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Preface

When no samples are available to estimate a probability distribution, we
have to invite some domain experts to evaluate the belief degree that each
event will happen. Perhaps some people think that the belief degree should
be modeled by subjective probability or fuzzy set theory. However, it is
usually inappropriate because both of them may lead to counterintuitive
results in this case. In order to rationally deal with belief degrees, uncertainty
theory was founded in 2007 and subsequently studied by many researchers.
Nowadays, uncertainty theory has become a branch of axiomatic mathematics
for modeling belief degrees.

Uncertain Measure

The most fundamental concept is uncertain measure that is a type of set
function satisfying the axioms of uncertainty theory. It is used to indicate
the belief degree that an uncertain event may happen. Chapter 1 will intro-
duce normality, duality, subadditivity and product axioms. From those four
axioms, this chapter will also present uncertain measure, product uncertain
measure, and conditional uncertain measure.

Uncertain Variable

Uncertain variable is a measurable function from an uncertainty space to the
set of real numbers. It is used to represent quantities with uncertainty. Chap-
ter 2 is devoted to uncertain variable, uncertainty distribution, independence,
operational law, expected value, variance, moments, entropy, distance, con-
ditional uncertainty distribution, uncertain sequence, and uncertain vector.

Uncertain Programming

Uncertain programming is a type of mathematical programming involving
uncertain variables. Chapter 3 will provide a type of uncertain program-
ming model with applications to machine scheduling problem, vehicle routing
problem, and project scheduling problem. In addition, uncertain multiob-
jective programming, uncertain goal programming and uncertain multilevel
programming are also documented.
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Uncertain Statistics

Uncertain statistics is a methodology for collecting and interpreting expert’s
experimental data by uncertainty theory. Chapter 4 will present a question-
naire survey for collecting expert’s experimental data. In order to deter-
mine uncertainty distributions from those expert’s experimental data, Chap-
ter 4 will also introduce empirical uncertainty distribution, principle of least
squares, method of moments, and Delphi method.

Uncertain Risk Analysis

The term risk has been used in different ways in literature. In this book
the risk is defined as the accidental loss plus the uncertain measure of such
loss, and a risk index is defined as the uncertain measure that some specified
loss occurs. Chapter 5 will introduce uncertain risk analysis that is a tool
to quantify risk via uncertainty theory. As applications of uncertain risk
analysis, Chapter 5 will also discuss structural risk analysis and investment
risk analysis.

Uncertain Reliability Analysis

Reliability index is defined as the uncertain measure that some system is
working. Chapter 6 will introduce uncertain reliability analysis that is a tool
to deal with system reliability via uncertainty theory.

Uncertain Propositional Logic

Uncertain propositional logic is a generalization of propositional logic in
which every proposition is abstracted into a Boolean uncertain variable and
the truth value is defined as the uncertain measure that the proposition is
true. Chapter 7 will present uncertain propositional logic and uncertain pred-
icate logic. In addition, uncertain entailment is a methodology for determin-
ing the truth value of an uncertain proposition via the maximum uncertainty
principle when the truth values of other uncertain propositions are given.
Chapter 8 will discuss an uncertain entailment model from which uncertain
modus ponens, uncertain modus tollens and uncertain hypothetical syllogism
are deduced.

Uncertain Set

Uncertain set is a set-valued function on an uncertainty space, and attempts
to model “unsharp concepts”. The main difference between uncertain set and
uncertain variable is that the former takes values of set and the latter takes
values of point. Uncertain set theory will be introduced in Chapter 9. In
order to determine membership functions, Chapter 9 will also provide some
methods of uncertain statistics.
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Uncertain Logic

Some knowledge in human brain is actually an uncertain set. This fact en-
courages us to design an uncertain logic that is a methodology for calculating
the truth values of uncertain propositions via uncertain set theory. Uncertain
logic may provide a flexible means for extracting linguistic summary from a
collection of raw data. Chapter 10 will be devoted to uncertain logic and
linguistic summarizer.

