðF j ucÞ is less than 1, and often substantially less, the ratio must
then exceed 1. To get pðF j uÞ ¼ 1 requires logic. The simplest way to
handle logic is by mathematics. This explains why mathematics is the
language of science. It is why we have felt it necessary to include a
modicum of mathematics in developing the theory that probability is
the appropriate mechanism for the study of uncertainty. It helps to
explain why physics has advanced more rapidly than biology. Physical
theories are mathematical and traditional, biological ones less so,
although modern work on Mendelian genetics and the structure of
DNA use more mathematics, often of a different character from that
used in the applications to physics. The scientific method has, by
contrast, made less progress in economics because the intrusion of
erratic human behavior into economic systems has previously pre-
vented the use of mathematics. Economic theories tend to be norma-
tive, based on rational expectation, or MEU; whereas they could try to
be descriptive, to reflect the activities of people who are incoherent and
have not been trained in maximizing expected utility.

There are some areas of enquiry that seem ripe for study by the
scientific method, yet it is rarely used. Britons are, because of suitable
soils and moderate climate, keen gardeners; yet the bulk of gardening
literature has little scientific content. An article will extol the beauty of
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some variety of tree and make modest reference to suitable soils and
climate but the issue of how the topmost leaves get nutrition from the
roots many feet below receives no mention. The suggestion here is not
that the many handsome articles in newspapers abandon their artistic
attitude and discuss osmosis but rather that the balance between
science and the arts needs some correction. Another topic that needs
even more corrective balance is cookery. There are many books and
television programs with numerous recipes, yet when a lady recently
discussed how to boil an egg, taking into account the chemistry of
albumen and yolk, several chefs howled in anger. To hear about the
science of cookery go to the food chemists, who mostly work for the
food industry, and they will explain the science of boiling, frying, and
braising. Recently one chef has entered the scene using scientific ideas
and, as a result, received great praise fromMichelin and others, so all is
not despair. We have seen in §10.14 how the scientific method is
connecting with legal affairs. This is happening in two ways. First by
the increasing use of science-based evidence like DNA. Second by
examining the very structure of the legal argument, using Bayes rule to
incorporate evidence, and MEU to reach a decision.

Scientific method is one, successful way of understanding and
controlling the world about us. It is not the only method but it deserves
more attention and understanding than it has hitherto received. One
reason for its success is that it can handle uncertainty through a proper
use of probability.
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CHAPTER12

Examples

12.1 INTRODUCTION

My purpose of writing this book is to introduce you to modern methods
of handling uncertainty, so that you can live comfortably with the
concept and perhaps treat simpler cases using the basic rules of
probability, rather than resort to spurious claims of certainty or
inappropriate, illogical procedures. The aim is not to turn you into
a probabilist; for that would need mathematical skills that go beyond
the view of mathematics as a language used in this book. It would also
require extensive practice in handling probability, practice that is
ordinarily provided in text books by the inclusion of exercises. Never-
theless, it does help appreciate the power of probability to see it being
exercised, to see problems being solved using the ideas that have been
developed here. So a few uncertain situations are now examined with
the tools we already have. When I told a colleague what I proposed to
do, she expressed disquiet remarking that the examples I was using
gave surprising results that left the recipient with the feeling that
probability was too subtle for them; people having a fondness for
common sense and an understandable distaste for conclusions that
disagree with it. My colleague’s view is sound, so if you feel you can
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dispense with the illustrations, feel free to do so, because none are used
in the remaining material. But if you like puzzles, or feel you would
like more experience in using probability, then read on for here are
some that have entertained and instructed many people. §12.2 is an
aperitif, while §12.3 discusses the optimum strategy in a game show on
TV. §§12.4 and 12.5 deal with problems that have beenmuch discussed
in the literature and on radio. §§12.7 and 12.8 concern social problems.
§§12.9 and 12.10 tidy up a couple of technical difficulties, and in doing
so reveal delightful surprises.

12.2 CARDS

Our usual urn contains three cards, rather than balls. One card is red on
both sides, a second is white on both sides, while the third has one side
red and the other white. One of the cards is drawn at random from the
urn and you are shown, again at random, one of the sides. All these
facts constitute part of your knowledge base. You see that the exposed
side is red, this is the datum, and you need to evaluate your probability
that the other side is also red. When people are presented with this
problem, it is not uncommon for them to argue, by what seems to them
to be common sense, that the datum has eliminated the possibility that
the withdrawn card is entirely white, so only two possibilities remain.
They were equally probable originally and will remain so; hence your
probability that the card has both sides red is 1/2. This is an example of
Cardano’s method that will be studied in §12.5.

To provide the coherent answer using the rules of probability, some
notation is needed. Denote the three cards by RR, WW, and RW, in an
obvious fashion, and the datum, the red side seen, by r. Then your
knowledge base provides you with the following probabilities:

pðRRÞ ¼ pðWWÞ ¼ pðRWÞ ¼ 1=3;
pðr jRRÞ ¼ 1; pðr jWWÞ ¼ 0; pðr jRWÞ ¼ 1=2:

You require pðRR j rÞ, since the other side of the card is red only if the
card is RR. Here is a transposed conditional (§6.1) and Bayes rule is
immediately indicated. Since the WW possibility has been eliminated
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by the sight of the red side, only two possibilities remain and the odds
form of §6.5 may be used. This gives

pðRW j rÞ
pðRR j rÞ ¼ pðr jRWÞ

pðr jRRÞ � pðRWÞ
pðRRÞ :

All the probabilities on the right of the equality are known from your
knowledge base. Inserting their values into the equation, we easily have

pðRW j rÞ
pðRR j rÞ ¼ 1=2� 1=3

1� 1=3
¼ 1=2:

Using the connection between odds and probabilities in §3.8,
pðRR j rÞ ¼ 2=3, so that your probability that the other side of the
card is also red is 2/3, not 1/2 as common sensemight suggest.What the
commonsense argument forgets is that if the card withdrawn is RR, you
are twice as likely to see a red side than if it were RW.

This is an artificial problem but has been presented here to
demonstrate the value of the notation in organizing your thinking
and your employment of the rules of probability. The next example is
real and arose out of a popular game show on TV in the United States,
where it is known as the Monty Hall problem.

12.3 THE THREE DOORS

The scene is a TV show, the participants a contestant and a host. Before
them are three outwardly identical doors. The host tells the contestant
truthfully that behind one of the doors is a valuable prize and behind
the other two there is nothing; he, the host, knowing where the prize is.
One door, at the contestant’s choosing, will be opened and she will
receive the prize only if it is thereby revealed. He then invites the
contestant to choose, but not open, one of the doors. This the contestant
does, whereupon the host opens one of the other two doors, revealing
that there is nothing there, and invites the contestant to alter her choice
to the one remaining door that has neither been opened nor selected.
Should she change? It might be added that this is a long-running show
that the contestant has often seen, but never participated in, and she has
noticed that the door first opened by the host never has the prize.
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One answer argues that presumably the contestant initially had no
reason to think the prize lay behind one door rather than any other, so
that her probabilities for a door hiding the prize is the same for all
doors and, there being three doors, each has probability 1/3. (This is
the classical interpretation of probability, §7.1.) After the opening,
one door is eliminated, two remain and their probabilities for
containing the prize are still equal but now 1/2. (Again there is a
connection with §11.7.) Consequently, her probabilities for the two
doors being equal, it does not matter whether or not she changes her
choice of door.

This was the popular view until a journalist put forward a different
solution in her column, arguing that the contestant should change. The
outcome from the column’s publication was a burst of correspondence
from mathematicians saying she was wrong, going on to remark that
she just did not understand probability, piling on the condemnation by
deploring the lack of knowledge of mathematics among the public.
Unfortunately the journalist was right and academe had egg on its face.
Let us analyze the situation carefully, for it needs only a minimal use of
probability; just the addition rule. Incidentally, among the mathemati-
cians who had the wrong answer was one of the most original and
prolific of his time, who went on to remark later that “probability is the
only branch of math in which a brilliant mathematician can make an
elementary error”. Quite why this should be so is not clear to me
because the subject is only the working out of the logical consequences
of the three rules. I suspect that the difficulties arise, not in the math,
but in the application of the rules to the real world. §§12.4 and 12.5
illustrate the difficulty and suggest how it might be overcome.

We begin by supposing, as does the na€ıve analysis already given,
that the contestant’s probabilities for the prize being behind any door
are 1/3. Let us number the doors, 1, 2, and 3 for identification purposes,
attaching the number 1 to the door selected by the contestant. Then
there are three possibilities:

(a) The prize is behind door 2 and the host opens door 3,
(b) The prize is behind door 3 and the host opens door 2,
(c) The prize is behind the chosen door 1 and the host opens either

door 2 or 3.
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Notice that in cases (a) and (b), the host has no choice as to which
door to open since there is only one door available, besides that chosen,
which has nothing behind it. In case (c), either unselected door may be
opened. Next observe that, by the assumption made in the first sentence
of this paragraph, the three cases, (a), (b), and (c), each has probability
1/3 for the contestant, yet in (a) and (b) shewill get the prize by changing.
For example, in (a), door 3 having been opened, a change means
choosing door 2, which is where the prize is; similarly in (b). In case
(c) the prize will be lost by the change since her first choicewas correct.
Since (a) and (b) both result in the prize if she changes and both have
probability 1/3, by the addition rule the probability that a change results
in the prize is 2/3 and of not getting it, case (c), 1/3. There is therefore a
substantial expectation of gain by changing, doubling the original
probability of 1/3 to 2/3, and the journalist was correct.

It is of some interest to look back and see why the first answer was
incorrect. The error lies in thinking of the host’s action as random
when selecting the door to be opened. Were it truly random and the
opened door found to reveal nothing, then the answer would be correct
but, as we have seen in the correct analysis, it is far from random in
cases (a) and (b), the host having no choice. Only in case (c) could it be
random. It is not uncommon for people to tacitly assume that some-
thing is random when, in fact, it is not.

The use of probability in solving this problem is minimal, the real
difficulty lies in connecting the reality of the TV showwith the calculus.
The na€ıve argument does this carelessly, whereas the journalistmade the
connection correctly and simply. It is often this way with problems in
real life, where the mathematics is often straightforward (though
straightforward is a relative term). What perplexes people is turning
reality into a convenient model, (a) to (c) above, to which the calculus
may be applied. There is a real art in constructing the model within
which the science can be employed. One way of lessening, but not
entirely removing, the difficulty is to take the calculus as primary and
force the problem into it. With the three doors, the uncertainty concerns
the prize door, which can be 1, 2, or 3. The evidence is the empty, opened
door, I, II, or III. Supposing the numbering is chosen so that 1 is the door
selected initially by the contestant and II the door opened by the host, we
have likelihoods pðII j 1Þ ¼ 1=2, pðII j 2Þ ¼ 0, pðII j 3Þ ¼ 1, with priors
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pð1Þ ¼ pð2Þ ¼ pð3Þ ¼ 1=3. Since the evidence rules out 2, there are
only two possibilities and the odds form of Bayes rule gives

oð3 j IIÞ ¼ pðII j 3Þ
pðII j 1Þ oð3Þ ¼ 2

on inserting the numerical values. Hence pð3 j IIÞ ¼ 2=3 as before and
change is optimum. Although the first solution is the one usually given,
I prefer this second one because it reduces the need to think, replacing it
by the automatic calculus. Thinking is hard, so only use it where
essential.

It is instructive to consider what would be the correct choice, change
door or not, when the contestant did not think the prize lay at random.
That is, the contestant does not believe that all doors have probability 1/3
of hiding the prize. Suppose she has probability pi that it lies behind door
i, with p1 þ p2 þ p3 ¼ 1. Further suppose that, as before, she selects
door 1. The three cases, (a), (b), and (c) above, will still arise but, instead
of being equally probable, will now have probabilities p2, p3, and p1,
respectively. If she changes her choice of door, she will win in cases (a)
and (b) with total probability p2 þ p3; staying with the selected door 1
will have probability p1 of gaining the prize. Now p2 þ p3 ¼ 1� p1
because the three probabilities add to 1, so the best she can obtain is the
larger of ð1� p1Þ and p1. Similarly, were she initially to select door 2,
the better is the larger of ð1� p2Þ and p2; for door 3, ð1� p3Þ and p3. Her
overall best strategy for selection andpossible change corresponds to the
largest of these 6 values. To see which is the largest, let the doors be
renumbered in such a way that p1 < p2 < p3, with the consequence that
1� p1 > 1� p2 > 1� p3. (Other inequalities are possible but they
lead to similar conclusions) The choice lies between p3, the largest
of the first three, and 1� p1 for the last three. Now it cannot happen that
p3 exceeds1� p1, for thenp1 þ p3 would exceed1,which is impossible;
so 1� p1 must be the largest, corresponding to an initial selection of
door 1, followed by a subsequent change. But door 1 was initially the
least likely to hide the prize, so the contestant’s optimum strategy is

Select the door least likely to hide the prize and then change when
the host opens the empty door.
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Her probability of obtaining the prize is 1 minus the least proba-
bility. The extreme case when the least value is 0 drives home the idea
for if, on entering the studio, she accidentally saw that door 1 was
empty, the above strategy would make it certain that she would obtain
the prize from the sole unselected and unopened door.

We have here a beautiful example of a point made before in § 10.10
that when you make a decision today (the initial selection), it is
essential to take into account the tomorrows (the opened door) that
the decision might influence. Here it pays to do an apparently ridicu-
lous thing today (choose the least likely door) in order that the opened
door may be very revealing tomorrow. Chess players are aware of this,
for sometimes it pays to sacrifice a piece in order to obtain an enhanced
position for future moves.

(The alert reader may have noticed that there is a further strategy
that might be considered, which we illustrate by the initial selection of
door 1 and the cases (a), (b), and (c) above. That is to change if door 2 is
opened but not with door 3. This will get the prize with probability p3;
case (b), and 1/2 p1, case (c), assuming the host opens at random in the
latter case. The total probability is p3þ1/2 p1, which is less than
p3 þ p1 ¼ 1� p2, which could be obtained by one of the strategies
already considered, namely select and then change. So the additional
strategies are not optimum.)

12.4 THE PROBLEM OF TWO DAUGHTERS

(Aversion of this problem was present in the first edition under the title
“The Newcomers to Your Street”. The math is essentially the same in
both versions but the scenarios differ. There are two reasons for a
change between editions. The first is that the problem has appeared
often, both in print and on the radio, under the two-daughter title. The
second is that the analyses given there are often defective, if not wrong,
so that there is an opportunity here to providewhat is hopefully a sound
discussion and to clear up some ambiguities.)

There is a mass of evidence to support the theory that, excluding
multiple births, the chance of a human baby at birth being male is 1/2,
independent of all other human beings. In the language of §7.4, human
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beings at birth form a Bernoulli series of chance 1/2. If you accept this
theory, then your probability that any particular child will be male is 1/2,
and that a second child will be female is also 1/2, independent of the
first. So, for you, a family of two children will be BB, BG, GB, or GG,
each having probability 1/4 by the multiplication rule for independent
events. Here B means boy, G means girl, and the order of the letters is
the order of birth. In the light of these remarks, consider the following
scenario.

You meet a lady whom you are reliably informed has two children
who are not identical twins. This, together with the probabilities
described in the last paragraph, constitute your background knowledge
that will be fixed throughout the discussion that follows and therefore
not included in the notation. In conversation with her she says that she
has a daughter; this is the new evidence. What is your probability now
that her other child is also a girl? Common sense suggests that is still 1/2
since the births are independent in respect of sex. Is this so? A book,
described as a best seller, says it is 1/3; so which is correct? It may
seem extravagant to do so but we here use the full force of the
probability calculus that has been developed in this book. The results
are interesting and surprising, so that the extravagance pays off.

Let g denote the new information that one of her children is a girl.
The question asked is what is your value of p GG j gð Þ, your probability
that she has a family of two girls, given that she has at least one. This is
clearly a case for Bayes rule, which says

p GG j gð Þ ¼ p g jGGð Þp GGð Þ=p gð Þ: (12.1)

(See §6.3 with g for E,GG for F, and K omitted.) Here p gð Þis found by
extending the conversation to include the constitution of the family, as
in §9.1, giving

p gð Þ ¼ p g jGGð Þp GGð Þ þ p g jGBð Þp GBð Þ þ p g jBGð Þp BGð Þ þ p g jBBð Þp Bð Þ:
(12.2)

Assuming your informant is truthful, p g jBBð Þ ¼ 0. Almost as clearly
p g jGGð Þ ¼ 1 though you may consider a declaration of 1 daughter,
when she has 2, impossible. By theBernoulli theory, all the unconditional
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probabilities on the right-hand side are 1/4. Combining all these ideas, we
have

p gð Þ ¼1=4 þ1=4 p g jGBð Þ þ1=4 p g jBGð Þ;
and (12.1) becomes

p GG jgð Þ ¼ 1= 1þ p g jGBð Þ þ p g jBGð Þ½ �; (12.3)

the values 1/4 cancelling from the numerator and denominator in (12.1).
In words, your probability that the other child is also a girl, so that the
family is GG, is 1 divided by the expression in square brackets [ . . . ].
There is nothing so far in the analysis to say what values you associate
with the probabilities therein, p g jGBð Þ and p g jBGð Þ. What is your
probability that the lady will declare the existence of a daughter, rather
than a son, when the family is of mixed sex, either GB or BG? Until
these have been settled there is no unique, numerical answer to the sex
of the other child. We investigate several possibilities.

1. A natural one is that if the family is of mixed sex, the lady is as
likely to admit a son as a daughter, when p g jGBð Þ ¼
p g jBGð Þ ¼ 1=2. In this case (12.3) yields p GG j gð Þ ¼ 1=2, in
agreement with common sense.

2. Suppose that, at the time you receive the additional information
about her daughter, you had your daughter with you and your
informant knew this. Then you might feel that, in the case of a
mixed sex family, the lady would be more likely to announce
the existence of a daughter than a son. For example she might
have said, “I have a daughter too”. A possibility here is that you
assess p g jGBð Þ ¼ p g jBGð Þ ¼ 1. In this case (12.3) yields
p GG jgð Þ ¼ 1=3, in agreement with the book mentioned above.

3. Another possibility is that you think the lady refers to her elder
child, when p g jGBð Þ ¼ 1 but p g jBGð Þ ¼ 0, taking us back to
the 1=2 of common sense.

4. There are societies in which only male children are respected. If
the new information arose in such a society, you might feel that if
the lady had a boy, she would proudly announce that fact. Then
p g jGBð Þ ¼ p g jBGð Þ ¼ 0, so that p GG j gð Þ ¼ 1. This last result
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does not need probability, for it follows by logic and hence does
not violate Cromwell’s rule (§6.8).

There are several lessons to be learned from this apparently simple
problem, which apply morewidely to real-life problems of importance.
The first is that here is a problem that is both well defined and in which
there appears to be enough evidence to reach a unique answer. In fact
this is not so. One cannot say that 1/2 is right and

1/3 wrong. Additional
material is needed for a coherent response. Important problems often
have this element of ambiguity that is not recognized, perhaps because
at school we were taught that things are either “right” or “wrong”. This
is not so and pupils who are so taught are being misled.

Another feature of the two-daughter problem is that it is often not
enough to appreciate what you know—one child is a girl—but it is also
necessary to ask yourself how you know it. In the second possibility
above, you came to know of one daughter because your daughter was
with you; this affected your assessments of p g jGBð Þ and p g jBGð Þ. As
this is being written, a politician is reported as providing a fact, the
equivalent of g here, only to be challenged by a rival “how do you know
that?” The reply was that a lobbyist had told him, to which the rival
responded that the fact might have been different had it come from a
neutral source.

Another comment is more technical but is relevant to all statistical
analyses of data, here the data is g. Once the genetic facts, such as
p GGð Þ ¼ 1=2, have been admitted, the resolution of the problem rests
on four probabilities of g, conditional on the four possible genetic
configurations, GG, GB, BG, and BB. This is most clearly seen in
(12.2). Also (12.3) reveals that it is only the ratios of these four that
matter. For example, if each value was halved, the result p GG j gð Þ
would not be affected. These four values constitute the likelihoods for
the data. Recall that generally p E jFð Þ as E varies, provides a
probability distribution given F, whereas as F varies it provides the
likelihood function for data E. We see from this little problem that the
only contribution from the data g is the likelihood function for g. This
is the likelihood principle: that the only contribution from the data to
the analysis is the likelihood function for the data. As we shall see in
§14.4, many statistical procedures violate the principle. Such violation
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would occur here if the solution used your probability that the lady
would have announced a boy.