Uncertain Inference

Uncertain inference is a process of deriving consequences from human knowl-
edge via uncertain set theory. Chapter 11 will present a set of uncertain
inference rules, uncertain system, and uncertain control with application to
an inverted pendulum system.

Uncertain Process

An uncertain process is essentially a sequence of uncertain variables indexed
by time. Thus an uncertain process is usually used to model uncertain phe-
nomena that vary with time. Chapter 12 is devoted to basic concepts of
uncertain process and uncertainty distribution. In addition, extreme value
theorem, first hitting time and time integral of uncertain processes are also
introduced. Chapter 13 deals with uncertain renewal process, renewal reward
process, and alternating renewal process. Chapter 13 also provides block re-
placement policy, age replacement policy, and an uncertain insurance model.

Uncertain Calculus

Uncertain calculus is a branch of mathematics that deals with differentiation
and integration of uncertain processes. Chapter 14 will introduce Liu process
that is a stationary independent increment process whose increments are
normal uncertain variables, and discuss Liu integral that is a type of uncertain
integral with respect to Liu process. In addition, the fundamental theorem of
uncertain calculus will be proved in this chapter from which the techniques
of chain rule, change of variables, and integration by parts are also derived.

Uncertain Differential Equation

Uncertain differential equation is a type of differential equation involving
uncertain processes. Chapter 15 will discuss the existence, uniqueness and
stability of solutions of uncertain differential equations, and will introduce
Yao-Chen formula that represents the solution of an uncertain differential
equation by a family of solutions of ordinary differential equations. On the
basis of this formula, some formulas to calculate extreme value, first hitting
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time, and time integral of solution are provided. Furthermore, some numeri-
cal methods for solving general uncertain differential equations are designed.

Uncertain Finance

As applications of uncertain differential equation, Chapter 16 will discuss
uncertain stock model, uncertain interest rate model, and uncertain currency
model.

Law of Truth Conservation

The law of excluded middle tells us that a proposition is either true or false,
and the law of contradiction tells us that a proposition cannot be both true
and false. In the state of indeterminacy, some people said, the law of excluded
middle and the law of contradiction are no longer valid because the truth
degree of a proposition is no longer 0 or 1. I cannot gainsay this viewpoint
to a certain extent. But it does not mean that you might “go as you please”.
The truth values of a proposition and its negation should sum to unity. This is
the law of truth conservation that is weaker than the law of excluded middle
and the law of contradiction. Furthermore, the law of truth conservation
agrees with the law of excluded middle and the law of contradiction when
the uncertainty vanishes.

Maximum Uncertainty Principle

An event has no uncertainty if its uncertain measure is 1 because we may be-
lieve that the event happens. An event has no uncertainty too if its uncertain
measure is 0 because we may believe that the event does not happen. An
event is the most uncertain if its uncertain measure is 0.5 because the event
and its complement may be regarded as “equally likely”. In practice, if there
is no information about the uncertain measure of an event, we should assign
0.5 to it. Sometimes, only partial information is available. In this case, the
value of uncertain measure may be specified in some range. What value does
the uncertain measure take? For any event, if there are multiple reasonable
values that an uncertain measure may take, then the value as close to 0.5 as
possible is assigned to the event. This is the maximum uncertainty principle.

Matlab Uncertainty Toolbox

Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) is a col-
lection of functions built on Matlab for many methods of uncertainty theory,
including uncertain programming, uncertain statistics, uncertain risk anal-
ysis, uncertain reliability analysis, uncertain logic, uncertain inference, un-
certain differential equation, scheduling, logistics, data mining, control, and
finance.
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Lecture Slides

If you need lecture slides for uncertainty theory, please download them from
the website at http://orsc.edu.cn/liu/resources.htm.

Uncertainty Theory Online

If you want to read more papers related to uncertainty theory and applica-
tions, please visit the website at http://orsc.edu.cn/online.

Purpose

The purpose is to equip the readers with a branch of axiomatic mathematics
to deal with belief degrees. The textbook is suitable for researchers, engi-
neers, and students in the field of mathematics, information science, opera-
tions research, industrial engineering, computer science, artificial intelligence,
automation, economics, and management science.
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Chapter 0

Introduction

Real decisions are usually made in the state of indeterminacy. For model-
ing indeterminacy, there exist two mathematical systems, one is probability
theory (Kolmogorov, 1933) and the other is uncertainty theory (Liu, 2007).
Probability is interpreted as frequency, while uncertainty is interpreted as
personal belief degree.

What is indeterminacy? What is frequency? What is belief degree? This
chapter will answer these questions, and show in what situation we should use
probability theory and in what situation we should use uncertainty theory.
Finally, it is concluded that a rational man behaves as if he used uncertainty
theory.

0.1 Indeterminacy

By indeterminacy we mean the phenomena whose outcomes cannot be ex-
actly predicted in advance. For example, we cannot exactly predict which
face will appear before we toss dice. Thus “tossing dice” is a type of in-
determinate phenomenon. As another example, we cannot exactly predict
tomorrow’s stock price. That is, “stock price” is also a type of indetermi-
nate phenomenon. Some other instances of indeterminacy include “roulette
wheel”, “product lifetime”, “market demand”, “bridge strength”, “travel dis-
tance”, etc.

Indeterminacy is absolute, while determinacy is relative. This is the rea-
son why we say real decisions are usually made in the state of indeterminacy.
How to model indeterminacy is thus an important research subject in not
only mathematics but also science and engineering.

In order to describe an indeterminate quantity, personally I think there
exist only two ways, one is frequency generated by samples (i.e., historical
data), and the other is belief degree evaluated by domain experts. Could you
imagine a third way?

© Springer-Verlag Berlin Heidelberg 2015 1
B. Liu, Uncertainty Theory, Springer Uncertainty Research,
DOI 10.1007/978-3-662-44354-5_1



2 CHAPTER 0 - INTRODUCTION

0.2 Frequency

Assume we have collected a set of samples for some indeterminate quantity
(e.g. stock price). By cumulative frequency we mean a function representing
the percentage of all samples that fall into the left side of the current point.
It is clear that the cumulative frequency looks like a step function in Figure 1,
and will always have bigger values as the current point moves from the left
to right.

Figure 1: Cumulative frequency histogram

Frequency is a factual property of indeterminate quantity, and does not
change with our state of knowledge and preference. In other words, the
frequency in the long run exists and is relatively invariant, no matter if it is
observed by us.

Probability theory is applicable when samples are available

The study of probability theory was started by Pascal and Fermat in the
17th century when they succeeded in deriving the exact probabilities for
certain gambling problems. After that, probability theory was studied by
many researchers. Particularly, a complete axiomatic foundation of proba-
bility theory was successfully given by Kolmogorov [88] in 1933. Since then,
probability theory has been developed steadily and widely applied in science
and engineering.

Keep in mind that a fundamental premise of applying probability theory
is that the estimated probability distribution is close enough to the long-run
cumulative frequency. Otherwise, the law of large numbers is no longer valid
and probability theory is no longer applicable.

When the sample size is large enough, it is possible for us to believe the
estimated probability distribution is close enough to the long-run cumulative
frequency. In this case, there is no doubt that probability theory is the only
legitimate approach to deal with our problems on the basis of the estimated
probability distributions.

However, in many cases, no samples are available to estimate a probability
distribution. What can we do in this situation? Perhaps we have no choice
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but to invite some domain experts to evaluate the belief degree that each
event will happen.

0.3 Belief Degree

Belief degrees are familiar to all of us. The object of belief is an event (i.e.,
a proposition). For example, “the sun will rise tomorrow”, “it will be sunny
next week”, and “John is a young man” are all instances of object of belief.
A belief degree represents the strength with which we believe the event will
happen. If we completely believe the event will happen, then the belief degree
is 1 (complete belief). If we think it is completely impossible, then the belief
degree is 0 (complete disbelief). If the event and its complementary event
are equally likely, then the belief degree for the event is 0.5, and that for the
complementary event is also 0.5. Generally, we will assign a number between
0 and 1 to the belief degree for each event. The higher the belief degree is,
the more strongly we believe the event will happen.