12.5 TWO MORE DAUGHTERS AND CARDANO

The problem to be considered here is the same as that in §12.4 except
that your informant tells you her daughter’s name, Helen, in addition
to her existence. The question remains: what is your probability that
the other child is also a girl? The common sense response is that
name does not affect the sex of the other child, so that the answer is
the same as that given previously. Some writers have argued that this
conclusion is wrong and have provided different answers from the
ones they gave for the original problem of §12.4. One writer, who
gave 1/3 as the answer there, claimed that 1/2 was now the correct
answer. We investigate these claims again using the full force of the
probability calculus.

The notation remains the same except that g, for the information
about the girl, is replaced by gh, a girl called Helen. We then have two
pieces of information, g for a girl and h for Helen, so that the event gh is
the conjunction (§5.1) of g and h. The argument of §12.4 up to equation
(12.3) can be used in our new problem, with g there everywhere
replaced by gh. In particular the four probabilities p g jGGð Þ and so on
in (12.2) are replaced by p gh jGGð Þ and so on; that is, a different
likelihood is required. We saw that the previous analysis required
careful thought and several possibilities for the likelihood were
explored, following (12.3). Consider one of the new probabilities
p gh jGBð Þ and use the multiplication rule of probability to obtain

p gh jGBð Þ ¼ p g jGBð Þp h j gGBð Þ: (12.4)

To help appreciate this, replace E, in the statement of the rule (5.5), by
g, and F there by h;K there is replaced byGB in addition to the original
genetics background knowledge. In (12.4) p g jGBð Þ is familiar from
the original form of the problem. The new consideration is p h j gGBð Þ,
your probability that the daughter is called Helen, given that the family
is GB and “the lady has told you about the daughter”. It is the part in

12.5 TWO MORE DAUGHTERS AND CARDANO 309



quotes that distinguishes gGB from GB considered in §12.4. This
probability requires careful thought, thought that is not a question of
mathematics but of your uncertainty about a girl’s name. Contrast
p h j gGBð Þ with p h j gð Þ, where your uncertainty is still about the girl’s
name but you are unsure about the genetic constitution of the family. It
seems reasonable to me that these two probabilities are the same; that
the genetics does not influence the name of the girl whose existence
you have been told about. You, dear reader, may disagree and feel that
Helen is a more common name for girls when they are firstborn than a
later addition to the family. You are entitled to that belief but it seems
unjustified to me, so I will assume that Helen has the same chance of
occurring for a girl wherever the family has a girl. That is

p h j gGBð Þ ¼ p h j gð Þ; (12.5)

or, in the terminology of §4.3, h and GB are independent, given g. If so
it seems sensible to say p h j gð Þ is the frequency of “Helen” among all
girls, or rather your assessment of that chance (§7.8). Notice that (12.5)
is a new assumption; it does not logically follow from the assumptions
already made.

Exactly the same reasoning applies when the family is BG, the
order of the births being irrelevant, so that (12.5) is acceptable when
GB is replaced by BG. The case of two boys BB does not arise since the
supposition of truth makes the event gBB impossible. The case of two
girls does require further consideration because there are two possi-
bilities for the name “Helen” to be present in the family. I judge this
irrelevant because you are saying something about the name of the girl
you have been told about, not about whether the family of two girls has
one called Helen. If this irrelevance is accepted as a further assump-
tion, (12.5) continues to hold when GB is replace by GG. Putting these
three results into (12.4) we have

p gh jGBð Þ ¼ p g jGBð Þp h j gð Þ;

and similarly for BG and GG. Consequently the relevant form of the
right-hand side of (12.2), with g replaced by gh, is the same as (12.2)
except that every term is multiplied by p h j gð Þ. It follows that p ghð Þ ¼
p gð Þp h j gð Þ on the left-hand side.
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Where does this take us? Recall that the mathematics here is the
same as that in §12.4 except that g is everywhere replaced by gh. Hence
Bayes rule here is, following (12.1) with the replacement,

p GG j ghð Þ ¼ p gh jGGð Þp Gð Þ=p ghð Þ:

But p gh jGGð Þ has been shown to be p g jGGð Þp h j gð Þ and now
p ghð Þ ¼ p gð Þp h j gð Þ, so that p h j gð Þ cancels from the numerator
and denominator on the right-hand side, so that finally
p GG j ghð Þ ¼ p GG j gð Þ. In words, knowledge of the girl’s name
does not affect your probability that the other child is a girl. Remember
some assumptions have been made in reaching this conclusion. For
example, if you thought firstborn girls were never called Helen, then
you might not agree with the conclusion. Recall also that the original
calculation of p GG j gð Þ in §12.4 presented several scenarios. The
results here are not “right” and alternatives “wrong”, rather they may
be the most acceptable to most readers. While the mathematics is
common to all of us, some would say objective, the beliefs are your
concern and they do not necessarily agree with mine, they are
subjective.

Before leaving the problem of the two daughters, it is worthwhile
asking how it happened that the author of a best seller thought that the
knowledge of one daughter’s existence changed the probability that the
other was also a girl from 1/2, the genetic value, to

1/3, and then learning
the name, returned it to 1/2. This is not because the beliefs were
different from mine but because he replaced Bayes rule by an older
method, usually credited to Cardano two centuries before Bayes. Let
us explore Cardano’s method and see why it can often go wrong.

Suppose you are faced with an uncertain situation with a number of
exclusive and exhaustive events (§9.1) that are all equally uncertain.
The two-daughter problem, before the lady gives you any information,
provides an example with GG, GB, BG, and BB each with probability
1/4. Next suppose you are given some information that could not
possibly arise were a particular one of the events true, so ruling
that event out. This happens in our problem with the information g

that one child was a girl, when p g jBBð Þ ¼ 0, so ruling out BB as a
possibility. Then Cardano’s method says that you are left with only
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three possibilities, still exclusive and exhaustive, so each has proba-
bility 1/3. Hence p GG j gð Þ ¼ 1/3, whereas p GGð Þ ¼ 1/4. Generally, with
one possibility ruled out, the other possibilities have their equal
probabilities increased equally to make their total one. This is
Cardano’s rule.

To see that the method can fail, apply Bayes rule for both the event
GG (12.1) and the event GB, giving

p GG j gð Þ ¼ p g jGGð Þ p GGð Þ=p gð Þ½ � and
p GB j gð Þ ¼ p g jGBð Þ p GBð Þ=p gð Þ½ �:

Next notice that the two ratios that have been put in square brackets
[ . . . ] are equal, since p GGð Þ ¼ p GBð Þ ¼ 1=4 and, as a result, if we
take the ratio of the two left-hand sides, these terms will cancel and we
are left with

p GG j gð Þ
p GB j gð Þ ¼

p g jGGð Þ
p g jGBð Þ : (12.6)

According to Cardano’s rule the ratio on the left-hand side of (12.6) is
1, the original value p GGð Þ=p GBð Þ before evidence g was received,
and as a consequence, so is the right. But we saw that the right-hand
side could take several values. In the first form considered in §12.4, we
had p g jGGð Þ ¼ 1, because the lady could not truthfully say she had a
boy, and p g jGBð Þ ¼ 1/2, because she could equally have said she had a
boy. There the ratio is 2 and p GG j gð Þ is twice p GB j gð Þ in violation of
Cardano. The rule would be correct in the second form in which you
had your daughter with you, where p g jGGð Þ ¼ p g jGBð Þ is reason-
able. Remember it is not only what you know but also how you know it
that matters. In general Cardano’s rule only works when, in addition to
ruling out one case, the data has equal likelihood in all the others.

We won’t go into details, because they can be somewhat compli-
cated, but similar arguments apply when you are given the girl’s name;
or that she was born on a Tuesday, as arose in a radio program. In
natural situations, like the first in §12.4, the name or the day make no
difference but if you had introduced your daughter and given her name,
Helen, to the lady, then Cardano may be sound but only Bayes is 100%
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reliable. This is because Bayes follows from the three basic rules of
probability (§5.4), Cardano’s does not.

12.6 THE TWO ENVELOPES

You are presented with two indistinguishable envelopes and told
truthfully that one of them contains twice as much money, in the
form of checks payable to you, as the other. You open one of them at
random and find it contains an amount of money that will be denoted
byC. Like the problem of the three doors, you are invited to change and
receive the contents of the unopened envelope instead of the contentsC
of the opened one. To decide what to do, consider the following
argument: the unopened envelope either contains 1/2C if you were
lucky in your choice, or 2C if unlucky. Since you chose at random,
each of these possibilities has probability 1/2, so that your expected
return (§9.3), were you to change, is

1=2 � 1=2C þ 1=2 � 2C ¼ 5C=4;

which exceeds the current amount you have of C and therefore you
should change. But this seems ridiculous because it implies that
whatever envelope you select, you expect the other to contain more
money. The world is always better the other side of the fence. What has
gone wrong?

Again we need some notation, in addition to C, the amount in the
opened envelope, and write L for the event that you have opened the
envelope with the larger amount therein; Lc is then the event that you
have selected the smaller amount. L is uncertain for you and your
probability after you have opened an envelope is pðL jCÞ. Now p(L) is
1/2 as your choice was at random but is it true that pðL jCÞ ¼ 1=2 as was
assumed in the last paragraph? Again we calculate it by Bayes rule.

pðL jCÞ ¼ pðC j LÞpðLÞ=pðCÞ; (12.7)

with p(C) given by the extension of the conversation as

pðCÞ ¼ pðC j LÞpðLÞ þ pðC j LcÞpðLcÞ: (12.8)
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Now if the envelope with the smaller amount has been chosen and it
contains amount C, then it logically follows, with no uncertainty, that
the other envelope contains 2C, hence pðC j LcÞ ¼ pð2C j LÞ. Since
pðLÞ ¼ pðLcÞ ¼ 1=2, (12.8) becomes

pðCÞ ¼ 1=2½pðC j LÞ þ pð2C j LÞ�;

and (12.7) yields

pðL jCÞ ¼ pðC j LÞ
pðC j LÞ þ pð2C j LÞ : (12.9)

This is 1/2, the value adopted in the previous paragraph, only if

pðC j LÞ ¼ pð2C j LÞ; (12.10)

that is, if you think that the envelope containing the larger amount is
equally likely to contain an amount C, as twice that amount, 2C. If you
really feel this, then you should always change.

But do your probabilities satisfy equation (12.10)? To answer the
question it is necessary to leave the narrow world of little problems and
escape into the reality where you have been presented with this
delightful offer. In that context, suppose, when you open the chosen
envelope, you find C is rather larger than you had anticipated. Then
pðC j LÞ is rather small because you had not anticipated such a big
check and pð2C j LÞ, for twice that amount, is even smaller. As a result,
pðL jCÞ, from (12.9), exceeds 1/2 and you feel it more probable that the
opened envelope is the one with the larger amount rather than the
smaller, so there is a case for retention. Let us put in some numbers;
supposepðC j LÞ ¼ 0:1, only1chance in10,or odds against of 9� 1, and
p(2C/L)¼ 0:01. Then pðL jCÞ, from (12.9) is 10/11 and the content of
the unopened envelope is 1/2C, with probability pðL jCÞ, and 2C with
the complementary probability pðLc jCÞ ¼ 1� pðL jCÞ, giving your
expected value for the contents of the unopened envelope to be

10

11
� 1

2
C þ 1

11
� 2C ¼ 14

22
C:

Since this is seriously less than C, the amount you have already, you
should not change envelopes.
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In contrast, suppose C is very small in your view, so that pðC j LÞ is
small, then pð2C j LÞ will typically be larger and, from (12.9), pðL jCÞ
will be less than 1/2 and change seems sensible. The values of pðC j LÞ for
different values of C form a distribution (§9.2), and a more complete
analysis than has been given here shows that you will typically have a
distribution such that there is a unique value of the contents C of the
opened envelope, such that if C exceeds this value, you should not
change but if less than it, then change is advisable and you expect to do
better by changing. Imagine you had initially anticipated getting about
10 dollars, then seeing 20 dollars would encourage you to stay whereas
2 dollars would suggest a change; surely an appealing resolution.

Though this problem is artificial, the analysis has consequences for
other situations that do occur in practice, which are technically too
complicated to present here, so that it is worthwhile to explore our
scenario a little further. The na€ıve argument used in the first paragraph
of the discussion, expressed in the notation of the second paragraph,
claims that pðL jCÞ ¼ 1=2 for all C, and therefore from (12.9),
pðC j LÞ ¼ pð2C j LÞ for all C. The amount C is an uncertain quantity
(§9.2) and it often happens that when people are asked about an
uncertain quantity for which they have little information, they will
respond with a phrase like “I haven’t a clue”. (Here we are in descrip-
tive, rather than normative, mode.) When pressed to be more precise,
theymight formulate their near ignorance by saying that every value of
the uncertain quantity has the same probability for them. Even more
interestingly, experienced statisticians routinely make the assumption
that all values of some uncertain quantities are equally probable,
sometimes openly but often tacitly. To them, ignorance of an uncertain
quantity means all values have the same uncertainty. They do this
despite the fact that, as in our envelope example, taking the values to be
equally probable can lead to unsatisfactory conclusions and generally
to incoherent analyses. To be fair, it is often a good approximation to a
coherent analysis and a little incoherence can be forgiven. The true
situation is that you are never ignorant about an uncertain quantity that
is meaningful to you and some values of it are more probable than
others. You may well have difficulty in saying exactly how much
more probable but equality of all values is not a realistic option. The
discussion in §12.9 is relevant.
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12.7 Y2K

During 1999, and even earlier, there were concerns that computer
systems would fail on January 1, 2000 because they identified years by
the last two digits only and might therefore confuse 2000 with 1900.
The feature was termed the millennium bug and denoted Y2K. As a
result of the fears, computer programs were investigated, any Y2K
defects hopefully found and removed. January 2000 duly arrived and
nothing happened; computers worked satisfactorily. Some people
congratulated computer experts on removing the bug, while others
said it had all been a con and that it was now clear the bug had not
existed. This is clearly a problem of uncertainty concerning the bug’s
existence, so let us see what probability has to contribute.

Denote by B the event that the bug existed in 1998, say, before the
remedial action was contemplated, and by p(B) your probability then,
dependent on some unstated knowledge base. The decision was taken
to act, A, and the result was F, a world essentially free of computer
troubles in 2000. The immediate question is how is your uncertainty
about the bug’s existence affected by initiating A and obtaining the
reaction F; what is your pðB jAFÞ? This is easily found using Bayes
rule with data F and conditioning everything on A, with the result

pðB jAFÞ
pðBc jAFÞ ¼

pðF jBAÞ
pðF jBcAÞ �

pðB jAÞ
pðBc jAÞ ; (12.11)

using the odds form of §6.5, with the required uncertainty on the left.
Consider the probabilities on the right. Since action A, without its
consequences, will not affect your uncertainty about the bug,
pðB jAÞ ¼ pðBÞ. If the bug does not exist, Bc, a new century free of
trouble will surely result, so pðF jBcAÞ ¼ 1. Consequently, (12.11)
says that the effect of A and F is to multiply the original odds of B by
pðF jBAÞ. Let us look at this uncertainty, your probability of no trouble
when the bug exists and remedial action has been applied. There are
two extreme possibilities.

In the first, you think that the remedial action is thorough and that
any bad effects of the bug will likely be removed. Then pðF jBAÞ is
near 1 and your original odds for B are multiplied by a number near 1,
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so that they are scarcely altered by the action and the outcome. The
effect is only slightly to diminish your uncertainty about the bug, so
that you are none the wiser as a result of a trouble-free 2000.

The second extreme possibility is that you have a low opinion of
software engineers and anticipate trouble in 2000 whatever they do.
Then pðF jBAÞ is small and the original odds for the bug’s existence
are substantially diminished. Despite the action, which you consider
inefficient, there has been no trouble, so the explanation is that the bug
did not exist.

People who wrote to the press in January 2000, saying that because
life was free of trouble, the bug did not exist and the whole thing was a
con, could hold that view only if they have a low opinion of software
engineers. This is an example of coherence. People with the contrary
view about software, hardly alter their views about the bug and the
happy outcome provides them with little, or no, information about
whether the bug existed.

There is an aspect of the above analysis that deserves more
attention. We said the initiation of action A would not affect your
opinion of B and put pðB jAÞ ¼ pðBÞ. This is reasonable provided it is
the same “you” making all the uncertainty judgments. To illustrate,
consider a large business deciding whether or not to act against the
bug; they are the “you” in the language here but, in order to avoid
subsequent confusion, refer to them as “they”. Thus p(B) is their
probability that the bug exists. If pðB jAÞ is similarly “theirs”, then it
will be p(B). In contrast, consider your probability for B, and later you
learn that the large business has initiated action A, then you may well
change your probability for B, arguing that if the business has acted,
perhaps the bug is more probable than you had thought. The difficulty
arises because two probabilists are involved, “them” and “you”. The
whole question of your using their uncertainties is a tricky one and
consequently will not be discussed.

12.8 UFOs

There are peoplewho are thought of as cranks but often they are merely
people who have probabilities somewhat different from the majority.
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One might anticipate that they are incoherent, so let us take a look at a
group whom many consider cranks and investigate their incoherence.
There are some who think our Earth has, during the past 50 years, been
visited by aliens from space, leading to the presence of unidentified
flying objects (UFOs). About 1000 claimed cases of UFOs have been
witnessed by them. As a result of the publicity these claims have
received, and perhaps also because of the real importance such a visit
might have on our civilization, a scientific investigation was carried out
with the result that only about 20 cases were found to be lacking a
simple, natural explanation.Of the 20, none led to a confirmed alienvisit
being classed as “doubtful”. As a result of this, UFO watchers were
excited, saying that the existence of these 20 cases supported their
contention. Is this coherent? The analysis that follows is carried out for n
cases investigated with r found to be doubtful and n� r confirmed as
natural. In this way the effect of changing numbers can be assessed.

Before the investigation begins, it seems sensible to regard then cases
as exchangeable (§7.3), so that they are, to the scientists, a Bernoulli
series with chance u, say, of any one of thembeing explicable as a natural
phenomenon. Furthermore, u will have a distribution pðuÞ on some
knowledge base. Naturally the scientist’s distribution may differ from
that of the UFOwatchers, so will be left unspecified for the moment. If a
particular case is natural, chance u, the result of the investigation is either
to classify it as “natural” or to leave it as “doubtful”. Again it is
reasonable to assume exchangeability and suppose there is a chance
a, say, of themistake of a natural phenomenon being classed as doubtful.
On the other hand, if a case is truly that of aUFO, it can either be correctly
classified or thought doubtful. For a third time, exchangeability will be
invoked with a chance b, say, of the mistake of a UFO being classed as
doubtful. That a natural phenomenon be classed as a UFO, or vice-versa,
will be supposed impossible. With these assumptions in place, there are
four possibilities with their associated chances:

Truly natural, classed as natural uð1� aÞ
Truly natural, but doubtful ua

UFO correctly classified ð1� uÞð1� bÞ
UFO cast as doubtful ð1� uÞb:
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In explanation of the chances, consider the second situation of two
events both occurring, being natural and being classed as doubtful. By
the multiplication rule of §5.3, this is the chance of being natural,
multiplied by the chance of classification as doubtful, given that it is
truly natural; chances that are respectively u and a, hence ua as stated.

Although there are four possibilities, the second and fourth, in both
of which the judgment is doubtful, cannot be observed separately, so
the data reduce to three possibilities with their chances now listed,
together with the observed numbers of each:

Natural uð1� aÞ n� r

Doubtful uaþ ð1� uÞb r

UFO ð1� uÞð1� bÞ 0.

The chance of doubtful is obtained by the addition rule, taking into
account the two ways that a doubtful result can arise. There were no
confirmed sightings of UFOs. As with a Bernoulli series, the n separate
studies are independent, given the parameters u, a, and b, so that the
chance of the set of results, which is identifiable as your probability
given the parameters, is

½uð1� aÞ�n�r � ½uaþ ð1� uÞb�r: (12.12)

(Anything raised to power 0 is 1.) This complicated expression is your
likelihood function for u, a, and b given the data ðn� r; r; 0Þ and its
multiplication by your original probabilities for the three chances and
division by your probability of the data gives, by Bayes rule, your final
probabilities for them.