Assume a box contains 100 balls, each of which is known to be either red
or black, but we do not know how many of the balls are red and how many
are black. In this case, it is impossible for us to determine the probability of
drawing a red ball. However, the belief degree can be evaluated by us. For
example, the belief degree for drawing a red ball is 0.5 because “drawing a
red ball” and “drawing a black ball” are equally likely. Besides, the belief
degree for drawing a black ball is also 0.5.

The belief degree depends heavily on the personal knowledge (even includ-
ing preference) concerning the event. When the personal knowledge changes,
the belief degree changes too.

Belief Degree Function

How do we describe an indeterminate quantity (e.g. bridge strength)? It is
clear that a single belief degree is absolutely not enough. Do we need to know
the belief degrees for all possible events? The answer is negative. In fact,
what we need is a belief degree function that represents the degree with which
we believe the indeterminate quantity falls into the left side of the current
point.

For example, if we believe the indeterminate quantity completely falls
into the left side of the current point, then the belief degree function takes
value 1; if we think it completely falls into the right side, then the belief
degree function takes value 0. Generally, a belief degree function takes values
between 0 and 1, and has bigger values as the current point moves from the
left to right. See Figure 2.
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Figure 2: Belief degree function

How to obtain belief degrees

Consider a bridge and its strength. At first, we have to admit that no destruc-
tive experiment is allowed for the bridge. Thus we have no samples about
the bridge strength. In this case, there do not exist any statistical methods
to estimate its probability distribution. How do we deal with it? It seems
that we have no choice but to invite some bridge engineers to evaluate the
belief degrees about the bridge strength. In practice, it is almost impossible
for the bridge engineers to give a perfect description of the belief degrees of
all possible events. Instead, they can only provide some subjective judgments
about the bridge strength. As a simple example, we assume a consultation
process is as follows:

(Q) What do you think is the bridge strength?
(A) I think the bridge strength is between 80 and 120 tons.

What belief degrees can we derive from the answer of the bridge engineer?
First, we may have an inference:

(i) I am 100% sure that the bridge strength is less than 120 tons.

This means the belief degree of “the bridge strength being less than 120 tons”
is 1. Thus we have an expert’s experimental data (120, 1). Furthermore, we
may have another inference:

(1) I am 100% sure that the bridge strength is greater than 80 tons.

This statement gives a belief degree that the bridge strength falls into the
right side of 80 tons. We need translate it to a statement about the belief
degree that the bridge strength falls into the left side of 80 tons:

(') I am 0% sure that the bridge strength is less than 80 tons.

Although the statement (ii’) sounds strange to us, it is indeed equivalent to
the statement (ii). Thus we have another expert’s experimental data (80, 0).

Until now we have acquired two expert’s experimental data (80,0) and
(120,1) about the bridge strength. Could we infer the belief degree ®(z)
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that the bridge strength falls into the left side of the point 7 The answer is
affirmative. For example, a reasonable value is

0, if z < 80
d(z) ={ (x—80)/40, if80 <z < 120 (1)
1, if z > 120.

See Figure 3. From the function ®(z), we may infer that the belief degree
of “the bridge strength being less than 90 tons” is 0.25. In other words, it is
reasonable to infer that “I am 25% sure that the bridge strength is less than
90 tons”, or equivalently “I am 75% sure that the bridge strength is greater
than 90 tons”.

%0 120 @ (ton)

Figure 3: Belief degree function of “the bridge strength”

All belief degrees are wrong, but some are useful

Different people may produce different belief degrees. Perhaps some readers
may ask which belief degree is correct. I would like to answer it in this way:
All belief degrees are wrong, but some are useful. A belief degree becomes
“correct” only when it is close enough to the frequency of the indeterminate
quantity. However, usually we cannot make it to that.

Numerous surveys showed that human beings usually estimate a much
wider range of values than the object actually takes. This conservatism of
human beings makes the belief degrees deviate far from the frequency. Thus
all belief degrees are wrong compared with its frequency. However, it cannot
be denied that those belief degrees are indeed helpful for decision making.

Belief degrees cannot be treated as subjective probability

Can we deal with belief degrees by probability theory? Some people do think
so and call it subjective probability. However, Liu [131] declared that it is
inappropriate to model belief degrees by probability theory because it may
lead to counterintuitive results.
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Consider a counterexample presented by Liu [131]. Assume there is one
truck and 50 bridges in an experiment. Also assume the weight of the truck
is 90 tons and the 50 bridge strengths are iid uniform random variables on
[95,110] in tons. For simplicity, suppose a bridge collapses whenever its real
strength is less than the weight of the truck. Now let us have the truck cross
over the 50 bridges one by one. It is easy to verify that

Pr{“the truck can cross over the 50 bridges”} = 1. (2)

That is to say, we are 100% sure that the truck can cross over the 50 bridges
successfully.

k=77 ; (
“true” probability I
[
[
[
[
belief degree :
function |
: [
/ : A t
0 80 95 10 120w (ten)

Figure 4: Belief degree function, “true” probability distribution and cumu-
lative frequency histogram of “the bridge strength”

However, when there do not exist any observed samples for the bridge
strength at the moment, we have to invite some bridge engineers to evaluate
the belief degrees about it. As we stated before, human beings usually esti-
mate a much wider range of values than the bridge strength actually takes
because of the conservatism. Assume the belief degree function is

0, if # < 80
d(z) ={ (z—80)/40, if80 <z < 120 (3)
1, if z > 120.

See Figure 4. Let us imagine what will happen if the belief degree function
is treated as a probability distribution. At first, we have to regard the 50
bridge strengths as iid uniform random variables on [80,120] in tons. If we
have the truck cross over the 50 bridges one by one, then we immediately
have

Pr{“the truck can cross over the 50 bridges”} = 0.75°" ~ 0. (4)

Thus it is almost impossible that the truck crosses over the 50 bridges suc-
cessfully. Unfortunately, the results (2) and (4) are at opposite poles. This
example shows that, by inappropriately using probability theory, a sure event
becomes an impossible one. The error seems intolerable for us. Hence the
belief degrees cannot be treated as subjective probability.
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A possible proposition cannot be judged impossible

During information processing, we should follow such a basic principle that a
possible proposition cannot be judged impossible (Liu [131]). In other words,
if a proposition is possibly true, then its truth value should not be zero.
Likewise, if a proposition is possibly false, then its truth value should not be
unity.

In the example of truck-cross-over-bridge, a completely true proposition
is judged completely false. This means using probability theory violates the
above-mentioned principle, and therefore probability theory is not appropri-
ate to model belief degrees. In other words, belief degrees do not follow the
laws of probability theory.

Uncertainty theory is able to model belief degrees

In order to rationally deal with belief degrees, uncertainty theory was founded
by Liu [122] in 2007 and subsequently studied by many researchers. Nowa-
days, uncertainty theory has become a branch of axiomatic mathematics for
modeling belief degrees.

Liu [131] declared that uncertainty theory is the only legitimate approach
when only belief degrees are available. If we believe the estimated uncertainty
distribution is close enough to the belief degrees hidden in the mind of the
domain experts, then we may use uncertainty theory to deal with our own
problems on the basis of the estimated uncertainty distributions.

Let us reconsider the example of truck-cross-over-bridge by uncertainty
theory. If the belief degree function is regarded as a linear uncertainty dis-
tribution on [80,120] in tons, then we immediately have

M{ “the truck can cross over the 50 bridges”} = 0.75. (5)

That is to say, we are 75% sure that the truck can cross over the 50 bridges
successfully. Here the degree 75% does not achieve up to the true value 100%.
But the error is caused by the difference between belief degree and frequency,
and is not further magnified by uncertainty theory.