The situation is complicated, so let usmake a simplifying assumption
that the two chances of misclassification are the same, a ¼ b, and see
what happens then, returning to the general case later. The chance of a
doubtful conclusion in the second table above is now uaþ ð1� uÞa ¼ a,
irrespective of u. The likelihood (12.12) then becomes

un�rð1� aÞn�r
ar: (12.13)

This likelihood has to be multiplied by your original probabilities for
u anda. It is reasonable to assume that these are independent, the former
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referring to the true state of affairs, the latter to the scientific procedure.
Independencemeans that the joint probability factorizes (§5.3) into that
for u, times that for a; but the likelihood (12.13) similarly factorizes and
when the two are multiplied, as required by Bayes, the product form
persists, so that u and a remain independent after the data are taken into
consideration and u, the parameter of interest,may be studied separately
from a, which is not of interest. Ignoring a, your probability for u, given
the data, is therefore

kun�rpðuÞ;

where pðuÞ is your original uncertainty, k a number, and the effect of the
data is to change your opinion by multiplying by u, n� r times. The
number r of doubtful observations, to which the watchers attached
importance, is irrelevant. The value of k can be found by noting that the
sum of the probabilities over all values of u must be 1; or alternatively
you can forget k by comparing one value of u, u1, with another, u2, in the
ratio

ðu1=u2Þn�r � pðu1Þ=pðu2Þ:

In this ratio form, take a case where u1 is larger than u2 and
specifically where the former is twice the latter so that the ratio,
occurring here, is 2. The result of each natural observation is to
multiply pðu1Þ=pðu2Þ by 2, so that

pðu1 jNÞ
pðu2 jNÞ ¼ 2

pðu1Þ
pðu2Þ ;

where N means natural. Each further natural observation provides
another doubling. Thus 10 naturals will multiply your initial opinion
ratio by 1024, with the result that your revised probability for u1 is
enormously greater than that for u2. Consequently, the large values of u,
near to 1, will have their probabilities increased substantially in
comparison with the small values nearer to 0. Here is a numerical
example of 10 values of u with their initial probabilities, and their final
values after 10 natural conclusions.
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u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

pðuÞ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

pðu jDÞ 0.02 0.08 0.25 0.65

(10 equally spaced values of u are taken, though 0.99 replaces
the dogmatic 1.00; D denotes data of 10 natural observations and the
probabilities unstated are all zero to two decimal places.) It will be
seen that, as a result of the data, u is almost surely not below 0.7 and
the only really credible values are 0.9 and 0.99. This is with n� r ¼ 10;
the data quoted above had n� r ¼ 980, with the result that u must be
very close to 1. More detailed analysis shows that u, the chance of a
natural explanation, then has probability about 0.95 of exceeding 0.997
and it may be concluded that very few, if any, aliens have arrived.

All the assumptions made above are reasonable, at least as good
approximations, except for one, that the two errors that result in a
doubtful classification are equal, a ¼ b. It is sensible to think that a
situation that is truly UFO related is more likely to be classed as
doubtful, chance b, than a natural phenomenon remaining doubtful,
chance a. If this is so, it is necessary to return to (12.12), where the
factorization of terms in u from those in a and b, that was used above,
does not obtain. Without the factorization, the number r of doubtful
sightings becomes relevant and it is necessary to use methods of
calculation that are more technical than can be contemplated here. The
conclusion, using them, is that the same effect, of making your
probability distribution of u concentrate near 1, continues to hold
but that the concentration is rather less dramatic. For example, with
980 cases classed as natural and 20 doubtful, the effect is similar to
40 doubtful under the assumption a ¼ b. Thus the conclusion that
UFO visitations, if they occur at all, are extremely rare, persists.

12.9 CONGLOMERABILITY

In §5.4 it was explained that everything in the probability calculus
follows from the three rules, except for the little matter of conglom-
erability, which we promised to discuss further. This we now do, the
delay arising because the example of the envelopes in §12.6 is the first
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occasion where the notion is relevant. This section can be omitted, but
it does provide some little insight into the difficulties mathematicians
encounter when they introduce infinities, like the infinity of the
integers 1, 2, 3, . . . continuing forever. Infinity is such a useful
concept that it cannot be jettisoned; nevertheless, it does require
careful handling.

Suppose that you think the events E1;E2; . . . ;En, finite in number,
are exclusive, only one of them can be true, and exhaustive, one of them
must be true; then your probabilities for them, pðEiÞ, must add to 1 and
they are said to form a partition (§9.1). Consider another event F; your
probability for it can be found by extending the conversation to include
the E’s and to do so will involve taking the products pðF jEiÞpðEiÞ for
each Ei and adding all n, to obtain p(F) as in §9.1. Now suppose that
pðF jEiÞ is the same for eachEi anddenote their commonvalue by k. The
products will be kpðEiÞ and their sum will be k since the pðEiÞ add to 1.
Consequently, for a finite partition and an eventF, if your probability for
F is the same conditional on eachmember of the partition, it has the same
value unconditionally: pðF jEiÞ ¼ k, for all Ei, implies pðFÞ ¼ k. This
property is termed conglomerability and will be defined more precisely
below. The question we now address is whether this need be true for an
infinite partition. The surprising answer is “No”. Here is an example of
the property failing.

Suppose you are told that the amounts of money in the envelopes in
§12.6 could be 1,2,3, . . . without limit, in terms of a unit such as a
penny, and that you think all values are equally probable. Consider the
partition of these values into

ð1 2 4Þ ð3 6 8Þ ð5 10 12Þ . . . ; and so on:

Thus E1 is the event of obtaining either 1, 2, or 4 pennies on opening
the envelope. The rule here is clear, the odd values are each assigned
one to a triplet, whereas the even values go in pairs to the triplets.
Notice that such a partition is not available for a finite number of
consecutive integers since you would run out of even numbers before
all the odd ones had been introduced. LetG be the event of obtaining an
even number of pennies. Then the assessment pðG jEiÞ ¼ 2=3 follows
since Ei contains twice as many even values as odd and all values have
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the same probability for you. If conglomerability held for this infinite
partition, it would follow that p(G) is also 2/3.

Next consider another partition, F1, F2, F3, . . .

ð1 3 2Þ ð5 7 4Þ ð9 11 6Þ . . .; and so on;

with the roles of odd and even reversed from the other partition. The
same argument will give pðG jFiÞ ¼ 1=3, and, if conglomerable,
pðGÞ ¼ 1=3 in contradiction with the other partition. It is therefore
impossible that the result for a finite partition holds for these particular
infinite partitions. On the other hand, if pðG jEiÞ ¼ k for all Ei, it seems
compelling that pðGÞ ¼ k. There is a natural connection with the sure
thing principle of §10.5 in that if whatever happens (whatever event of
the partition obtains) the result is the same, that result must be true
overall. There is another important reason for thinking the result
should hold. If it does, most difficulties in probability involving
infinities are resolved. Care still needs to be exercised but no contra-
dictions are known to arise. Notice that, in the example here, it was
assumed that all amounts of money were equally probable and that the
same assumption, Equation (12.10) of §12.6, led to anomalies with the
two envelopes. It was seen that the envelope problem could be resolved
by abandoning this assumption and the same feature applies here.

The upshot of the discussion is that it is usual to introduce a fourth rule
of probability, which cannot, as the above example shows, be deduced
from the three others. It cannot be derived from our standard without
some assumption concerning an infinity of balls. The rule is therefore one
of mathematical convenience that impinges on reality through examples
like that of the envelopes. It remains only to state the rule precisely.

Conglomerable rule. If, on knowledge base K , the events E1, E2,
. . . are, for you, exclusive and exhaustive; and F is another event that,
for you, has pðF jEiÞ ¼ k, the same for every Ei, then pðFÞ ¼ k.

12.10 EFRON’S DICE

We have often used, as an example of coherence, the assertion that if A
is preferred to B, and B to C, then necessarily A is preferred to C. In

12.10 EFRON’S DICE 323



§10.2 it was used for consequences and implied in §3.3 for events,
when comparisons were made with urns. The preference is said to be
transitive, the first two preferences being transferred to the third. Here
we show, by a clever example, that the transitive property does not
always obtain with some types of preferences.

Figure 12.1 shows three dice. These are the same as normal dice,
solid cubes all of the same size, except that instead of having the
numbers 1–6 on the six faces, they have the numbers shown in the
figure. For faces not visible, the number thereon is the same as that on
the opposite face. Thus for the left-hand die, labeled A, the bottom face
bears the number 2, the left-facing one bears 4, and so on. The dice are
supposed to be fair in the sense that when properly thrown, each face
has the same probability, 1/6, of appearing uppermost.

Now suppose that you possess die A, while your opponent has die
B, and that you both throw them once, randomly and independently
with the winner being the one with the higher of the two scores on the
upper, exposed faces. What is your probability that you will win? This
will also be the probability for B that hewill lose, since both havemade
a judgment of randomness for their own and their opponent’s throws.

Table 12.1 is a table of the 9 possible outcomes, where the columns
refer to A and the rows to B. The entries in the table are W for a win for
you with die A, or L for your loss. Thus if you throw 2 and your
opponent 1, then you win, the entry W in the top, left-hand corner.

2

9

A B C

4

1

8
6

3

7
5

FIGURE 12.1 Efron’s dice

TABLE 12.1 Competition between die A and die B

A

2 4 9

B 1 W W W
6 L L W
8 L L W
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Each entry has probability 1/9, since each outcome for A has
probability 1/3, similarly for B, and they are independent so the
multiplication rule applies. The table reveals 5 wins for you with A
against only 4 losses. By the addition rule, your probability of winning
is 5/9. In summary, die A is better than die B when they are in
opposition. Similar calculations show that B is better than C, and that
surprisingly C is better than A. This is the opposite of the notion with
preference expressed in the first sentence of this section. The first two
judgments of “better than” do not transfer across to the last judgment
which, had it done so would have been that A is better than C. You
would not use the magician’s wand of §10.2 to replace B by A because
your opponent might arrive with C.

This beautiful paradox of the dice does not impinge on the use of
“transitive” employed in this book, essentially because A, B, and C are
not consequences in the sense we have used the term. Suppose there
was a decision tree (§10.10) with A at the end of a branch. Is A good or
bad? It is good if your opponent has B but bad if they have C. How does
B compare with A? It is good with C but bad with A. So it does not
make sense in this situation to say that A is a good outcome. No die can
be at the end of a decision tree, for there is still your uncertainty about
what your opponent has. If another branch is added to the tree to
include your opponent, the end of that branch will have, for example, A
for you and B for them, with value 5/9, or A for you and C for them,
value 4/9. In the enlarged tree every branch will end in either 4/9 or 5/9,
when the fact that the latter exceeds the former is all that matters.

There are three lessons to be learned from Efron’s dice. The first is
that one should be very careful when making assumptions, especially
when they have important consequences, as in decision making. The
second teaches us to be aware of analogies. In debates, people often say
one situation is analogous to another, and then go on to say that what is
known to be true in one situation is true in the other. The dice show that
preferences among consequences are not analogous to preferences
among dice. Nothing beats the faculty of reason; analogy is no
substitute.

The third lesson affects several criticisms that have been leveled
against the use of numbers. It is often said, especially among those
without experience of the scientific method, that one cannot put
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numbers to abstract concepts, like “happiness”, so that our use of
utility as a measure of concepts is flawed. The objection fails to
recognize that utility applies to material consequences, to outcomes
that you might experience, and not to abstract ideas. It may be that
happiness is an ingredient of the outcome whose utility is being
assessed, but we do not view it in isolation. Utility considers the
whole package, the whole of the consequence. All the time we are in
reality with consequences that you might experience. The outcome is
concrete, not abstract.
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CHAPTER13

Probability Assessment

13.1 NONREPEATABLE EVENTS

It has been shown in Chapter 7 how you may assess your probabilities
in many cases using classical ideas of equiprobable outcomes or, more
often, by employing frequency concepts. Historically, these have been
the most important methods of assessment and have led to the most
valuable applications. However, there remain circumstances where
neither of these ideas is relevant and resort has to be made to other
methods of assessment; to other methods of measuring your uncer-
tainty. For example, if you live in a democracy, the event that the
political party you support will win the next election is uncertain, yet
no equiprobable cases or frequency data exist. It is clearly unsound to
argue that because over the past century your party has been successful
only 22% of the time, your probability of success now is around 0.22,
for elections are not usually judged exchangeable. No really sound and
tested methods exist for events such as elections and as a result, this
chapter is perhaps the most unsatisfactory in the book. What is really
needed is a cooperative attack on the problem by statisticians and
psychologists. Unfortunately, the statisticians have been so entranced
by results using frequency, and the psychologists have concentrated on
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valuable descriptive results, that a thorough treatment of the normative
view has not been forthcoming.What follows is, hopefully, not without
value but falls short of a sound analysis of the problem of assessing
your probability for a nonrepeatable event.

The treatment makes extensive use of calculations using the three
basic rules of probability. Readers who are apprehensive of their own
mathematical abilities might like to be reminded that those rules only
correspond to properties of proportions of different balls in an urn (§5.4)
so that, if they wish, they can rephrase all the calculations that follow in
terms of an urn with 100 balls, some of which, corresponding to the event
Abelow, are red, the rest,Ac, white,while some are plain corresponding to
B andothers spotted forBc.With a little practice, probabilities are easier to
use, but the image of the urn is often found simpler for the inexperienced.
An alternative strategywould be towrite computer programs correspond-
ing to the rules and use them. But initially it is better to experience the
calculations for yourself rather than indulge in the mystique of a black
box, however useful that may ultimately turn out to be.

Suppose you are contemplating a nonrepeatable, uncertain event,
which we will refer to as A. You wish to assess your probability p(A)
for the event on some knowledge base that will be supposed fixed and
omitted from both the discussion and the notation. Because readers are
interested in different things and, even within a topic, have divergent
views, it is difficult to produce an example that will appeal to all. The
suggestion is that you take one of the examples encountered in Chapter
1 to help you think about the development that follows. Perhaps the
simplest is Example 1, the event A of “rain tomorrow”, with “rain on
the day after tomorrow” as the event B introduced later. With one event
being contemplated, the only logical constraints on your probability
are convexity, that it lies between 0 and 1, both extremes being
excluded by Cromwell, and that your probability for the complement
Ac is 1� p(A). In practice, you can almost always do better than that
because some events are highly improbable, such as a nuclear accident
at a named power plant next year, whence p(A) is near 0. Others are
almost certain and have p(A) near to 1. In both these cases, the difficult
question is how near the extremes are. Other events are highly
balanced, as might be the election, and therefore p(A) is nearer 1=2.
Generally, people who are prepared to cooperate and regard the
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assessment as worth thinking about are willing to provide an interval of
values that seem reasonable for them. Suppose that you feel your
probability p(A) for the event A lies between 0.5 and 0.7 but are
reluctant to be more precise than that. This is not to say that smaller or
larger values are ruled out, but that you feel them rather unreasonable.
It is this willingness to state an interval of values that has led to the
concept of upper and lower probabilities in §3.5, an avenue not
explored here, preferring the simplicity of the single value, if that
can be assessed, for reasons already given.

13.2 TWO EVENTS

With a single event, this seems about as far as you can go and the
attainment of a precise value, such as 0.6, let alone 0.6124, is beyond
reach. You can think about your probability of the event being false,
but this is so naturally 1� p(A) that this scarcely helps. However, if a
second related event, B, is introduced, the two other rules of probabil-
ity, addition and multiplication, come into play and since, with
convexity already used, you have all the basic rules upon which all
others depend, there is a real opportunity for progress, essentially
because coherence can be exploited in full. As has been seen in §4.2,
with two events, A and B, there are three probabilities to be assessed,
p(A) already mentioned and two others that express your appreciation
of the relationships between the events in the form of your probabilities
for B, both when A is true and when it is false. These are pðB jAÞ and
pðB jAcÞ that, together with p(A), completely express your uncertainty
about the pair of events. Each of these probabilities can take any value
between 0 and 1, irrespective of the values assumed by the other two.
Again, in practice, people seem to be able to give intervals within
which their probabilities lie. In the table, which will frequently be
referred to in what follows, an example has been taken in which you
feel pðB jAÞ lies between 0.2 and 0.3, while pðB jAcÞ lies between 0.6
and 0.8. These values appear in the top, left-hand corner of the table
and imply that the truth of A leads you to doubt the truth of B in
comparison with your opinion when A is false, Ac is true. In the
language of §4.4, you think the two events are negatively associated.
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As an aside, it would be possible for you to proceed differently and
to contemplate four events derived from the two original ones, namely,

A and B; A and Bc; Ac and B; Ac and Bc;

the last, for example, meaning that A and B are both false. This partition
would lead to four assessments, which must necessarily add to 1, so to
only three being free for you to assess, as with the method in the last
paragraph. However, the partition is generally not as satisfactory as the
method we go on to use because it only exploits the addition rule, in
adding to 1, whereas ours uses the multiplication rule as well. Never-
theless, the choice is yours; you may be happier using the partition and
be prepared to sacrifice numerical precision for psychological comfort,
which is far from absurd. Moreover, from the partition values, you can
calculate the conditional probabilities using the multiplication rule.

Returning to the positionwhere you havemade rough assessments for
p(A),pðB jAÞandpðB jAcÞ,werecallfrom§4.2thatitwouldbepossiblefor
you to contemplate the events and their probabilities in the reverse order,
starting with p(B) and then passing to the dependence of A on B through
pðA jBÞandpðA jBcÞ, thesevaluesbeingdeterminedfromthefirst threeby
theadditionandmultiplicationrules,sothatnonewassessmentiscalledfor.
To seehow thisworks, take themidpoints of the three interval assessments
alreadymade and consider what these intermediate values imply for your
probabilitieswhentheeventsaretakeninthereverseorder.Recall, fromthe
table, that the three intermediate values are

pðAÞ ¼ 0:60; pðB jAÞ ¼ 0:25; pðB jAcÞ ¼ 0:70

listed as (13.1) in the table.

p(A) 0.5 to 0.7 0.60 (13.1) 0.49 (13.4) 0.58 (13.6) 0.58 (13.7)

pðB jAÞ 0.2 to 0.3 0.25 0.31 0.29 ! 0.26

pðB jAcÞ 0.6 to 0.8 0.70 0.55 0.61 ! 0.65

# " " #
p(B) 0.43 (13.2) 0.43 (13.3) 0.43 (13.5) 0.42 (13.8)

pðA jBÞ 0.35 0.35 ! 0.40 0.36

pðA jBcÞ 0.79 ! 0.60 ! 0.72 0.74
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The rule of the extension of the conversation in §5.6, here from B to
include A, enables p(B) to be found,

pðBÞ ¼ pðB jAÞpðAÞ þ pðB jAcÞpðAcÞ
¼ 0:25� 0:6þ 0:7� 0:4; using pðAcÞ ¼ 1� pðAÞ
¼ 0:15þ 0:28 ¼ 0:43:

Bayes rule (§6.3) enables your view of the dependence of A on B to be
found.

pðA jBÞ ¼ pðB jAÞpðAÞ=pðBÞ
¼ 0:25� 0:6=0:43 ¼ 0:15=0:43 ¼ 0:35;

p(B) coming from the calculation just made. Similarly,

pðA jBcÞ ¼ pðBc jAÞpðAÞ=pðBcÞ
¼ 0:75� 0:6=0:57 ¼ 0:45=0:57 ¼ 0:79;

where the result, that your probability for the complement of an event
is one minus your probability for the event, has been used twice. We
repeat: if your probabilities had been

pðAÞ ¼ 0:6; pðB jAÞ ¼ 0:25; pðB jAcÞ ¼ 0:7; (13.1)

then necessarily

pðBÞ ¼ 0:43; pðA jBÞ ¼ 0:35; pðA jBcÞ ¼ 0:79; (13.2)

and you have no choice in the matter; this is coherence using the full
force of the rules of probability. These implications, with the number-
ing of the equations, are shown in the table following the arrows.