0.4 Summary

In order to model indeterminacy, many theories have been invented. What
theories are considered acceptable? Personally, I think that an acceptable
theory should be not only theoretically self-consistent but also the best among
others for solving at least one practical problem. On the basis of this principle,
I may conclude that there exist two mathematical systems, one is probability
theory and the other is uncertainty theory. It is emphasized that probability
theory is only applicable to modeling frequencies, and uncertainty theory
is only applicable to modeling belief degrees. In other words, frequency is
the empirical basis of probability theory, while belief degree is the empirical
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basis of uncertainty theory. Keep in mind that using uncertainty theory to
model frequency may produce a crude result, while using probability theory
to model belief degree may produce a big disaster.

Probability Uncertainty

Figure 5: When the sample size is large enough, the estimated probability
distribution (left curve) may be close enough to the cumulative frequency (left
histogram). In this case, probability theory is the only legitimate approach.
When the belief degrees are available (no samples), the estimated uncertainty
distribution (right curve) usually deviates far from the cumulative frequency
(right histogram but unknown). In this case, uncertainty theory is the only
legitimate approach.

However, single-variable system is an exception. When there exists one
and only one variable in a system, probability theory and uncertainty theory
will produce the same result because product measure is not used. In this
case, frequency may be modeled by uncertainty theory while belief degree
may be modeled by probability theory. Both are indifferent.

Since belief degrees are usually wrong compared with frequency, the gap
between belief degree and frequency always exists. Such an error is likely to
be further magnified if the belief degree is regarded as subjective probability.
Fortunately, uncertainty theory can successfully avoid turning small errors
to large ones.

Savage [203] said a rational man behaves as if he used subjective proba-
bilities. However, usually, we cannot make it to that. Personally, I think a
rational man behaves as if he used uncertainty theory. In other words, a ratio-
nal man is expected to hold belief degrees that follow the laws of uncertainty
theory rather than probability theory.



Chapter 1

Uncertain Measure

Uncertainty theory was founded by Liu [122] in 2007 and subsequently studied
by many researchers. Nowadays uncertainty theory has become a branch of
axiomatic mathematics for modeling belief degrees. This chapter will present
normality, duality, subadditivity and product axioms of uncertainty theory.
From those four axioms, this chapter will also introduce an uncertain measure
that is a fundamental concept in uncertainty theory. In addition, product
uncertain measure and conditional uncertain measure will be explored at the
end of this chapter.

1.1 Measurable Space

From the mathematical viewpoint, uncertainty theory is essentially an al-
ternative theory of measure. Thus uncertainty theory should begin with a
measurable space. In order to learn uncertainty theory, let us introduce al-
gebra, o-algebra, measurable set, Borel algebra, Borel set, and measurable
function. The main results in this section are well-known. For this reason
the credit references are not provided. You may skip this section if you are
familiar with them.

Definition 1.1 Let T’ be a nonempty set (sometimes called universal set).
A collection L consisting of subsets of I is called an algebra over T' if the
following three conditions hold: (a) T € L; (b) if A € L, then A® € L; and
(c) if Ai, Ao, A, € L, then

LnJ A; e L. (11)
i=1

The collection L is called a o-algebra over T' if the condition (c) is replaced

© Springer-Verlag Berlin Heidelberg 2015 9
B. Liu, Uncertainty Theory, Springer Uncertainty Research,
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with closure under countable union, i.e., when Ay, As,--- € L, we have
Ui e (1.2)
i=1

Example 1.1: The collection {f),T'} is the smallest o-algebra over T', and

the power set (i.e., all subsets of T") is the largest o-algebra.

Example 1.2: Let A be a proper nonempty subset of I'. Then {0, A, A°, T}
is a o-algebra over T'.