You may legitimately protest that you did not state values origi-
nally but gave only ranges. True, and it would be possible to calculate
intervals, using the rules of probability, for the new assessments, but
this gets a little complicated and tedious, so let us just stay with the
intermediate values (13.1) and their implications (13.2), not entirely
forgetting the intervals. With these implications available, you can
think whether they seem sensible to you. Alternatively, you could,
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before doing the calculations above that lead to (13.2), assess reason-
able ranges for the probabilities in (13.2). Again, we will omit these
complications and ask you to consider the values in (13.2) produced by
straight calculations from (13.1).

In the hypothetical example, suppose that you consider the value
for pðA jBcÞ at 0.79 to be excessively high, feeling that 0.60 is more
sensible, but that the other two probabilities in (13.2) are reasonable.
Then with

pðBÞ ¼ 0:43; pðA jBÞ ¼ 0:35; pðA jBcÞ ¼ 0:60; (13.3)

you may reverse the process used above, with Bayes rule and the
extension of the conversation, to obtain the implication

pðAÞ ¼ 0:49; pðB jAÞ ¼ 0:31; pðB jAcÞ ¼ 0:55 (13.4)

in lieu of (13.1). The calculations are left to the reader and the results
are displayed in the table following the arrow. Now these implications
are disturbing, for each of the values in (13.4) lie outside your original
intervals, the first two only slightly but the last more seriously. It
therefore looks as though the shift of pðA jBcÞ from 0.79 in (13.2) to
0.60 in (13.3) is too extreme and requires amendment. Looking at
(13.2) again, suppose you feel that the dependence of A on B that they
express is too extreme, your probability of A changing from 0.35 to
0.79 according as B is true or false. Perhaps you were correct to lower
the latter but that the same effect might be better achieved by raising
the former and lowering the latter rather less, leading to

pðBÞ ¼ 0:43; pðA jBÞ ¼ 0:40; pðA jBcÞ ¼ 0:72; (13.5)

in place of (13.3).
Now you can apply Bayes rule and the extension to calculate the

new implications for your original probabilities with the results

pðAÞ ¼ 0:58; pðB jAÞ ¼ 0:29; pðB jAcÞ ¼ 0:61; (13.6)

shown in the table. Again comparing these with your original intervals,
you notice that all the values in (13.6) lie within them, which is an
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improvement on (13.5), but that both the conditional probabilities are
at or near the ends of their respective intervals, which suggests
bringing them in a little to

pðAÞ ¼ 0:58; pðB jAÞ ¼ 0:26; pðB jAcÞ ¼ 0:65; (13.7)

leaving p(A) unaltered. Bayes and the extension imply

pðBÞ ¼ 0:42; pðA jBÞ ¼ 0:36; pðA jBcÞ ¼ 0:74; (13.8)

all of which are shown in the table.

13.3 COHERENCE

If we stand back from the numerical details and consider what has been
done in the last section, it can be seen that, starting from a triplet of
probabilities (13.1), each of which can freely assume any value in the
unit interval, the implications for another triplet (13.2) have been
calculated using coherence. This new triplet can be amended according
to your views and the calculations reversed, with the events inter-
changed, leading back to new values for the original triplet. If that
amendment does not work, another one can be tried and its implica-
tions tested. This process of going backward and forward between the
two triplets of probabilities will hopefully lead to a complete sextet
that adequately expresses your uncertainties about the two events, as
we suppose (13.7) and (13.8) to do in the example. The key idea is to
use coherence to the full by employing all three of the basic rules of
probability, achieving this coherence by a series of adjustments to
values that, although coherent, do not adequately express your uncer-
tainties. Essentially, you look at the solution from two viewpoints, of
A followed by B, and then B followed by A, until both views look sound
to you. This section is concluded with a few miscellaneous remarks on
the procedure.

The method just described uses two related events, A and B, but
it can be improved by including a third event C. Contemplating
them in the order A, B, and then C, the assessments with the first two
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proceed as above but the addition of C leads to four additional
probabilities

pðC jABÞ; pðC jABcÞ; pðC jAcBÞ; pðC jAcBcÞ;

each of which can freely assume any value in the unit interval. This
requires seven assessments in all, three original and four new ones.
There are six possible orders in which the three events can be
contemplated, namely,

ABC; ACB; BAC; BCA; CAB; CBA;

leading to passages backward and forward between them and vastly
increased possibilities for exploiting coherence. This extension is
naturally much more complicated but, with the help of computer
programs that use Bayes rule and the extension of the conversation, is
not unrealistic.

This method for probability assessment is analogous to that used
for the measurement of distances, at least before the use of satellites, in
that several measurements were made, surplus to the minimal require-
ments, and then fitted together by coherence. For distances, coherence
is provided by the rules of Euclidean geometry, replacing the rules of
probability that we used. With two events, six probabilities were used
instead of the minimal three. Coherence, ordinarily expressed through
rules described in the language of mathematics, is basic to any logical
treatment of a topic, so that our use is in no way extraordinary.

There are situations where the procedure outlined above is difficult
to pursue because some uncertainties are hard for you to think about.
For example, suppose event A precedes event B in time, when pðB jAÞ
and pðB jAcÞ are both natural, expressing uncertainty about the
present, B, given what happened with A in the past, whereas
pðA jBÞ and pðA jBcÞ are rather unnatural, requiring you to contem-
plate the past, given present possibilities. The method is still available
but may be less powerful because the intervals you ascribe to the
unnatural probabilities may be rather wide. Notice however that there
are occasions when the unnatural values are the important ones, as
when A is being guilty of a crime and B is evidence consequent upon
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the criminal act. The court is required to assess the probability of guilt,
given the evidence, pðA jBÞ or pðG jEÞ in the notation of §6.6.

The coherent procedure can be simplified by the use of indepen-
dence, though it is rather easy to misuse this elusive concept. For
example, in considering three events, it might be reasonable to assume
that A and C are, for you, independent, given B, so that pðA jBCÞ
reduces to pðA jBÞ and others similarly, thereby reducing the number
of probabilities to be assessed. The danger lies in confusing your
independence of A and C, given B, with their independence, given only
your knowledge base (see §8.8). There is one situation where inde-
pendence has been used with great success in contemplating events
that occur in time or space. Here we discuss only the temporal case. Let
A1, A2, . . . be similar events that occur on successive days, thus Ai

might be rain on day i. Then the natural, and ordinarily important,
uncertainties concern rain today, given rainfall experience in the past,
for example, pðA5 jA4A

c
3A

c
2A1Þ, your probability for rain on day 5,

Thursday, given that it also rained on days 4 and 1, Wednesday and
Sunday, but not on days 3 and 2, Tuesday and Monday. An extreme
possibility is to assume that the past experience from Sunday to
Wednesday does not affect your uncertainty about Thursday, when
we have the familiar independence and the Bernoulli series of §7.4 if,
in addition, p(Ai) is the same for all values of i. A more reasonable
assumption might be that today’s rain depends only on yesterday’s
experience and not on earlier days, so that, in particular, the above
probability becomes pðA5 jA4Þ. The general form of this assumption is
to suppose that, given yesterday’s experience, here A4, today’s A5 is
independent of all the past, Ac

3;A
c
2;A1, and even further back. Such a

sequence of events is said to have the Markov property. Independence
is an important, simplifying assumption that should be used with
care. The Markov form has been most successful, producing a vast
literature. It is a popular generalization of exchangeability because,
by using various tricks, so many phenomena can be judged to have
the Markov property.

Mention of the scientists’ use of small and large worlds was made
in §11.7. Similar considerations apply here in the use of coherence to
aid your assessment of your probabilities. Essentially, the thesis
expounded in this chapter is that your small world can be too small
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and, by enlarging it, you can better determine your uncertainties.
Confining your attention to a single event, and its complement, may be
inadequate so that your world is far too small to take advantage of the
power of coherence. By adding a second, related event, you can use
the full force of coherence in the larger world in the manner described
in §13.2. Even this may not be enough and a third event may need to be
included before your uncertainties can be adequately described in the
yet larger world with three events. A striking example of this was
encountered with Simpson’s paradox in §8.2 where the relationship
between disease and treatment could only be understood by including a
third factor, sex. There is an unfortunate tendency these days for
discussion to take place in too small a world with a possible distortion
of the situation. As these words are being written, there is a discussion
being conducted about crime, its nature, its prevention, and its
punishment. Yet there is one factor commonly omitted, namely,
poverty and the role it plays in the types of crime under consideration.
Another factor that is possibly relevant is drug taking. There comes a
point where the enlargement of your small world has to stop because
the analysis becomes impossibly complicated. Scientists have often
been most successful in finding worlds that are sufficiently small to be
understood, often using sophisticated mathematics, but are adequate to
make useful predictions about future data. Economists have perhaps
been less successful. The achievement of a balance between the
simplicity of small worlds, the complexity of large ones, and the
reality of our world is a delicate one. The essence of the approach
here is that you should not make your world too small when discussing
uncertainty.

13.4 PROBABILISTIC REASONING

In Chapter 2 it was emphasized that the approach adopted in this book
would be based on reason. This is perhaps contrary to the practice in
most writing where, to use the language of §2.5, the result is more
descriptive than normative. Now that uncertainty has been studied and
probability developed as the reasoned way to study the phenomenon,
we can go back and look at the implications that the development has
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on the reasoning process itself. Though the earlier discussion may have
deplored the lack of reasoning in everyday life, there are occasions
where it is used with advantage. Here is a simple example.

Economists might reason that, were the government to increase
taxation, people would have less money in their pockets and so would
reduce their spending; traders would suffer and a recessionwould result.
This is surely a reasoned argument, though some may claim that the
reasoning is at fault, but there is one thing wrong with the reasoning
process itself in that it does not allow for uncertainty. In other words, the
methodology is defective irrespective of any flaws in the economic
reasoning. It is simply not true that the increase in taxes will result in a
recession; the most that could be said is that it is highly probable that
increased taxationwill result in a recession. In the style developed in this
book, the probability of a recession, given increased taxes, is large.
Notice incidentally, the condition here is a “do” operation, rather than
“see” (§4.7). Our contention is that reasoning itself, with the emphasis
on truth and implication, can be improved by incorporating uncertainty,
in the form of probability, into the process. As has been mentioned in
§5.4, logic deals with two states only, truth and falsity, often represented
by the values 1 and 0, respectively, so that A¼ 1 means that the event A
is true. On the other hand, probability incorporates the whole unit
interval from 0 to 1, the two end points corresponding to the narrower
demands of ordinary logic. Essentially, the calculus of probability is a
significant generalization of logical reasoning. To support this claim, an
example of probabilistic reasoning now follows but, in presenting it, it
must be pointed out that the emphasis is on the probability aspect, not on
the economics that it attempts to describe. The probabilities that appear
are mine; I am the “you” of the treatment. A statistician’s task is to
help the expert, here an economist, articulate their uncertainties and
really “you” should be an economist. The style of the analysis is sound;
the numerical values may be inappropriate.

13.5 TRICKLE DOWN

A thesis, put forward in the years when Britain had a government led by
Mrs. Thatcher, and more recently by other right-wing politicians, was
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that if the richwere to pay less tax, the top rate of tax being lowered from
about 80% to around 40%, the consequent increase in their net salaries
would encourage greater efficiency on the part of the rich, thereby
increasing productivity, and ultimately the poor would share in the
prosperity. In other words, more money for the rich would also mean
more for the poor. Itwas termed the “trickle-downeffect”.Although said
with some assurance by the politicians, there is clearly some uncertainty
present so that a study using probability might be sensible.

We begin by contemplating two events:

L : there is less tax on the rich;
R : the poor get richer:

A more sophisticated approach would refer, not to events, but to
uncertain quantities (§9.2) measuring the decrease in tax and the
increase in wages for the poor but, to avoid technical problems, we
here consider only events. In these terms, the trickle-down effect can
be expressed by saying that the probability of the poor gaining is higher
if the top rate of tax is reduced, than otherwise. In symbols,

pðR j LÞ is greater than pðR j LcÞ

for a “you” who believes in the effect. Since the effect must operate
through the gross domestic product (GDP), the conversation is
extended to include the event

G : the GDP increases by more than 2%;

during some period under consideration. Technological advances can
account for a 2% increase whatever government is in power, so the best
that the changes to taxation could achieve is an increase beyond 2%.
With three events, L, R, and G, we are ready to introduce probabilities.
The events arise in the natural order, L first, which affects G and then
the poor share in the increase, R; so the events are taken in that order.
L is an act, a “do”, and has no uncertainty.

According to the reasoning used by the government, the event L of
less tax will result in an increase in GDP, event G. Inserting the
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uncertain element, the firm assertion is replaced by saying G is, for
you, more probable under L than under Lc. Suppose you think about
this and come up with the values

pðG j LÞ ¼ 0:8 and pðG j LcÞ ¼ 0:4: (13.9)

The next stage is to include the poor through the event R. First consider
the case where the GDP does increase beyond its natural value, event
G, and contrast the two cases, L with the tax reduction, and Lc without.
For a fixed increase in GDP, the rich will consume more of it with L
than with Lc because in the former case they will have more money to
spend, with the result that the poor will benefit less under L than with
Lc. Essentially, the poor’s share will diminish under L because the rich
have the capacity to increase theirs, recalling that this is for a fixed
increase in GDP. However, both groups will probably do well because
of the increase in prosperity due to the higher GDP. Putting all these
considerations together suggests that the values

pðR jGLÞ ¼ 0:5 and pðR jGLcÞ ¼ 0:7 (13.10)

reasonably reflect them, both probabilities being on the high side but
that, given L, being the smaller.

Next pass to the case where the GDP does not increase beyond its
natural value, event Gc. It will still probably remain true that, with
the tax breaks, the rich will consume more of the GDP than if they
had not had them, so that the poor will get less. On the contrary,
neither group will do as well as with G because there is less to be
shared. The values

pðR jGcLÞ ¼ 0:2 and pðR jGcLcÞ ¼ 0:4 (13.11)

might reasonably reflect these considerations.
It was seen in §8.8, that with three events, there are seven

probabilities to be assessed in order to provide a complete structure.
Here, one event, L, has no uncertainty, it is either done or not, so only
six values have to be found and these are provided in (13.9), (13.10),
and (13.11) above. The probability calculus can now be invoked and
the conversation extended from the events of importance, R and L, to
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include G. First with the tax relief L

pðR j LÞ ¼ pðR jGLÞpðG j LÞ þ pðR jGcLÞpðGc j LÞ
¼ 0:5� 0:8þ 0:2� 0:2 ¼ 0:4þ 0:04 ¼ 0:44;

and then with Lc

pðR j LcÞ ¼ pðR jGLcÞpðG j LcÞ þ pðR jGcLcÞpðGc j LcÞ
¼ 0:7� 0:4þ 0:4� 0:6 ¼ 0:28þ 0:24 ¼ 0:52:

As a result, you think that the poor will probably do better without the
tax relief for the rich, 0.52, than with it, 0.44, and the probability
development does not support the trickle-down effect.

The essence of the above argument is that if you include the GDP,
then the poor are likely to have a smaller share of it if the rich get their
tax breaks, whatever the size of the GDP. On averaging over values of
the GDP, the reduction persists. Notice that what happens with both G
and with Gc does not necessarily happen when the status of the GDP is
omitted, as we saw with Simpson’s paradox in §8.2, but here the values
suggested in (13.10) and (13.11) do not lead to the paradox. (A reader
interested in comparing the calculation here with that for Simpson may
be helped by noting that R here corresponds to recovery, L to the
treatment, and G to sex.)

Before leaving the discussion, let me emphasize the point made at
the beginning, namely that the emphasis is on the methodology of the
discussion and not on its economic soundness. It would be possible
for the reader, acting as another “you”, to replace some, if not all, of
the probabilities used above, by other probabilities in order to
produce an argument that supports the trickle-down effect. The
discussion in this section, indeed throughout the book, is not intended
to be partisan but only to demonstrate a form of reasoning, using
uncertainty, intended to shed new light on a problem. One feature of
the general approach is that it incorporates other considerations that
may be relevant to the main issue. Here GDP has been included to
relate tax on the rich to well-being of the poor. The tool here is
coherence, fitting the uncertainties together in a logical manner. By
being able to calculate other probabilities from those initially
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assessed, it is possible to look at different aspects of the problem. The
inclusion of more features brings with it more opportunities to
exploit coherence and more checks on the soundness of the uncer-
tainties that have been assessed. More features involve more com-
plexity, but the process only requires the three rules of probability.
These are suitable for use on a computer. I envisage an analysis in
which a decision maker, “you”, thinks about some uncertainties,
leaving the computer to calculate others. The presentation here has
been in terms of beliefs but extends to action because utility is itself
expressed in terms of probabilities as was seen in §10.2. The claim
here is that we have a tool that enables you to both think and act,
while a computer supplies checks on the integrity of your thoughts
and actions.

13.6 SUMMARY

All the methods described in this chapter depend on the concept of
coherence, of how your beliefs fit together. Indeed, it can be said that
all the arguments used in this book revolve around coherence. With the
single exception of Cromwell’s rule, which excludes emphatic beliefs
about events that are not logically proven, none of the material says
what your beliefs should be; none of your probabilities are proscribed.
There are many cases where it has been suggested that specific
probabilities are rather natural, such as believing the tosses of a
coin to be exchangeable; or based on good evidence, such as believing
that a new-born child is equally likely to be of either sex. But there is
no obligation on you to accept these beliefs, so that you can believe
that, when you have tossed the coin 10 times with heads every time, the
next toss will probably be tails, to make up the deficit; or a pregnant
woman believes that the child she bears is male. Neither of these
beliefs is wrong; the most that can be said is that they are unusual or
incoherent.

At first sight, this extremely liberal view that you can believe what
you like, looks set to lead to chaos in society, with all of us having
different opinions and acting in contrary ways. However, coherence
mitigates against this. We saw in the simple example of the red and
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white urns in §6.9 that, whatever your initial belief about the color of
the urn, provided you updated this belief by Bayes rule, the continual
withdrawal of more white balls than red would raise your probability
that the urn was white to nearly 1, so that everyone would be in the
same position, irrespective of any initial disagreements. Generally, if
there are a number of theories, data will eventually convince everyone
who has an open mind that the same theory is the correct one. It is our
shared experiences that lead us to agreement. But notice that this
agreement depends on your use of Bayes rule, or generally on
coherence in putting all your beliefs together. Without coherence
there is little prospect of agreement. I suggest that in coherence lies
the best prospect of social unity on this planet.

In this chapter, we have not been nearly so ambitious, being content
to argue that you should not contemplate beliefs and probabilities in
isolation, but should always consider at least two beliefs so that the full
force of the probability calculus may be used. Similarly, in decision
making, it is important to fit all the parts of the tree together in a
coherent way. The lesson of this book—

BE COHERENT.
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CHAPTER14

Statistics

14.1 BAYESIAN STATISTICS

There has been an extensive development of the ideas presented in this
book within the field of statistics. Statistics (in the singular) is the art
and science of studying statistics (in the plural), namely data, typically
in numeric form, on a variety of topics. An early historical example
was the collection of data on the production of wheat every year.
Nowadays statistics covers any topic in which data are available, in
particular within the scientific method. Once the data are available,
statisticians have the task of presenting and analyzing them and, as a
result, the activity of statistics (in the singular) has been developed.
Within science, most of the effort has been devoted to models where, as
we have seen, data, now denoted by x, are modeled in terms of a
parameter f, through a probability distribution of x for each value of f,
p x jfð Þ. A simple example is the measurement x of the strength f of a
drug, where there will be uncertainty because all people do not react in
the same way to the drug. If x contains measurements on several
people, the object of the investigation is to assess the strength f; we say
we want to make an inference about f. A typical inference might be to
say that f is 0.56� 0.04 in suitable units.
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In the probability system developed in this book, the problem of
inference about a parameter is easily solved, at least in principle, by
introducing a prior distribution p fð Þ for the parameter. This expresses
your uncertainty about f based solely on background knowledge that
will remain fixed throughout the inference and therefore omitted from
the notation. With the acquisition of data x, the posterior distribution
p f j xð Þ may be calculated using Bayes rule (§6.3):

p f j xð Þ ¼ p x jfð Þp fð Þ=p xð Þ: (14.1)

In view of the central role played by the rule, this treatment of data is
termed Bayesian statistics. The distinguishing feature is that the model
is extended by the introduction of the prior, the justification being the
general one that uncertainty, here of f, is described by probability.
Recall (§9.1) that the denominator in (14.1) is found by extending the
conversation from x to include f, which means adding the numerator of
the rule over all values of f under consideration. It is important to
recognize that the posterior distribution p f j xð Þ provides all the
information you have about the parameter, given the data and back-
ground knowledge. The inference is complete and there is nothing
more to be said. However, a distribution is a complicated concept and
you may wish to extract features from it, if only for ease of compre-
hension. An obvious example is your expectation of f, that is, the mean
of the distribution of the parameter. Another popular choice is the
spread of the distribution (§9.5), which is valuable in telling you how
precise is your information. It is usual to refer to the expectation as an
estimate of the parameter. There are other possible estimates; for
example, with income distributions, which typically have some very
high values, the median of the distribution, where your probability of
exceeding it is 1/2, may be preferred. Any feature of the distribution that
helps you appreciate your uncertainty about the parameter can be
employed. These are questions of comprehension, not logic.