Example 1.3: Let £ be the collection of all finite disjoint unions of all
intervals of the form

(~oc,al, (ab], (boo), 0. (1.3)

Then £ is an algebra over # (the set of real numbers), but not a o-algebra
because A; = (0, (i — 1)/i] € £ for all i but

o

A= (0,1) ¢ £. (1.4)

i=1

Example 1.4: A o-algebra £ is closed under countable union, countable
intersection, difference, and limit. That is, if A1, As,--- € £, then

UAiet; (Aiel; M\Ayel; lim A el (1.5)
i=1 i=1 e

Definition 1.2 Let I' be a nonempty set, and let L be a o-algebra over T.
Then (I', L) is called a measurable space, and any element in L is called a
measurable set.

Example 1.5: Let ® be the set of real numbers. Then £ = {(, R} is a
o-algebra over . Thus (R, L) is a measurable space. Note that there exist
only two measurable sets in this space, one is () and another is . Keep in
mind that the intervals like [0, 1] and (0, 400) are not measurable!

Example 1.6: Let T’ = {a,b,c}. Then £ = {0, {a},{b,c},T} is a o-algebra
over I'. Thus (T, £) is a measurable space. Furthermore, {a} and {b, ¢} are
measurable sets in this space, but {b}, {c}, {a, b}, {a,c} are not.

Definition 1.3 The smallest o-algebra B containing all open intervals is
called the Borel algebra over the set of real numbers, and any element in B
is called a Borel set.



SECTION 1.2 - EVENT 11

Example 1.7: It has been proved that intervals, open sets, closed sets,
rational numbers, and irrational numbers are all Borel sets.

Example 1.8: There exists a non-Borel set over R. Let [a] represent the set
of all rational numbers plus a. Note that if a; — as is not a rational number,
then [a1] and [ag] are disjoint sets. Thus R is divided into an infinite number
of those disjoint sets. Let A be a new set containing precisely one element
from them. Then A is not a Borel set.

Definition 1.4 A function f from a measurable space (I',L) to the set of
real numbers is said to be measurable if

fiB)={rveT|f(neBtel (1.6)
for any Borel set B of real numbers.

Continuous function and monotone function are instances of measurable

function. Let fi, fo,--+ be a sequence of measurable functions. Then the
following functions are also measurable:
sup fi(y); inf fi(y); limsup fi(y); liminf f;(v). (1.7)
1<i<oo 1<i<oo i—00 i—00

Especially, if lim;_, fi(7) exists for each «y, then the limit is also a measur-
able function.

1.2 Event

Let (T, £) be a measurable space. Recall that each element A in £ is called
a measurable set. The first action we take is to rename measurable set as
event in uncertainty theory.

How do we understand those terminologies? Let us illustrate them by an
indeterminate quantity (e.g. bridge strength). At first, the universal set T’
consists of all possible outcomes of the indeterminate quantity. If we believe
that the possible bridge strengths range from 80 to 120 in tons, then the
universal set is

I' = [80, 120]. (1.8)

Note that you may replace the universal set with an enlarged interval, and
it would have no impact.

The o-algebra £ should contain all events we are concerned about. Note
that event and proposition are synonymous although the former is a set and
the latter is a statement. Assume the first event we are concerned about
corresponds to the proposition “the bridge strength is less than or equal to
100 tons”. Then it may be represented by

Ay = [80,100]. (1.9)
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Also assume the second event we are concerned about corresponds to the
proposition “the bridge strength is more than 100 tons”. Then it may be
represented by

Ay = (100, 120]. (1.10)

If we are only concerned about the above two events, then we may construct
a o-algebra £ containing the two events A; and Ay, for example,

£ =1{0, Ay, As, T} (1.11)

In this case, we totally have four events: (), Ay, Ay and I'. However, please
note that the subsets like [80,90] and [110, 120] are not events because they
do not belong to L.

Keep in mind that different o-algebras are used for different purposes.
The minimum requirement of a o-algebra is that it contains all events we
are concerned about. It is suggested to take the minimum c-algebra that
contains those events.