One feature of Bayesian statistics is worth noting because many
popular statistical procedures do not possess it. It is clear from the rule
that once you have the data x, the only aspect of it that you need to
make the complete inference is the function p x jfð Þ, for the fixed x
seen, and all values of f. If you doubt the truth of this statement
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because of the appearance of pðxÞ in the denominator of the rule, recall
that pðxÞ is calculated by extending the conversation from x to include
f, so still only including the terms p x jfð Þ for the observed data. This
result is commonly stated as the following:

Likelihood principle. The only contribution that the model and the
data make to your inference about the parameter is contained in
the likelihood function of the parameter for the actual data
observed.

Notice that this refers solely to the data’s contribution to the
inference; the other ingredient in Bayes rule is your prior for the
parameter. What the likelihood principle requires you to do is to
compare your probability of the data for one value of the parameter
with its value for another, in essence, the likelihood ratio (§6.7). This is
another example of the mantra that there are no absolutes, only
comparisons. The principle was encountered in the two-daughter
problem (§§12.4 and 12.5) where the omission of the likelihood in
the formulation of the problem made it ambiguous.

In many scientific cases it is desirable to include more than one
parameter in the model. In an example in the next section, it is
necessary to include the spread of the data distribution, as well as
the mean. With two parameters, f and c (psi), the whole of the
previous argument goes through with

p f;c j xð Þ ¼ p x jf;cð Þp f;cð Þ=p xð Þ;

where pðf;c) is your prior distribution for the two parameters. Again,
in principle, this causes no difficulty because p f j xð Þ is obtained by
summing p f;c j xð Þ over all values of c, essentially the marginal
distribution of f (§9.8). If f is the parameter of interest, c is often
called a nuisance parameter, and the nuisance can be eliminated by this
summation. Extra nuisance parameters are often included because they
make the specification of the model simpler, often by introducing
exchangeability, a concept that is almost essential for an alternative
approach to statistics studied in the next section. Sometimes it is useful
to introduce many nuisance parameters and then have a distribution for
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them. The death-rate example of §9.10 provides an illustration, withci

connected with region i. Then it is useful to have a probability
distribution for these nuisance parameters. Models of this type are
often termed hierarchical.

In principle, the Bayesian method is simple and straightforward. In
practice there are mathematical difficulties mainly in the summation,
over f when calculating p xð Þ, and over c when eliminating a nuisance
parameter. The development of Bayesian ideas was hindered by the
lack of easy methods of summation, or what mathematicians term
integration. However, with the arrival of modern computers, it has been
found possible to do the integration and perform the necessary
calculations to obtain your posterior distribution, and hence the
complete inference. Aside from the mathematical difficulties, the
usual objection to the Bayesian approach has been the construction
of the probability distributions, especially the prior. Exchangeability is
often available for the model distribution. It is the use of background
knowledge to provide a prior that has led to most criticism. The
rewards for having a prior are so great that the advantage usually
outweighs the difficulty. Notice that the Bayesian method has two
stages. In the first, you have to think about your probabilities. In the
second, thinking is replaced by calculations that the computer can
perform. In the next section, we present an example of a simple, but
common use of the method. In the section on significance tests (§14.4),
a further example of the use of Bayesian methods is provided.

14.2 A BAYESIAN EXAMPLE

In this section, a simple example of the Bayesian approach to statistics
is examined that is often appropriate when you have a substantial
amount of data, perhaps 100 observations. It is based on extensive use
of the normal distribution (§9.9) and before reading further, the reader
may wish to refresh their understanding of this distribution, so beloved
by statisticians for its attractive properties, making it relatively easy to
manipulate. Recall that it has two defining features, its mean and its
spread. The maximum of the density occurs at the mean, about which
the density is symmetric. The spread describes how far values can
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depart from the mean. The mean is alternatively termed the expect-
ation of the uncertain quantity having that distribution. The spread is
the standard deviation (s.d.). Figures 9.5 and 9.6 illustrate these
features. The notation in common use is to say that an uncertain
quantity has a normal distribution of mean f and s.d. s, writing Nðf; sÞ.

In thebasic formof theexample, thedata consist ofa single real number
x, resulting from just one observation, which has a Nðf; sÞ distribution.
Here f is the parameter of interest and s is supposed to be known. The
model might be appropriate if the scientist was measuring f, obtaining the
value x, using an apparatus with which she was familiar, so knew s from
previous experiences with measuring other quantities using the apparatus.
The method is often used where x has been extracted from many
observations, since, due to a result in the calculus, such a quantity is often
normally distributed. That describes the term p x jfð Þ in Bayes rule. There
is no need to refer to s in that rule because it is known and can therefore be
regarded as part of your background knowledge. It remains to specify the
prior, pðfÞ, which is also supposed to be normal, the mean denoted by
m(Greek ‘mu’), and the spread by t, N m; tð Þ. In practice, m will be your
most reasonable value off, your expectation, and twill describe how close
tom you expect f to be. If you know little about f, twill be large, but if the
data are being collected to check on a suspected value of f, twill be small.
With p x jfð Þ and pðfÞ both defined, all is ready to apply Bayes rule.

Theorem If x is N f; sð Þ given f and f is Nðm; tÞ, then the posterior
distribution of f, given x, is also normal with

mean :
x=s2 þ m=t2

1=s2 þ 1=t2
; (14.2)

spread :
1

1=s2 þ 1=t2½ �1=2
: (14.3)

The most remarkable and convenient feature of the theorem is that
normality of the data, and of the prior, results in the posterior of the
parameter also being normal. This is part of the reason why normality
is such an attractive property, for it is preserved under Bayes rule. That
normality also frequently arises in practice makes the theorem useful
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as well as attractive. Unfortunately, it is not possible to prove that the
theorem is correct with the limited mathematics used in this book
(§2.9) because to do so would require an understanding of the
exponential function. Throughout this book, I have tried to show
you how the results, such as Bayes and the addition and multiplication
rules, follow from some comparisons with the standard of balls from an
urn. There you do not need to trust me, you can see it for yourself. Here
I regretfully have to ask you to trust me.

The expression for the posterior mean (14.2) is best appreciated by
comparison with Equation (7.2) where a posterior probability was a
weighted average of data f, and prior assessment g, the weights being
the number of observations n in the data and your prior confidencem in
g. Here we again have a weighted sum; x is weighted by 1=s2, the prior
m by 1=t2. If the observation x is precise, s2 is small and a lot of
attention is paid to it. Similarly, if you are originally confident aboutm,
t2 is small and it receives attention. In most practical cases, s2 is smaller
than t2, so that most weight goes on x. Notice that it is the reciprocals of
the squares of the spreads, 1=s2 and 1=t2, that provide the weights.
There is no generally accepted term for them and we will refer to them
as weights. With that definition, the formula (14.3) is readily seen to
say that the posterior weight, the reciprocal of the square of the spread,
is the sum of that for the data, 1=s2, and that for the prior 1=t2.

Suppose that a scientist was measuring an uncertain quantity and
expressed her uncertainty about it as normal with expectation 8.5 but
with a spread of 2.0. Recall from §9.9 that this means that she has about
95% probability that the quantity lies between 12.5¼ 8.5þ 4 and
4.5¼ 8.5� 4, the values 4 being twice the s.d. or spread. Using the
apparatus, assumed normal of spread 1.0, suppose she obtains the
observation x¼ 7.4. Then the theorem says that she can now assess
the quantity to have expectation:

7:4þ ð8:5=4Þ
1þ ð1=4Þ ¼ 7:62:

The denominator here shows that the spread is 1= 1:25ð Þ1=2 ¼ 0:89.
The expectation is a little larger than the direct measurement, which
was lower than she had expected, but the increase is small since the
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apparatus spread was only half the spread of the prior view. As the prior
view gets less reliable, the weight 1=t2 decreases, and the role of her
prior opinion decreases, with the raw value of 7.4 ultimately accepted.
Many statisticians do this as routine. According to Bayesian ideas, this
is regrettable but here it is not a bad approximation unless you have
strong prior knowledge. A possibility that can arise is that the
observation x is well outside the prior limits for f, here 4.5 and
12.5, even allowing for the spread s of x. If this happens, it may be
desirable to rethink the whole scenario. Coherence cannot be achieved
all the time. It is human to err; it is equally human to be incoherent.

It is common to take several measurements of an uncertain
quantity, especially in medicine where biological variation is present.
The above method easily extends to this case with interesting results.
Suppose that n measurements are made, all of which are Nðf; sÞ and
are independent, given f. Then the likelihood function is dependent on
the data only through their mean, the total divided by their number.
In the language of §6.9, the mean, written �x, is sufficient. It is often
called the sample mean to distinguish it from the true mean f. (Another
convenient property of normality.) We saw with the square-root rule in
§9.5 that the mean has a smaller spread than any single observation,
dividing the spread s by

ffiffiffi
n

p
. It can then be proved that the theorem

holds for n such observations with x above replaced by �x and 1=s2 by
n=s2. Let us try it for the above numerical example with 10 measure-
ments giving a mean of 7.4, the same as for a single measurement
originally, so that increasing the number can be more easily appre-
ciated. The posterior mean will be

ð7:4� 10Þ þ ð8:5=4Þ
10þ ð1=4Þ ¼ 7:43;

and the spread 1=
ffiffiffiffiffiffiffiffiffiffiffi
10:25

p ¼ 0:31. The effect of increasing the number
of measurements has been to bring the expectation down from 7.62 to
7.43, nearer to the observed mean of 7.4, because of the added weight
attached to the mean, compared with that of a single measurement.
Also, the posterior spread has gone down from 0.89 to 0.31. Generally,
as n increases, the weight attached to the mean increases, whereas that
attached to the prior value stays constant, so that ultimately the prior
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hardly matters and the posterior expectation is the mean �x with spread
s=

ffiffiffi
n

p
according to the square-root rule. This provides another example

of the decreasing relevance of prior opinion when there is lot of data.
An unsatisfactory feature of this analysis with normal distributions

is that the spread of the observations, s, is supposed known, since there
is information about it through the spread observed in the data. The
difficulty is easily surmounted within the Bayesian framework at some
cost in the complexity of the math, which latter will be omitted here. It
is overcome by thinking of the model, x as N f; sð Þ, being described,
not in terms of one parameter f, but two, f and s. As a result of this,
your prior has to be for both with a joint distribution p f; sð Þ. It is
usually thought appropriate to suppose that f and s are independent on
background knowledge, so that the joint distribution may be written as
p fð Þp sð Þ. With p fð Þ as before, it only remains to specify p sð Þ. Having
done this, Bayes rule may be applied to provide the joint posterior
distribution of f and s, given the data. From this, it is only necessary to
sum over the values of s to obtain the marginal distribution of f, given
the data. The details are omitted but a valuable result is that, for most
practical cases, the result is essentially the same as that with known s,
except for really small amounts of data. The previously known spread
needs to be replaced by the spread of the data. As a result, save for
small amounts of data, the posterior distribution of f remains normal.
When the normal approximation is unsatisfactory, the exact result is
available. The treatment of this problem with s uncertain, though from
a different viewpoint from that used here, was made a little over a
century ago and was an early entry into modern statistical thinking.
The exact distribution is named after its originator whowrote under the
pseudonym “Student”, and is well tabulated for all values of n.

Another example of the Bayesian method is given in §14.4 with a
discussion of significance tests.

14.3 FREQUENCY STATISTICS

It is unfortunately true that many statisticians, especially the older
ones, reject the Bayesian approach. They have two main, related
reasons for the rejection: first that your prior pðfÞ is unknown, second
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that it is your posterior, your inference, so that the procedure is
subjective, with you as the subject whereas science is objective. These
two objections are discussed in turn. It is certainly true that, prior to the
data, f is unknown, or as wewould prefer to say, uncertain, but it would
be exceptional not to know anything about it. In the relativity experi-
ment (§11.8), the amount of bending could not be large, for if so, it
would have been noticed, and the idea of it being negative, bending
away from the sun, would be extraordinary. So that there was some
information about the bending before the experiment. Indeed, what
right has any scientist to perform an experiment to collect data, without
understanding something of what is going on? Has the huge expendi-
ture on the Hadron collider been made without some knowledge of the
Higgs boson? In practice, scientists often use the information they
have, including that about f, to design the experiment to determine x;
indeed it would be wrong not to use it, but then abandon that
information when they make an inference about f based on x. To my
mind, this practice is an example of incoherence, two views in direct
conflict. Some statisticians have tried to find a distribution of f that
logically expresses ignorance of f but all attempts present difficulties.

The idea that nothing is known about the parameters before the
data are observed, may be unsound, but those who support the idea do
have a point: so often it is hard to determine your distribution for the
parameters. We have seen examples of this difficulty, even in simple
cases, in Chapter 13. Methods for the assessment of a single parameter
are deficient; the assessment of several probabilities is more sensible,
so that the full force of coherence may be exploited. The parameter f in
the model is part of the theory, so that there are opportunities to relate f
to other quantities in the theory. My view is that it would be more
sensible to devote research into methods of assessment, rather than use,
as many do, the incoherent techniques we investigate below. Another
curious feature of this reluctance to assess a prior is the casual, almost
careless, way in which the probability distribution of the data is
selected; normality is often selected because of its simple properties.
Sometimes there is a practical reason for choosing the data distribution
using frequency considerations (§7.2). Many experiments incorporate
some form of repetition, leading to exchangeability, and the concept of
chance (§9.7). For example, with personal incomes, the subjects may
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be thought exchangeable with respect to income and their values
plotted to reveal a distribution with a long tail to the right, correspond-
ing to the few rich people.

The second objection to Bayesian ideas is that they are subjective.
All the probabilities are your probabilities, whereas a great advantage
of science is that it is objective. One counter to this is provided by the
result that if two people have different views, expressed through
different priors, then the use of Bayes rule, and the likelihood that
they share, will ultimately lead them to agreement as the amount of
data increases. We met a simple example of this in §11.6, when
discussing the two urns, different initial odds converging to essentially
equal odds with enough sampling from the urn. This is true rather
generally in the Bayesian analysis, and scientists will ultimately agree,
except for a few eccentrics; or else they accept that the model, or even
the theory, is unsatisfactory. This is what happens in practice where a
theory is initially a matter of dispute. At this stage, the science is
subjective. Then the deniers collect data with a view to getting
evidence against it, whereas the supporters experiment to see if the
data support it. Eventually one side wins, with either the supporters
admitting defeat, or the deniers accepting that they were wrong. In
practice it is more complicated than these simple ideas suggest; for
example, the theory may need substantial modification or be limited in
its scope. Nevertheless, ultimately agreement will be reached and the
subjectivity will be replaced by objectivity. Science is correctly viewed
as objective when all but a few scientists agree. This can be seen
happening now with climate change, though some of the skeptics are
not scientists using Bayes, or other forms of inference, but groups who
treat self-interest as more important than truth. A contrasting example
is the geological theory of continental drift, which was for long not
accepted but is now. Here, and in many other instances, data are not the
only way to reach a definitive view of a theory; agreement can come
through new ideas. In the case of continental drift, the new feature was
an explanation of how the drift could happen.

Statisticians who reject the Bayesian approach, often for the
reasons just discussed, still have probability as their principal tool
but interpret it differently. The basic rules of convexity, addition and
multiplication are used but thought of in a frequency sense (§7.2).
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Thus, the use of p x jfð Þ in a model with data x and parameter f will be
read as the frequency with which the value x will arise when the
parameter has value f. This view has substantial appeal when experi-
ments are repeated in a laboratory, or when a sociologist records a
quantity for each of a number of people. A consequence of this
interpretation is that probability is only available for the data, never
for the parameter, which is supposed to be fixed but unknown and
cannot be repeated. We will refer to statistical methods based on this
interpretation as frequency statistics. Most of the practical differences
between the Bayesian and frequency views rest on the ubiquitous use
of the likelihood principle by the former and its denial by the latter.
There is even a frequencymethod called maximum likelihood that uses
the likelihood function but denies the principle when it assesses how
good is the result of using the method.

Nevertheless, the two attitudes do often, as with maximum likeli-
hood, produce similar results, and practitioners of the frequency school
have even been known to use a Bayesian interpretation of their results.
For example, with a model of the type studied in the previous section
with p x jfð Þ, a common frequency method is to provide a point
estimate of f, that is a function of the data x that is, in some sense,
the most reasonable value for f. In the method of maximum likelihood,
the point estimate is that value of f that maximizes the likelihood
function p x jfð Þ for the data x observed. Often the point estimate is the
posterior mean, or very close to it. In the normal case of the last
section, the point estimate is the mean �x differing from the posterior
mean only by the contribution from the prior, which will be negligible
with a large amount of data. With many parameters, there can arise real
differences between the results from the two approaches. An example
was encountered in §9.10, where the apparently least-performing
authority would have as its frequency point estimate the average
over all relevant organizations within that authority, whereas the
posterior expectation would be greater than that, and often substan-
tially so, because of information about better-performing authorities.

In addition to point estimates, frequency methods use confidence
intervals forf, intervals in which they are confident the parameter really
lies. The degree of confidence is expressed by a probability, namely the
frequency with which the interval will include the true value on
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repetition of the procedure that produced the data. Again repetition
replaces the Bayesian concept, repeats being with fixed f. In interval
estimation by maximum likelihood, the principle is denied. The viola-
tion of the likelihood principle is inevitable within the frequency
viewpoint whenever uncertainty about a parameter is desired, since
the only frequency probability concerns the data, the parameter being
fixed but uncertain. Intervals of the posterior distribution can be used but
they merely help interpret the inference, rather than being basic to it.
Nevertheless, numerical agreement between the confidence and poste-
rior intervals is often close, though gross discrepancies can arise.

One important way in which Bayesian and frequency views differ
is in respect of “optional stopping”. Suppose two drugs are being
compared to see which is more effective. Matched pairs of patients are
treated, one with drug A, the other with drug B, to see which is better.
Finance is available for 100 pairs but after 50 have been compared it is
clear that drug A is superior to drug B. Under these circumstances, it
seems sensible to stop the trials, partly for financial reasons, but more
importantly because it is wrong to continue to give the inferior drug to
50 further patients. The trial is therefore stopped and the limited data
used to make an inference and perhaps reach a decision. Statisticians
have then asked themselves if the data from optional stopping needs to
be analyzed differently from the analysis that would have been used
had the trial started with resources for only 50 trials and the same
results been obtained.

To examine this question, consider a situation in which the trial data
form a Bernoulli series (§7.4) with chance u of “success”, A being
preferred to B, for each pair. In this context, consider two rules for
terminating the series: in the first, the number n of trials is fixed; in the
second, r is fixed, rather than n, and the series is halted when r successes
have been observed. Suppose one experimenter fixes n, another fixes r,
but that coincidentally the same results are obtained even down to the
order of successes and failures. The relevant probability structures of the
data are, for that with fixed n, p r j n; uð Þ, and with fixed r, p n j r; uð Þ.

The frequency method operates with the distribution of r in the first
case, and n in the second, whereas the Bayesian needs only the
observed values of r and n, using the likelihood p r; n j uð Þ as a function
of u, which is common to both experimental procedures. We have seen
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(§9.2) that in the first case, the distribution of r is binomial. The second
distribution, whose details need not concern us here, is different. For
example, with n¼ 6 and r¼ 2, we saw that the binomial extends from 0
to 6, whereas the other goes up from 2 without limit. It follows that
the analyses within the frequency framework will be different for the
two experiments, whereas the Bayesian, using only the likelihood,
ur 1� uð Þn�r, will employ identical analyses. Readers who have
encountered these problems before do not need to be reminded that
the likelihood may be multiplied by any constant without affecting the
Bayesian inference. This is clear from the discussion at the end of §9.1.

14.4 SIGNIFICANCE TESTS

The most obvious differences of real importance between Bayesian and
frequencymethods arisewith significance tests that are nowexamined in
more detail. A reader not familiar with these tests may wish to consult
§11.10 before proceeding. As explained there, in the framework of a
model p x jfð Þ, one value of f may be of special interest. For example,
the theory may imply a value for f, as in the relativity experiment in
§11.8, or if f corresponds to the strength of a drug being tested, then
f ¼ 0 implies that the drug is useless. It usually happens that the
scientist thinks that the special value might obtain, in which case a
Bayesian would assign positive probability to that event. We will
suppose that special value to be zero. If, in the practical application,
it was f0, redefine the parameter to be f� f0. Our Bayesian interpre-
tation of the situation, thought by frequentists to require a significance
test, will therefore be described by saying p f ¼ 0ð Þ ¼ c, where c > 0.
Notice in the analysis of §14.2, when the parameter had a normal
distribution, no value had positive probability since pðfÞ is the density
and p 0ð Þh is the probability that f lies in a small interval of width h that
includes f ¼ 0 (§9.8). Within the Bayesian viewpoint, there are two
classes of problem with any parameter that has a continuous range of
values; in the first, the probability structure is defined by a density; in the
second, there is avalue of the parameter that has positive probability. It is
the latter that gives rise to a significance test. The other case is
sometimes referred to as a problem of estimation.
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The particular significance test to be discussed has the same data
structure as the estimation problem of §14.2, namely the data is a
number x with model density N f; sð Þ with s known. This will enable
comparisons to be made between the posterior appreciations in the two
cases, of tests and of estimates. As already mentioned, p f ¼ 0ð Þ ¼
c > 0. The prior distribution of f when it is not zero remains to be
specified and again it will be supposed to be the same as in the
estimation case, N 0; tð Þ centered on the value to be tested, with m ¼ 0
in the earlier notation. Centering it on the value f ¼ 0 to be tested
means that, if not exactly 0, it is near to it, its nearness depending on t.
It is usual to speak of the hypothesis H that f ¼ 0. This leads to the
complementary hypothesis Hc that f is not zero. We refer to a signifi-
cance test, or simply a test, of the null hypothesis H that f ¼ 0 against
the alternative Hc that f 6¼ 0. In this language, the prior distribution
N 0; tð Þ is p f jHcð Þ, the density of the parameter when the null hypothe-
sis is false.

We are now in a position to use Bayes rule in its odds form (§6.5),

o H j xð Þ ¼ p x jHð Þ
p x jHcð Þ o Hð Þ; (14.4)

replacing F there by H, evidence E by x and omitting reference to
background knowledge. Two of the terms on the right-hand side are
immediate, o Hð Þ ¼ c= 1� cð Þ and p x jHð Þ is Nð0; sÞ, since under H,
f ¼ 0. It remains to calculate p x jHcð Þ, which is done by extending the
conversation from x to include f, so that it consists of the sum, over f,
but excluding f ¼ 0, of terms p x jfð Þp f jHcð Þ. The perceptive reader
will query the omission of Hc from the first probability, explained by
the fact that, given f, Hc is irrelevant when f 6¼ 0. Unfortunately, this
summation requires mathematics beyond the level of this book, so we
must be content with stating the result, which is that x, with givenHc, is
again normal with zero mean and spread

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p
. This is another

instance that makes normality so attractive. With both probabilities
known, the likelihood ratio in (14.4) can be evaluated and the posterior
odds found. These odds can be transformed into a posterior probability
for H given x. It is this probability that we want to compare with the
level of the significance test produced by frequency methods. Before
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doing this, we remark that, as in the estimation case of §14.2, we often
have n data values, iid given f. If so, the same result for the posterior
odds persists with x replaced by the sample mean �x, which is still
sufficient, and s by s=

ffiffiffi
n

p
, using the square root rule (§9.5).

Recall that in a significance test, a small probability, usually
denoted by a (alpha), is selected and if x departs significantly from
the null value of the parameter, here zero, the result of the test is said
to be significant at level a. In this sentence, “departs significantly”
means that x falls in a region of values that, were H true, has
probability a. The literature has extensive discussion as to how
this region should be selected. Figure 11.1 illustrates the case where
x is N 0; sð Þ, where there is general agreement that the region is that
shaded, where x differs from zero by more than a multiple of the
spread s. We will take the case where a¼ 0.05, where the multiple is
1.96, effectively 2. If this happens, the frequency view says that the
data are significant at 5%, suggesting that an unusual result (falling in
the region) has occurred were H true, so that H is probably not true.
Here the word “probably” is used in a colloquial sense and not with
the exact meaning used in this book. In what follows, it is supposed
that x, or �x, is significant at 5%, in that it differs from zero by 2s=

ffiffiffi
n

p
,

when we evaluate the posterior odds ofH, given x or �x. One might hope
that the frequency and Bayesian results would differ only a little,
which would help to justify the near identification of “significant at
5%” with “posterior probability of 5%”, an identification that is
sometimes made even by experienced statisticians, and is often
made by people using elementary methods. As this is being written,
a scientist, writing in a newspaper, does just this. In fact we show that
the identification hardly ever exists, even approximately; the two
views are entirely different.

Table 14.1 gives the numerical value of the likelihood ratio in
(14.4) when t/s¼ 2 and �x is significant at 5%, for various values of n. It
also gives your posterior probability p H j�xð Þ when your prior value
was 1/2, so that you originally thought that the null hypothesis had equal
probabilities of being true or false. The most striking feature of Table
14.1 are the high values of your posterior probabilities; even when
n¼ 1, it is a little over 33%. These are to be contrasted with the 5%
significance, suggesting that H is not true. Your posterior values
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increasewith n and even with n¼ 100, 74% is reached. It can be proved
that with fixed significance level, here 5%, as n increases, your
posterior probability will tend to one. In this situation, frequency
ideas doubt the null hypothesis, whereas Bayes is nearly convinced
that it is true. Here is a striking disagreement between the two schools
of thought. The disagreement might be due to the particular prior used,
though that is unlikely since other priors exhibit the same phenome-
non. What is perhaps more serious is that, with a fixed significance
level, here 5%, for different values of n, the posterior probabilities
change. In this example, from 0.34 with n¼ 1, to any value up to the
limit of one. This is an important illustration of incoherence, the phrase
“significant at 5%” having different unacknowledged interpretations
dependent on the number of observations that led to that level of
significance. It is explained by the occurrence of the sample size, n, in
the formula (14.5) below.

The significance test is one of the oldest statistical techniques and
has repeatedly been used when the number of observations is modest,
rarely more than 100. More recently it has been used with large
numbers, for example in studies of extrasensory perception. Within
the last decade, the test has been used with vast amounts of data that
need to be analyzed by a computer. An example that has been widely
reported in the world’s press is the data collected in the search for the
Higgs boson. Since the posterior probability for the null in Table 14.1
tends toward one, it could happen that the Bayesian analysis differed
substantially from the frequency result that appeared in the press. The
reporting of the physics in the press has necessarily been slight, so that

TABLE 14.1 The likelihood ratio and posterior probability, when x is N f; sð Þ,
H is f ¼ 0, p Hð Þ ¼ 1=2, and p f jHcð Þ is N 0; tð Þ for n iid values giving mean �x
that yields a significance of 5%

n p x jHð Þ=p x jHcð Þ p H j xð Þ
1 0.480 0.341

5 0.736 0.424

10 0.983 0.496

50 2097 0.677

100 2947 0.742
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the physics may be all right but the statistics is doubtful. The eclectic
view that sometimes frequency methods can be used, yet in others
Bayesian methods are appropriate, is hard to defend. My own view
is that significance tests, violating the likelihood principle and using
transpose conditionals (§6.1), are incoherent and not sensible.

These calculations apply only to the selected numerical values but
similar conclusions will be reached for other values. The more serious
criticism lies in the choice of the appropriate prior when a significance
test is used. As far as I am aware, there is no prior that gives even
approximate agreement with the test for all values of n. There is
another aspect of these tests that needs to be addressed. They are often
employed in circumstances in which a decision has to be taken, so that
inference alone is inadequate. There Bayes has the edge because his
methods immediately pass over to decision analysis, as we have seen in
Chapter 10, whereas a significance test does not. As an example of the
misuse of tests, take a situation where it is desired to test whether a new
drug is equivalent to a standard drug, perhaps because the new drug is
much cheaper. This is called a test of bioequivalence. The experiment
is modeled in terms of f, the difference in potency of the two drugs,
with f¼ 0 as the null hypothesis H corresponding to bioequivalence.
Often a significance test of H is used. This may be inadequate because
ultimately a decision has to be made as to whether the new drug should
be licensed. We have seen that this requires utility considerations
(§10.2) leading to the maximization of expected utility (MEU).
Omission of this aspect, as any inference does, would not reflect
the operational situation adequately.

Finally, before we leave the critique of frequency statistics, and for
the benefit of those who wish to extend the calculations given above,
having at the same time, access to the exponential function, the
formula for the likelihood ratio is provided. With the same notation
as above, it is

1þ n=rð Þ1=2 � exp �1=2l
2= 1þ r=nð Þ

h i
; (14.5)

where �x ¼ ls=
ffiffiffi
n

p
and r ¼ s2=t2. Notice that the individual spreads are

irrelevant, only their ratio s/t matters. In Table 14.1, s/t¼ 1/2 and
l ¼ 1:9600, corresponding to a significance level of 5%. Readers
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who would like to investigate the other two popular significance levels
need l ¼ 2:5758 for 1% and l ¼ 3:2905 for 0.1%. Readers with a little
familiarity with frequency statistics will recognize that two-tailed tests
have been used throughout the discussion. The normal prior would be
unsuitable for testing with a single tail, suggesting that f � 0. When n
is large, the term r=n, within the square brackets of the exponential
function, can be ignored in comparison with the 1 there. Similarly,
the 1 before n=r in the square root can be ignored giving the good
approximation

n=rð Þ1=2 � exp �1=2l
2

� �
:

Consequently the likelihood ratio increases slowly with the square root
of n for fixed significance level, which determines l, and fixed r. It is
this dependence on n, the number of observations, that the tail area
interpretation of the data ignores. 5% significance does not cast the
same doubt on the null hypothesis for all n.

14.5 BETTING

In most circumstances, the presence of uncertainty is a nuisance; we
prefer to know the truth and act without the impediment of doubt.
Nevertheless, there are circumstances where uncertainty is enjoyed,
adding to the pleasure of an experience, at least for some people. Two
examples were mentioned in §1.2: card games (Example 7) and horse
racing (Example 8), both of which involve gambling, in the popular
sense of that term. In our development of uncertainty, we have used
the term “gamble” to describe all cases of uncertainty (§3.1). We now
look at the recreation of gambling and recognize that there are at least
two types, distinguished by whether the probabilities are commonly
agreed by all, or very much dependent on the gambler. Roulette is an
example of the former where everyone accepts that if the wheel has
37 slots, the probability of the ball entering any one slot is 1/37, at
least in an honest casino when the gambler has no lucky number.
Horse racing provides an illustration of the second type because
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punters have different views on which animal will win the race,
placing their bets accordingly. Roulette and similar games are
referred to as games of chance because they concern independent
repetitions of a stable situation that can have two results, success or
failure, as discussed in §7.8. The rules of probabilities were histori-
cally first developed in connection with games of chance, where
current advances therein have used mathematics to provide valuable
results, somewhat outside the scope of this book. Here we investigate
betting, where chances do not arise because the conditions are not
stable, one race being different in several ways from another. Our
emphasis here will be on bets in horse racing, though betting occurs
in other contexts too, for example football. It has even been claimed
that one can bet on any uncertain event.

Here betting will be discussed primarily in connection with horse
racing as practiced in Britain where, for a given race, each horse is
assigned odds before running and payment is made to the punter
according to the odds displayed at the time the bet is placed. The odds
are commonly presented in the form exemplified by 8 to 1, which
means that if the person placing the bet, the bettor or punter, stakes
1 cent on a horse at these odds, they will receive 8 cents, and have their
stake returned if the horse wins; otherwise the stake is lost. The set of
odds for all the horses running in a race is called a book, and the person
stating the odds is called a bookmaker, who accepts the stakes and pays
the successful bettors. Odds are always of the form r to 1, where r is a
positive number, 8 in the illustration. Readers may find it helpful to
think of r as the leading letter of the reward to the bettor. In our
discussion, we find it useful to work in terms of rewards, rather than
odds. Often it is useful to refer explicitly to the event E, the horse
winning, and write rðEÞ. Since the racing fraternity abhors fractions, a
bet at odds of 21/2 to 1 will appear as 5 to 2. Odds such as 100 to 8, or 9
to 5 are not unknown. In writing, the word “to” is often replaced by a
minus sign, thus 8�1 or 9�5, which can confuse. A mathematician
would prefer to write simply 8, or 9/5¼ 1.8. At this point the reader
might like to reread §3.8, where odds were introduced in connection
with Bayes rule, the relationship with probability was examined, and
the distinction between odds against, used by bookmakers, and odds
on as used in this book was made.
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In §3.8, the odds on were defined for an event E in terms of
probability as

o Eð Þ ¼ p Eð Þ=p Ecð Þ

in Equation (3.1). Had odds against been used, the ratio of probabilities
would have been inverted to p Ecð Þ=p Eð Þ. It is therefore tempting to
write

r Eð Þ ¼ p Ecð Þ=p Eð Þ; (14.6)

for the reward if the event E is true, that the selected horse wins the
race. The temptation arises because the racing fraternity, and bettors
generally, speak of “odds against” where we have used “reward”. It is
often useful to do this and I personally prefer to turn the stated odds
against into probabilities using the inverse of (14.6)

p Eð Þ ¼ 1= 1þ r Eð Þ½ �: (14.7)

Thus, in this interpretation, odds against of 8 to 1 give a probability of
1/9 of the selected horse winning. However, while useful in some
circumstances, the usage is dangerous because the left-hand side of
(14.7) is not a probability; it does not satisfy the three basic rules, in
particular the addition rule (§5.2). This result is now demonstrated for
a race with only two runners but the argument is general and applies to
realistic races with many runners, just as the addition rule extends to
any number of events (§8.1).

Put yourself in the role of a potential bettor contemplating a two
horse race in which the bookmaker has posted odds of r1 to 1 and r2 to
1, or in our terminology, rewards r1 and r2 for the two horses. The
possibilities open to you are to place a stake of s1 on the first horse and,
simultaneously, stake s2 on the second. Like the rewards, both stakes
must be positive including zero, corresponding to not betting. Suppose
you do this and the first horse wins, then you will be rewarded by r1s1
but will lose your stake s2 on the second horse, with an overall change
in assets of r1s1 � s2. Similarly, if the second horse wins, the overall
change is r2s2 � s1. At this point it occurs to you that perhaps, by
judicious choice of the two stakes, it might be possible to make both
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changes positive; in other words, you win whatever horse wins. In the
parlance of §10.5 you are on to a “sure thing”. Clearly no bookmaker
could allow this, for he would lose money for sure. All he can control
are the odds, or rewards, so we might ask whether he can prevent you
being on to a sure win.

For you to have a sure win, both changes in assets have to be
positive,

r1s1 > s2 and r2s2 > s1:

For this to happen, the ratio of your stakes must satisfy

1=r1 < s1=s2 < r2:

The left-hand inequality follows from the previous left-hand
inequality, and similarly the right-hand one. It follows that you can
only find stakes that will give you a sure win if ð1=r1Þ < r2 or
equivalently r1r2 > 1; the product of the rewards (odds) must exceed
one. The bookmaker would never allow this to happen since he could
suffer sure loss against a wise punter if he did. He will always arrange
for the product to be less than one. Recall that, from (14.6), r1 ¼
1� p1ð Þ=p1;where p1 is the “probability” that the first horse wins, and
similarly r2 ¼ 1� p2ð Þ=p2, so that the bookmaker must ensure that

1� p1ð Þ 1� p2ð Þ
p1p2

< 1:

Multiplying both sides of this inequality by p1p2 and then sub-
tracting this product from both sides reduces this to

p1 þ p2 > 1: (14.8)

We have two exclusive and exhaustive events—one and only one
horse will win—so that if the p values were really probabilities, their
sum would have to be one, in contradiction to (14.8). For a race with
more than two horses, the extension of this result, which the readers
can easily prove for themselves, is that the sum of the “probabilities”
must exceed one to prevent a sure gain by a bettor. It follows that the
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left-hand sides of (14.7) cannot be termed probabilities. The reader
may like to check this result for any book. As this is being written, a
book is given for the result of a soccer match, with odds of 10 to 11 for
a win by the home team, 3 to 1 for an away win, and 5 to 2 for a draw.
The corresponding “probabilities” from (14.7) are 11/21, 1/4, and 2/7,
adding to 1.06. The excess over one, here 0.06, determines the
bookmaker’s expected profit on the game.

An alternative expression for what has been established is that the
bookmaker’s odds cannot be a coherent expression of his beliefs about
which horse will win the race. If not beliefs, what are they? They are
numbers produced by the bookmaker that reflect the ideas of the
people on the race course, or in betting shops, expressed in the stakes
they have placed, and hopefully will give him the confidence to expect
a profit.

We now turn to the behavior of the bettor when faced with a book
for a race. The na€ıve approach is to look at what can be expected when
a stake s is placed on a horse with reward r. If p is your, the bettor’s,
probability that the horse will win, then you have probability p of
gaining rs and probability 1� p of losing s, so that your overall
expected (§9.3) gain is prs� (1� p)s, which is equal to s times
pr� (1� p)¼ p(rþ 1)� 1. You therefore expect to win if, and only if,

p > 1= 1þ rð Þ;

that is whenever your probability exceeds the bookmaker’s
“probability”, from (14.7). This can only happen with a few horses
in the race since your probabilities coherently add to one, whereas the
bookmaker’s exceed one in total (14.8). Recognizing that the
“probabilities” reflect the views of the crowd interested in the race,
you should only bet, if at all, when your opinion of the horse is higher
than that of the crowd.

The analysis in the last paragraph is not entirely satisfactory. One
way to appreciate this is to study the expected gain, found above to be
s p r þ 1ð Þ � 1½ �, which is positive if p r þ 1ð Þ exceeds one, but then
increases without limit with s, the stake. In other words, the na€ıve
analysis says that if the bet is to your advantage, you should stake all of
your assets. This is hardly sensible since, with probability (1� p), this
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would result in your losing your stake and hence everything. The
analysis is deficient for the reason discussed in §10.4, where it is shown
that the proper procedure for the decision over whether or not to bet is
to maximize your expected utility. The utility for money was discussed
in §10.13, and it is also mentioned in connection with finance in §14.6.
It was also emphasized that it is your assets that enter the conse-
quences, or outcomes, at the end of the tree needed to decide what
stake, if any, to place; so it is your utility for your assets that is required
to make a rational decision, not gains or losses.

The correct analysis of a betting situation of the type we have been
discussing involves three different sums of money: your initial assets c
before making the bet, your assets if you lose, c� s, and those if you
win, cþ rs. With p still your probability of winning, you should place a
stake that maximizes over s your expected utility

pu cþ rsð Þ þ 1� pð Þu c� sð Þ; (14.9)

provided the maximum exceeds u(c). Here u(x) is your utility for
assets x. To discuss this further would involve detailed consideration
of the utility function, which needs more mathematics than the rest of
this book requires, and would also need to include problems that do not
involve uncertainty, the book’s main topic. Readers still interested may
like to refer to Chapter 5 of my earlier book,Making Decisions, Wiley
(1985). One complication that can be mentioned is the recognition that
betting on a horse race, or other sporting fixture, is not entirely a question
of money. Most of us experience more enjoyment in watching a race if
we have a bet on a horse, than if we do not. We enjoy cheering on High
Street even though we may often suffer disappointment. If so, perhaps
u(cþ rs) in (14.9) should be increased to allow for the joy of winning,
and u(c� s) decreased. Recall that utility refers to consequences and
the consequences of a race include joy and disappointment.

14.6 FINANCE

There has been a serious deterioration in economic prosperity in the
United States and much of Europe since the first edition of this book in
2006, a change that has affected most of the world. Capitalism has
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wobbled, the wobble being mainly due to unwise investments by some
bankers. An investment is a procedure in which a sum of money is
placed in a situation where it will hopefully increase in value but may
decrease. The outcome is uncertain, in the same sense as that used in
this book, and the final yield of the investment is an uncertain quantity
(§9.2). Uncertainty is therefore at the heart of the economic downturn,
so it is relevant to ask whether the bankers responsible have used the
methods outlined in this book. Unfortunately, the activities of bankers
are shrouded in mystery, so that even the most inquisitive of investi-
gators, such as government regulators, do not know the details of what
goes on in banks. Consequently it may be difficult, if not impossible, to
know whether bankers used probability in a sound manner. However, it
is possible to shed some light on the mystery of what goes on in
investment houses.

Business schools at universities throughout the world teach stu-
dents, some of whom enter the banking profession and handle invest-
ments. One is therefore able to gain some insight into what these
former students might do by reading the textbooks used in their
instruction. These books have become more sophisticated over the
last 50 years, reporting on research done in that period, much of which
employs undergraduate mathematics. It has also been noticed that
many graduates in math, where they would previously have gone into
manufacturing, gain lucrative employment with investment houses.
Put these facts together and there is a possibility that some light can be
shed on the follies of investors by studying the textbooks. This view is
supported by at least two recent essays by academics in which it is
claimed that the use of erudite mathematics, based on unsatisfactory
models, which are not understood by senior bankers, has contributed to
the economic collapse. Let us then look at the methods described in the
popular textbooks on finance.

When this is done, it soon becomes apparent that all the methods
considered are basedon anassumption that people, in particular bankers,
are rational, whatever that means in an uncertain situation. Our thesis is
based on coherence (§§3.5 and 13.3), which essentially means that all
your activities fit together, like pieces in a well-made jigsaw, and that
you will never experience two activities clashing, like pieces not fitting
tightly, and where you would be embarrassed by having to admit an
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error. It came as a surprise to me when the books were examined, that
there is rarely any reference to coherence, and the concept of probability
is not adequately explored.A close examination shows that themethods,
developed in detail and with powerful mathematics, are incoherent. In
other words, in direct answer to our question above concerning the
methods used by bankers, we can say that many of them are deficient in
this respect. It is easy to demonstrate such incoherence; indeed it was
first done in 1969 and thewriting subsequently ignored.We now pass to
a simple proof that one popular method is incoherent, using ideas
developed in Chapter 9, especially §9.5.

An investment consists of an amount of money, placed in an activity
now, in the anticipation that at some fixed time in the future, say a year, it
will have increased in value, recognizing that it may alternatively
decrease. The value of the money after a year will be termed the yield
of the investment.We denote it by theGreek letter (§11.4) theta u. At the
time the investment is made, u is an uncertain quantity for you, the
investor. In the discussion that follows, the reader might find it useful to
take the case of betting (§14.5), where a stake is invested in the outcome
of an uncertain event such as a horse race. If the event occurs, the horse
wins, then you have a reward and your stake is returned. If the contrary
happens, you lose your stake. Here u takes only two values, which are
known to you at the time the bet is placed, at least when the odds are
fixed. Thus, a 1dollar stake at 10�1 against will yield either 10 dollars or
lose 1 dollar. This case, where u takes only two values, will suffice to
demonstrate incoherence of some, even most, textbook methods.

Returning to the general case, u will have a distribution for you at
the time the investment is made. As you will have appreciated from
Chapter 9, a distribution is a complex idea involving many probabilit-
ies, so that it is natural to simplify the situation in some way. The
obvious way is to consider the expectation of the investment or, what is
usually called in this context, the mean yield (§9.3). Thus, in the
example just mentioned, the mean is 10p� 1(1� p), where p is your
probability, at the time you place the bet, that the chosen horse will
win. This is only positive if p exceeds 1/11 and you might only place
the bet if this held; that is, if your mean was positive and you expected
to win. (Recall that p is your probability, not the bookmaker’s (§14.5)).
We have, at several places in this book, argued in favor of simplicity
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but the idea of replacing a whole distribution by its mean is carrying
simplicity too far. There is another feature of a distribution that is
usually relevant, namely the spread (§9.5) of u. If the stake in the
example is increased from 1 to 10 dollars, the mean is still positive and
the bet worthwhile if p exceeds 1/11, but the spread is greater, the
distribution ranging from �10 to þ100. As a result, the bet may be
thought sensible at a dollar stake but reckless at 10 dollars, especially if
the latter is your total capital. Investors in the stock market can feel
this, often preferring government stocks with a guaranteed yield, zero
spread, to risky ventures that might do well but might lose them a lot of
money, large spread. Utility considerations could be relevant here.

Considerations such as these lead to many methods in the financial
textbooks replacing the distribution of u, many numbers, by just two,
the mean and the spread of u. The spread is usually measured by the
standard deviation (§9.5) but for our immediate purposes, it will not be
necessary to discuss how it is calculated. With the problem of invest-
ment reduced from consideration of a whole distribution to just two
numbers, the solution is much simpler and real progress can be made.
We now argue that this is simplicity gone too far, with possible
incoherence as a result. This incoherence is now demonstrated and
only afterward will we return to an alternative specification that is not
so simple but is coherent.

With both mean and spread to work with, the investor wishes to
increase the mean but decrease the spread. Government stocks achieve
the latter but have lower expectations than risky securities. A scenario
like this has been met before (§10.13) where two different features
were discussed, your health and your assets. It was found convenient to
represent the situation by a Figure (10.6) with assets as the horizontal
axis and health as the vertical one. Here in Figure 14.1, we do the same
thing with the spread horizontal and the mean vertical. As in the earlier
figure, curves are drawn such that all the values of the combination
(assets, health) on a single curve are judged equivalent, any increase in
health being balanced by a decrease in assets. There we wanted to
increase both quantities, assets and health; here one desires an increase
in mean but a decrease in spread, so the curves of spread and mean are
differently placed, going from southwest to northeast in Figure 14.1.
Consider points A and B on one of these curves. A corresponds to an
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investment with zero spread, whereas B corresponds to an investment
with larger mean, giving it an advantage, but is disliked for its larger
spread. That A and B are on the same curve means that the two
investments are of equal merit, the increase in spread in passing from A
to B being balanced by the increase in mean. (Notice that the curves in
Figure 10.6 were of constant utility. Here the curves are merely those
where all points are judged equivalent. We will return to utility in
connection with investments below.)We now show that the use of these
curves to solve an investment problem leads to incoherence.

Suppose that you have settled on the curves in Figure (14.1) and, in
particular, decided that an investment with mean 2 and spread 6 (C in
the figure) is as good as onewith mean 4 and spread 10 (D in the figure),
the undesirable increase in spread in passing fromC toDbalanced by the
increase in mean. Recall that it is being supposed that in evaluating
investments, only mean and spread matter. We now produce two
investments that correspond to C and D but in which D is obviously
the better. It would not be an exaggeration to say that it is nonsense to
judge the two investments,C andD, equal; the politeword is incoherent.
The two investments are of the type described above.

C has u ¼ �1 orþ 5 with equal probabilities 1=2;
1=2

� �

D has u ¼ �1 orþ 9 again with equal probabilities 1=2;
1=2

� �

C corresponds to placing a stake of 1 on a bet at odds of 5�1 against,
where you have probability 1/2 of winning. D has odds of 9�1 against

Mean

A

B

C

D

Spread

FIGURE 14.1 Curves of equal merit in an investment.
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but otherwise is the same as C. It is immediate that

C has mean 2 and spread 6;whereas

D has mean 4 and spread 10:

The means are obvious. For C it is �1�1/2þ 5�1/2¼ 2 (§9.3 where it
is referred to as expectation); similarly, for D it is �1�1/2þ 9�1/2¼ 4.
The spread, in the familiar use of that term, is the difference between
the higher and lower values that are possible, 4 for C, 6 forD. (Readers
comfortable with the term standard deviation may like to be reminded
that the measure of spread used here is twice the standard deviation, the
factor 2 being irrelevant in this context.)

Now for the crunch: despite your rather sophisticated judgment in
Figure (14.1) that C and D are equivalent, it is now obvious that D is
better than C. In both bets, you stand to lose 1 with probability 1/2,
whereas your winnings would be 5 with C but a better 9 with D, again
with the same probability of 1/2. Everyone prefers D to C.

The approach used here with a numerical example can be general-
ized. If an investment with one pair of mean and spread is judged
equivalent to a different pair, then two bets, each with the same means
and spreads, can always be found in which one bet is blatantly superior
to the other, so denying the sophisticated judgment of equivalence. The
conclusion has to be that the comparison of investments solely through
their means (expectations) and spreads (standard deviations) is
unsound. It is surprising that so much effort has been put into methods
based on an erroneous assumption. If these have been used in practice,
then surprise turns to disquiet.

My own view is that this erroneous assumption could not, on its
own, have led to the bankers acting as they did. It is true that many of
the investments considered by them were difficult to understand but
it is unlikely that this misunderstanding was enhanced by the use of
mean–spread methods; rather the complexity of the methods may
have disguised the nature of the investments. Another consideration
is that, in practice, the erroneous methods may be good approxima-
tions to coherent, or even rational procedures. No, we need to look
elsewhere for a convincing explanation for the credit crunch and
recession.
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A possible explanation can be found by going beyond the appre-
ciation of the investment through the yield, u, with your associated
distribution of u, to a recognition that to be effective, a decision has to be
made aboutwhether the investment should be taken and, if so, howmuch
should be invested, the stake in the betting example. In other words, an
investment is not just an opinion, it involves action. Bankers correctly
refer to investment decisions and it is necessary to go beyond uncer-
tainty, expressed through probability, to actions (§10.1). We have seen
that doing this involves an additional ingredient, your utility (§10.2).
Specifically, youneed both a distribution (of probability) and a utility for
the consequences of your actions in investing. Bankers should have had
their utility function in mind when they acted, and should have then
combined itwith the distribution to enable them to decide bymaximizing
expected utility (MEU, §10.4). So a legitimate question that might
be asked is, what utility function do bankers use? Or, since like the
textbooks, little if any mention is made of utility in banking, perhaps the
question needs modification to ask what utility should be used?

Bankers deal in money, so it is natural to think in terms of utility as
a function of money. This was briefly discussed in §10.13 and a
possible form of utility as a function of assets was provided in
Figure 10.7. There the point was made that the money referred to
had to be your, or the bank’s, total assets. Thus, in investment C above,
expressed as a bet, were your assets when contemplating the bet 100
dollars, you would need to consider assets of 99 dollars were you to
lose, and 105 dollars were you to win. The increases of 100 dollars do
not affect the argument used there but clearly, with the utility of
Figure 10.7 in mind, investment C with assets of 1 dollar would be
viewed differently with assets of 100 dollars, if only because in the
former case, you might lose everything, whereas in the latter, a drop
from 100 dollars to 99 dollars matters little.

Would it be sensible for bankers to consider their utility solely as a
function of money? It might be provided it had the form of Figure 10.7
and the assets were the bank’s, rather than those of individual bankers.
For, if many investments failed together, the bank’s assets would drop
to near zero and the bank could fail. So perhaps they did not have a
utility like that. Yet on the other hand, if the assets were those of an
individual banker, the curve could account for the enormous bonuses
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they took. A glance at Figure 10.7 shows that a rich person needs a large
increase in assets to achieve a small gain in utility, as can be seen by
comparing the passage fromQ to Pwith that from B to A. We just do not
know if bankers had any utility inmind, and if they did,what form it took.

We might question whether the coherent banker should have a
utility that depends solely on money, expressed either in terms of their
own money or the combined assets of the bank. Consider the offer of a
mortgage on a property. If the mortgagor fails, the bank will still have
the property but the mortgagor may suffer what is to them a serious
loss. Should the bank incorporate this serious loss into their utility?
Should their utility involve more than their assets? My personal view is
that bankers, like all of us, are social animals and should base their
decisions on the effects they might have on society, on you and me. I
strongly believe that bankers should have seriously discussed social
issues that might have been affected by their actions. Only then should
they have maximized the expected utility. What little evidence we
have, through bankers being grilled by politicians, suggests that social
utility did not enter into their calculations.

Of course, it is not only the bankers whose activities influence
society. Pharmaceutical companies appear not to take adequate
account of people either in choice of what drug to develop or in
the prices they charge. Generally, commercial confidentiality, at the
basis of capitalism, hides the motives behind management, so that we
do not knowwhether big companies employ utility concepts, or if they
do, what factors they take into consideration. Perhaps only the share-
holders are considered.

It would appear from the textbooks on management and finance
that the concept of utility is not used despite the demonstration that it,
combined with probability, upon which it is based, giving MEU,
provides coherent decisions. There are two reasons for this. First,
the issue of confidentiality: decision makers would be embarrassed by
a public demonstration of their utilities. The second reason is the
hostility of so many people to the measurement of abstract concepts
such as happiness. They either fail to appreciate the power of numbers
in their ability to combine easily in two different ways (§3.1), or they
fail to recognize what it is that we are trying to measure. Utility is a
measure of the worth to you of a consequence or an outcome (§10.2).
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No attempt is made to measure happiness, rather to measure your
evaluation of some real outcome, which may involve an abstract idea,
like happiness, in a material circumstance. All the measurements
proposed here depend on the measurement of probability, which is
discussed in Chapter 13 and the ideas developed there leave much to be
desired, so that serious research on the topic needs to be done. Rather
than award a Nobel Prize to someone who correctly shows how bad we
are at decision making, we should support research into coherent
decision making.

Awider issue here is the question of privacy. By suggesting that a
company should provide us with its utility function, we are effectively
invading its privacy. Indeed, whenever we ask for utilities in decisions
that have social consequences, we are posing questions of privacy. My
personal opinion is that the reasoning used in this book, leading to
MEU, leads to the denial of privacy except in decisions that affect only
the decision maker. Such questions are rare. For example, I think, as a
result of MEU being the preferred method of decision making, all tax
returns should be available online. It should significantly reduce tax
avoidance and perhaps even tax evasion. Privacy is a quality endorsed
by bad people so that they can do bad things.
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Epilogue

It is convenient to look back over what has been accomplished in this
book and to put the development into perspective, examining both
its strengths and its weaknesses. Essentially what has been done is
to establish the

logic of uncertainty.

Ordinary logic deals with truth and falsehood, whereas our subject has
been uncertainty, the situation where you do not know whether a
statement is true or false. Since most statements are, for you, uncertain,
whereas knowledge, either of truth or falsity, is rare, the new logic has
more relevance to you than the old. Furthermore, it embraces the old
since truth and falsity are merely the extreme values, 0 and 1, on a
probability scale. Cromwell’s rule (§6.8) is relevant here.

We have also seen what this logic consists of, namely, the calculus
of probability with its three basic rules of convexity, addition and
multiplication. Many people think of probability merely as a number
lying between 0 and 1, the convexity rule, describing your uncertainty
of an event. This is only part of the story, and a rather unimportant part
at that, because in reality you typically need to consider many
uncertain events at the same time before combining them, often
with other features, like utility, to produce an answer to your problem.
The result established in this book is that these combinations must be
effected by the addition and multiplication rules and not in any other
way. It is this method of calculation, this calculus, that uniquely
provides the logic of uncertainty.

Let us recall how this calculus was obtained. We began by making
a number of assumptions, often called premises, which we hoped were
obviously true and acceptable to all of us. From these premises, the
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ordinary logic of mathematics was used to derive the rules of proba-
bility as inevitable consequences. These results can most effectively be
described as establishing

the inevitability of probability,

namely, if you want to handle uncertainty, then you must use proba-
bility to do it, there is no choice. This is one important reason why the
material expounded here is so essential—there are no alternatives to
probability, except simple transforms, like odds. If you have a situation
in which uncertainty plays a role, then probability is the tool you have
to use. To use anything else will lay you open to the possibility of your
being shown up to be absurd, say in the sense of a Dutch book (§5.7)
being made against you. Over the last quarter of a century, several
procedures have been advocated to handle aspects of uncertainty in
management and industry. Many of them flourish for a while, and
make their advocates some money, only to disappear because their
internal logic, often disguised under a torrent of words, is not that of
probability. It is not a question of onemethodmerely being preferred to
another. Those not based on probability are wrong.

There is one serious objection to the line of reasoning in the last
paragraph that merits consideration. The objection points out that the
whole edifice of the probability calculus depends on the premises used
to support it; if these fail, then the whole structure fails. This is surely
correct since all our results are theorems that follow from the premises
by the secure logic that is mathematics. I offer two responses to this
legitimate rebuttal. The first one has been mentioned before in Chap-
ter 5, namely, many different premises can be used that lead to
probability, so lending strength to our claim of inevitability. Never-
theless, there are premises that do not lead to probability. Most of these
center on the understandable objection that some people have to
measuring uncertainty by a single number, perhaps feeling that this
is an oversimplification of a reality that is more complex than can
possibly be captured by anything as simple as 0.37. These doubts are
reinforced by the very real difficulty all of us experience in determin-
ing whether our probability is 0.37; perhaps it should be 0.38 or 0.39.
These ideas have led people to suggest replacing the single number by
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a pair of numbers called upper and lower probabilities, so that you
would be able to say your uncertainty lay between 0.35 and 0.40, but
that you cannot say precisely where, in this interval, it lay. This
confuses the measurement problem with the argument in §3.4 that
persuades you there is a unique value. Others have proposed using two
numbers, rather than one, to describe uncertainty, but in a different
form from lower and upper values. They point out that some uncer-
tainties are more firm than others and that their “firmness” should be
included as an additional measure. For example, your probability that
the next toss of a coin will land heads may be 1/2 and equally your
probability that it will rain tomorrow may be 1/2, but the first 1/2 is
firmer than the second in that you are sure the first is 0.50, whereas the
second might be 0.51, or even 0.60. §7.7 touches on this. Both
approaches lead to two numbers replacing our single value. My
response to these ideas is to argue in favor of simplicity and not to
venture into the complexity of two numbers until the single value has
been seen to be inadequate in some way. Nothing that I have seen
suggests that probability is inadequate. In particular, the difficulties
raised both by upper and lower values and by firmness can, in my view,
be handled within the probability calculus. For example, the value,
denoted by the letter m in §7.7, expresses how firmly you hold to the
initial probability g, all this strictlywithin the calculus of probability. Of
course, there are thosewhowill not admitmeasurement at all, preferring
to use verbal descriptions of uncertainty like “often” or “sometimes”.
While these may be adequate for simple situations involving a single
event, they are useless when two or more events are under discussion. If
one event happens “often” and another “sometimes”, how uncertain is it
that they both will happen? “Seldom” perhaps. Language is inadequate
on occasions like this and it is a pity that the inadequacy is sometimes
not appreciated. Renouncing mathematical reasoning in favor of the
verbal method can help a person to follow fallacious arguments to
absurd conclusions without seeing that they are absurd. The problem of
the two daughters (§§12.4 and 12.5) illustrates the danger.

As we have seen in §10.8, concern about the use of numbers is felt
even more strongly when utility is used for consequences. There we
pointed out that the numbers do not claim to cover every aspect of a
consequence, but only those aspects relevant to the problem in hand,
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any more than the price of a theatre ticket completely describes
“Hamlet”. As with probability, even those who accept the need of
numbers to describe outcomes, often feel that a single number is too
extreme a description of complicated situations. Yet even in simple
situations like those discussed in §10.13 with money, expressed in
terms of assets and state of health, you have got to balance cost against
improvement in well-being. Once this is recognized, the curves of
fixed merit, a notion that does not employ measurement, but only
comparisons of like with like, emerge naturally. We are then into the
position where numerical comparison is sensible. And, as has been
previously emphasized, the comparison we made was based on
probability, because then it becomes possible to combine the two
distinct notions of uncertainty and desirability of outcomes into a
single measure appropriate for decision making. Always the need to
combine ideas is an essential requirement. We may need to restrict
ourselves to small worlds (§11.7), but they should not be too small.

Probability is important, but it is wrong to overestimate its
importance as others, sometimes quite correctly, accuse me of doing.
“Oh, Daddy” said one of my children, “you see Bayes in everything”.
So let us try to place probability into context and contemplate, not just
its brilliance but also its limitations. An analogy may be helpful
provided we recognize that analogies can be misleading. In my
analogy, probability is a tool to help us understand and act in the
real world, just as a spade is a valuable tool for gardeners, enabling
them to prepare the soil for planting. A gardener needs several tools:
fork, shears, hoe, and so on. Similarly we need concepts associated
with probability: utility, expectation, and maximization of expected
utility. The analogy may be pressed further by noting that a gardener
does not just need the tools, he also needs to know how to use them and
to judge when and how their use is appropriate. The analogous
difficulty is even greater with probability where considerable experi-
ence is needed in structuring a problem so that the concept can be
correctly and usefully employed. There is a distinction between
decision making as art and as science. We have dealt almost entirely
with the science, yet art is needed in relating the orderly mathematics
to disorderly reality. Much emphasis has been placed on the differ-
ences between art and science, indeed in their conflict, in the concept
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of the two cultures. Yet they often complement one another, for
example, the activities of scientists can never be entirely systematic.
They must roam and explore before they can present the logic that we
ultimately observe. Even mathematics, the most coldly logical of all
subjects, has properly been described as the queen of the arts and, for
those who can appreciate it, the proof that the square root of two is
irrational is as beautiful as a piece of art by Rembrandt.

No decision problem is such that you can quickly write out the tree,
fill in the utilities and probabilities, and leave the computer to
maximize expected utility. It is much harder than that. All our analysis
provides is a set of tools and you have to relate them to the circum-
stances you face, which is no easy task. What our analysis does is to
provide a framework for your thoughts. For example, you are faced
with an uncertain situation where one possibility is an event E. This
immediately draws your attention to its complement Ec and what might
arise if E did not occur. This in turn encourages you to think about
many other possibilities so that you end up with several branches from
the random node. You will never think of everything but the method
encourages you to get near to the ideal where every possibility is
foreseen. As we said in §10.7, an important element in good decision
making is thinking of new possibilities. That is why decision making
should be open because the openness will encourage others to criticize
your ideas more effectively than you can by yourself. I have just read a
book that is largely a catalog of disastrous decisionmaking,wheremany
of the disasters might have been avoided had the systematic analysis
of expected utility been used and criticized. It would also have enabled
the importance of small and large worlds, mentioned in §11.7, to be
appreciated.Maximization of expected utility provides a framework for
thinking, a tool that will improve your encounters with uncertainty.
It should never be ignored, yet it is never entirely adequate.

What the analysis of this book provides is a framework for action in
the face of uncertainty. It does not tell the whole story of decision
making, but does provide a set of ideas that can be filled out to give a
full and satisfactory analysis. The framework is science, the filling-out
art, the whole being rounded off by science in the form of the computer
calculating expectations and searching formaxima. Remember that you
have no choice of framework, only probability will do. It is enormously
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helpful in any enterprise to have a framework on which to hang the
ideas being put forward, especially one that will yield a solution, as
doesMEU.Anothermerit is that the ideas are firmly based on reason, so
that rationality is forced into the process. Yet emotions have to be
included as well and they find their proper place in utility, whose clear
exposure reveals the features being incorporated into the decision.

Any sound appreciation of the thesis presented in this book must
recognize a severe limitation of that thesis, a limitation that prevents it
being used in many decision problems whose failure of us to resolve
could result in the destruction of what civilization we possess. The
limitation has been mentioned before (§5.11), but its importance
justifies repetition.

The thesis is personal.

That is to say, it is a method for “you”. “You” may be an individual, it
may be an organization that has to make a decision, or a judgment of
uncertainty, where the accountant, scientist, engineer, the personnel
manager and the marketing expert can pool their resources to work
within our framework. “You” could even be a government concerned
with the welfare of its citizens. It could be a government wishing, as in
the European Union, to operate in conjunction with others. But it could
not be a government in conflict with another, nor a firm that is battling
with another for the control of a market. Our theory admits only one
probability and one utility. When cooperation is present, as in the jury
room or in the board room, a “you” is not unreasonable, but not with
conflict. The Prisoner’s Dilemma of §5.11 illustrates.

My own experience was described in the Prologue. My hope is that
today, somewhere in the world, there is a young person with sufficient
skill and enthusiasm to be given at least five years to spend half their
time thinking about decision making under conflict. They will need to
be a person with considerable skill in mathematics, for only a
mathematician has enough skill in reasoning and abstraction to capture
what hopefully is out there, waiting to be discovered. Conflict is the
most important mathematical and social problem of the present time.

People often accuse me of putting the Bayesian argument forward
as if it was a religion. It is not. Religions are based on faith, though they
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do have some reasoned elements within them, for example, on moral
and ethical questions. The ideas here are based entirely on reason.
They do not require an injection of faith, but are the same throughout
the world. They do not encompass all life, but merely provide a tool
that should help you in handling this uncertain world. Christian and
Muslim decision makings should have the same structure, but their
probabilities and utilities may differ.
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Aunt Sally (see straw man)

Babbage 268
Bankers 366–7, 370–2
Bayes XV, 32, 119, 378

Bayes Rule XV, 37, 112, 118–23,
127, 129, 132, 157, 168, 190–1,
212–3, 273, 276–80, 296,
331–3, 344, 347, 352

odds form 123–5, 126, 127, 136,
278, 356

examples 300, 304, 306, 311,
313, 316, 319

Bayesian XV, 278–81, 343–60
Belief 18–20, 49, 56–8, 63, 146,

157–61, 225–7, 244–5
Bernoulli series 151–2, 161–3,

191, 206, 306, 318–9, 335, 354
Betting XII, 5, 15, 63, 67, 360–5,

367, 369–71
Binomial distribution 191–5, 203,

208, 216, 355
Bioequivalence 359
Biology 189–90
Birthday problem 55, 96–7
Births 305
Bookmakers 63, 67, 361–4, 367
Borel field 36
Brackets 41, 62
Breeding XIV
BSE 276, 278

Calculus of uncertainty 17–8,
68, 94

Cancer test 99–100, 119–22,
231–4
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Cardano’s method 300, 309,
311–3

Cards 5, 15, 52, 67, 80, 194, 300–1
Causation 83, 180
Certain 8
Chance 124, 161–4, 193, 198,

206–8, 277, 305, 318, 351
distribution 206–8

Church of Scotland 15, 130, 220
Classical form of probability

143–5, 327
Closure 112
Clusters 200
Coherence 54–6, 67–8, 72, 74–5,

93, 131, 133, 160, 222, 226,
230, 255, 261, 282, 308, 318,
323, 329, 331–6, 341–2, 349,
351, 358, 364, 366–70, 372

Combination of uncertainties 17,
46, 94, 243

Common sense 24, 200, 301, 306,
309

Comparison of consequences
227–31, 251–2

with a standard 47, 107
Comparative 293
Compensation in a Bernoulli

series 161
Complementary event 58–60, 86,

96, 112, 190, 328, 331
Computers 106, 346
Computer packages 179
Conditional probability 72–5, 90
Confidence intervals 353
Conflict 16, 27, 107–9,

251, 380
Confounding 171–2, 182
Conglomerability 94, 321–3
Conjunction of events 85–6
Consequences 225, 227–31,

246–9, 324–6, 365, 372
Consistent 56

Contingency table 70–2, 101, 107,
122, 168, 177, 181, 228

Continuous quantity 209
Controlled experiment 173
Convexity rule 92, 93, 104, 130,

165, 328, 352
Conviction concerning a

probability 159–60
Crime 79, 181–3, 184–5, 334–5
Cromwell’s rule 15, 129–31, 155,

220, 261, 269, 279, 308, 328,
341, 375

Cultures, two 28, 379

Darwin 295–6
Data 269–71, 277, 278, 296, 344,

346–54, 357, 358
that did not arise 293

Daughters 305–13, 345, 377
Davis score 46
Decimal place 43
Decision analysis 20–1, 106–7,

196, 225–64, 305, 325, 359,
365, 373, 378–80

trees 246–9, 255, 325, 365
Defective 197
De Finetti 25
De Finetti’s result XV, 152–4,

206, 208
Denominator 41, 307, 344, 345,

348
Density 210–2, 355

marginal 213
Dependent quantity 285
Descriptive 31–3, 54, 67, 116,

221–2, 226, 315, 336
Desirability 57, 72, 226, 228–9
Diagnosis 119–22, 138–40
Diminishing returns 203
Disagreement amongst

scientists 276
Discrete quantity 209
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Disjunction of events 86–9
Distribution 193, 195, 315, 367
joint 350
marginal 345, 350
Student’s 350

Division 39
Doing and seeing 82–4, 180, 286,

337
Doors 301–5
Double jeopardy 263
Dutch book 101–3, 107, 376

Education 66, 104, 266
Efron’s dice XII, 230, 323–6
Einstein XV, 37, 119, 269, 279,

295
Elections 7, 251–2, 327
Ellsberg paradox 12, 32, 54,

219–24
Elton John 30, 241, 270
Emotion 23, 29–31, 240–2
Envelopes 313–5
Epsilon 130–1
Equation 40, 42
Equality 38
Errors 25, 120, 121, 139
Estimation 353, 355–6
Event 18, 45, 49–50, 58–60, 85–7,

245
as uncertain quantity 193–6

Evidence 119, 133, 242,
261–3

Exchangeability 147–55, 160, 161,
169, 176–80, 189, 194, 294,
318, 345, 346, 351–2

Exclusive events 88–9, 91, 112,
165–6, 190, 311

Exhaustive events 112, 190, 311
Expectation 195–7, 199, 201,

220–4, 235, 245–6, 285–7, 344,
347–9, 367, 378

Explanatory quantity 285

Exponential function 348, 359–60
Exposure to criticism 250
Extension of the conversation

98–101, 120, 153, 156, 164,
168, 190–1, 195, 221, 233, 245,
273, 306, 313, 331, 339, 344,
356

Factors 173, 205
Facts 28–9, 81–2, 270
Faiths 8, 14–5, 241–2, 268, 296,

380–1
False positives (and negatives)

99–101
Finance XII, 257, 365–73
Forensic science 115, 125–7
Freedom of information 142
Frequency 53, 145–7, 155,

157–61, 192, 198, 212, 277, 327
statistics 350–60

Future data 156–8, 272, 278
Fuzzy logic 227

Gambles 15, 32, 48–9, 57, 67,
101–3, 230, 241, 360–5

Games of chance 361
Gaussian distribution 215
GDP 338–40
Genetics 145, 190, 194
Genotype 126–7
Geometry 19, 56, 334
Girls’ names 310, 312
Given 65
Greek alphabet 286
Guilt 3–4, 18, 133, 244, 260–4

Half correction 216
Haphazard 176
History 4, 12, 18, 62, 67, 81
HIV 7, 12, 194
Horse race 5, 12, 15, 61, 67, 80,

103, 360–5
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How do you know? 187, 206, 280,
308, 312

Hypothesis 115, 135, 281–3,
287–91, 356, 358, 359

Ignorance 106, 144–5, 315, 351
Inadmissible evidence 263
Independence 75–7, 91–2, 150,

157, 161–2, 183–6, 253, 262,
273–5, 305, 319–20, 324, 335

Index of binomial 193, 208
Inequality 42
Inference 343, 345, 359
Information 16, 140–2, 263
Interaction 173, 206
Investments 67, 366–71

Jain philosophy 130
Janus effect 114, 117, 139
Jury 244, 260–4

Knowledge base 63–5, 119, 192,
195, 213, 300–1, 306, 344,
346, 350

Language 35, 124, 163, 377
Large numbers 154–7, 192
Large and small worlds 282–3,

335–6
Law 3–4, 12, 13, 27, 66, 79, 114,

115, 125–6, 244, 260–4, 334–5
Learning 116–7, 277
Likelihood 124, 163, 191, 238,

278, 308, 309, 352, 355
function 319, 349, 354
principle 125, 308, 345, 353,
359

ratio 112, 124, 127–9, 278–80,
289, 345, 356, 358–60

Linear 286
Literary argument 121
Literature 26

Logarithms 127
Logic XI, 95, 105–6, 297,

337, 375
Logical probability 65
Loss 240
Lottery 50, 63
Lower case 59
Lower and upper probability 54,

107, 159, 329, 377

Markov 335
Mathematics XI, 35–7, 38–43,

124, 166, 297
Maxima and minima 93–4, 105
Maximum likelihood 353–4
Mean of a distribution 196, 199,

344–50, 356–7, 359, 367–70
Measurement 45–8, 54
MEU 33, 234–6, 239, 242, 243,

249, 283, 365, 371–3, 380
Median 344
Medical trial 15–6, 168–171,

176–80, 195, 248, 349, 354,
355, 359

Millennium bug 316
Minima (see maxima)
Mixture of probabilities 100
Models 284–287, 343, 350, 352,

355
Monty Hall problem 301
Multiple choice 66
Multiplication 39, 93
Multiplication rule 74, 78, 89–92,

98, 118, 149, 167, 192, 283,
306, 309, 319, 325, 330, 348,
352

Music 62

Newton’s laws 14, 25, 34, 37, 93,
269, 274, 279

Node 246–9, 255
Nonrepeatable events 327–9
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Norm 54
Normal distribution 213–7, 218,

346–51, 355–7, 360
Normative 31–3, 54, 116, 121,

219–23, 226, 270, 283, 315, 336
Nuisance parameter 345, 346
Numeracy 45–8, 242–5
Numerator 41, 307, 344

Objectivity 163, 351–2
Observe, think, act 269
Odds 5–6, 60–3, 94, 102–3, 105,

123–5, 278, 361–4
Opinion change 276
Opinion polls 7, 67–8
Optional stopping 195, 354–5
Orthodox medicine 242
Outliers 281

Paradigm 268
Parameter 161, 193, 207, 284,

343–7, 350–1, 353–7
Parker score 45–6
Partition 112, 190–3, 322–3, 330
Pattern 149
Perpetual money-making

machine 230, 255
Personal (of probability) 56, 232,

251, 276, 290, 380
Physics 119, 173, 189, 358
Pictorial representation 208–12
Pins 146, 147, 155, 158
Placebo 168
Poisson distribution 197–200, 202,

203, 207–9, 216–18
Politics 12, 27, 81, 266
Posterior probability 344–58
Population 126
Poverty 336
Prediction 269, 271, 279
Preference 30, 244
Premises 23–5, 35, 51, 375

Prevision 196
Prior probability 191, 344–60
Privacy 373
Probability 50–4

assessment 327–342, 351
classical 143–5
coherence 333–6
distribution 193
decisions 225–7, 253
expectation 196–7
frequency 145–7
inevitability 376
law 260
notation 59, 65, 74
odds 62, 123
personal 18, 56
reasoning 336–41
rules 92–5, 106, 165–8
utility 230

Product of events 91
Prosecutor’s fallacy 127, 291, 293

Quadratic rule 104

Random 49, 174, 267, 303,
313, 324

numbers 50, 175
variable 193

Randomization 173–6
Ravens 135–8
Reason 23–5, 29, 240–2, 325,

336–7, 381
Reciprocal 41, 348
Reconciliation 295
Repetition 293

words 38
Research XIII–XV, 380
Reverse-Polish 41
Reverse time order 249

Sample 194, 358
Sample mean 349
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Science XV, 4, 14, 32, 81, 249,
265–98, 343, 345, 351–2

Scoring rules 103–5, 111, 116
Screening test 121
Sensitivity 138
Shakespeare XV, 26, 31, 111, 227
Significance test 32, 115, 128,

291–3, 355–60
level 115, 227, 292, 356–60

Significant figures 43
Simplicity 33–4, 63, 159, 280, 286,

368, 377
Simpson’s paradox XII, 16, 29, 84,

168–70, 174, 176–80, 206, 270,
283, 286–7, 336, 340

Small (and large) worlds 112,
282–3, 335–6, 378, 379

Social utility 251
Sociology 173, 182
Specificity 138
Spin 27
Spread 201–5, 344–50, 356–7,

359, 368–70
Square-root rule 202, 205, 216–9,

349–50, 357
Standard 47
Standard deviation 201, 205, 215,

216, 218, 347, 368
Statistical mechanics 164
Statistics XII, 191, 213, 308,

343–73
Stigler’s law XV, 130, 170
Strategy 285
Straw man 115, 135, 289
Subjective 56, 351–2
Subjunctive 169
Subscripts 42
Subtraction 39
Sufficient 134, 148, 291,

349, 357
Sum of events 91
Supposition 81–2

Sure-thing principle 223, 238–9,
323, 363

Symbols 39
Symptoms 114–5, 116,

150, 156
Synonyms 38

Tactics 285
Tail area 292–3, 360
Tax 337–40
Technicalities 36
Television 27
Tennyson 268
Theories 187, 269–77, 281–3,

296, 352
Thought experiment 254
Thumb tack (see pins)
Tomorrow’s decision 249, 305
Transitive property 324–5
Transposed conditional 113–7,

124, 139, 300
Triangulation 47, 56
Trickle down 337–41
Truth table 86

UFO 317–21
Uncertain quantity 193, 195–6,

212, 284, 347, 349, 366, 367
Uncertainty XI, 1–21, 45–7,

105–6, 269, 276
Upper case 59
Upper probability (see lower)
Urn, standard 48–52, 83

calculation 94, 100
example 131–5, 152–3, 156–7,
272–5, 352

Utility 230–60, 371–2, 378
assessment 254, 326

Variability 270
as an experimental tool 204–6

Variance 205
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Variation 46, 189–91, 217–9
Verdi 30, 241, 270
Volume as probability 212

Wand procedure 229, 233, 253–4,
325

Webster 48

Weights 159, 348
Wine tasting 45
Writing 37–8

Y2K 316–7
You 2, 18, 50, 105, 251, 264, 317,

341, 380
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Index of Examples

(Material used only for purposes of illustration)

Aggression 138
Alcohol test 121
Allergy 187
Anastasia 10, 15
Armadillos 114
Astrology 56
Autism 188
Aviation 9

Bananas 187, 206
Barometer 180
Breast cancer 139
Buses 140

Casino 12, 144
Chemical engineering 84
Chess 305
Climate change 352
Clothing manufacture 217
Continental drift 352
Cookery 298

Dangerous driving 261
Diana, princess 30
Dice 51, 144, 223
Distance 60, 334
DNA 10, 126, 128

Eclipse 280, 284
Electricity supply 80
Ethnicity 181, 184

Evolution 269, 295
Extra-sensory perception 358

Fairies 280
Football 361, 364

Gardening 297
Garment choice 225
Glass 128
GM crops 9

Health 256
Health authorities 218, 353
Heights 217
Higg’s boson 351, 358
Hip surgery 259
House purchase 238

Incomes 213
Inflation 6, 11, 69–79, 122, 145,

194
Influenza 189

Leukemia 199
Liberia 3, 13, 18, 28, 48,

66, 79

Milk 172
Mortgage 372
MS 259
Mugging 78, 181
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NHS 259
NRA 139
Nuclear accident 7, 21, 57, 63, 97,

226, 235

Opera 241

Painting 5
Pandora’s box 13
Parking fine 263
Pharmaceutical companies 6, 372
Poetry 163
Portfolio 258
Princes in the tower 4, 18, 20, 67
Prussian cavalry 199

Rain 2, 11, 53, 58, 64, 79, 193, 335
Reincarnation 280
Relativity 280, 296, 351, 355
Roulette 51-2, 144, 194, 360-1

Saturated fat 8, 66, 80, 84
Selenium 4, 66, 80, 288
Skull 11
Smoking XIV, 35, 84, 172

Solar system 34, 268
Stock market 6, 67, 219, 272
Sunrise 10

Tax returns 373
Teapots 189
Telephone operator 197, 207
Trivial Pursuit 3, 48, 66

Unemployment 69–79, 122,
181, 184

University fees 183

Vaccine 188, 267
Voting 81, 194, 227

Washing machine 238
Weather 147, 162, 335

forecast 11, 110
Wedding anniversary 241
Whales 36
Wheelwright’s shop 272
White Christmas 110

Yogurt 172
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Index of Notations

þ 38, 86
� 38
� 38
� 38
¼ 38
ab 40
a/b 41, 62
a
b

41
ffiffiffi

a
p

41
a2 40
( ) 41
[ ] 62
> 42
< 42
/ 191
& 85
Ec 59

K 64
EF 85
E or F 86
p(E) 59
p(E j K ) 65
p(M j L) 74
p(E j F:GK ) 81
o(E) 61
o(F j K ) 123
‘(E j F) 125
a, b 286
u 151
m 347
f 284
iid 162
s.d 215
N (f, s) 347
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