1.3 Uncertain Measure

Let us define an uncertain measure M on the o-algebra £. That is, a number
M{A} will be assigned to each event A to indicate the belief degree with
which we believe A will happen. There is no doubt that the assignment is
not arbitrary, and the uncertain measure M must have certain mathematical
properties. In order to rationally deal with belief degrees, Liu [122] suggested
the following three axioms:

Axiom 1. (Normality Axiom) M{T'} =1 for the universal set T'.
Axiom 2. (Duality Axiom) M{A} + M{A°} =1 for any event A.

Axiom 3. (Subadditivity Aziom) For every countable sequence of events A1,

Ao, -+, we have
M{UAl} <> M{A} (1.12)
i=1

i=1

Remark 1.1: Uncertain measure is interpreted as the personal belief degree
(not frequency) of an uncertain event that may happen. It depends on the
personal knowledge concerning the event. The uncertain measure will change
if the state of knowledge changes.

Remark 1.2: Duality axiom is in fact an application of the law of truth
conservation in uncertainty theory. The property ensures that the uncer-
tainty theory is consistent with the law of excluded middle and the law of
contradiction. In addition, the human thinking is always dominated by the
duality. For example, if someone says a proposition is true with belief degree
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0.6, then all of us will think that the proposition is false with belief degree
0.4.

Remark 1.3: Given two events with known belief degrees, it is frequently
asked that how the belief degree for their union is generated from the in-
dividuals. Personally, I do not think there exists any rule to make it. A
lot of surveys showed that, generally speaking, the belief degree of a union
of events is neither the sum of belief degrees of the individual events (e.g.
probability measure) nor the maximum (e.g. possibility measure). Perhaps
there is no explicit relation between the union and individuals except for the
subadditivity axiom.

Remark 1.4: Pathology occurs if subadditivity axiom is not assumed. For
example, suppose that a universal set contains 3 elements. We define a set
function that takes value 0 for each singleton, and 1 for each event with at
least 2 elements. Then such a set function satisfies all axioms but subaddi-
tivity. Do you think it is strange if such a set function serves as a measure?

Remark 1.5: Although probability measure satisfies the above three axioms,
probability theory is not a special case of uncertainty theory because the
product probability measure does not satisfy the fourth axiom, namely the
product axiom on Page 17.

Definition 1.5 (Liu [122]) The set function M is called an uncertain mea-
sure if it satisfies the normality, duality, and subadditivity axioms.

Exercise 1.1: Let I' = {7y1,72,73}. It is clear that there exist 8 events in
the g-algebra

L=A{0, {m}, {1}, {13} {72} {,73) {123, T} (1.13)

Assume cy, c2, c3 are nonnegative numbers satisfying the consistency condi-
tion

Ci+Cj §1§01+62+63, VZ#‘] (114)
Define

M{ryl} = C1, M{PYQ} = C2, M{’Y?)} = C3,
My, et =1—-c3, M{y,73t=1-co, M{y2,13}=1—c1,
M{0} =0, M{I'}=1.

Show that M is an uncertain measure.
Exercise 1.2: Suppose that A(x) is a nonnegative function on R (the set of

real numbers) such that

sup A(z) = 0.5. (1.15)
reR
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Define a set function

sup A(z), if supA(z) < 0.5

TzEA TEA
M{A} = ) © (1.16)
1 — sup A(z), if supA(z)=0.5
rEAC TEA

for each Borel set A. Show that M is an uncertain measure on .

Exercise 1.3: Suppose p(z) is a nonnegative and integrable function on R
(the set of real numbers) such that

/ p(z)dz > 1. (1.17)
R

Define a set function

/Ap(x)dx, if /Ap(a:)dx<0.5
MiA} = 1—/ p(z)dz, if/ p(x)dx < 0.5 (1.18)

0.5, otherwise
for each Borel set A. Show that M is an uncertain measure on .

Theorem 1.1 (Monotonicity Theorem) Uncertain measure M is a mono-
tone increasing set function. That is, for any events Ay C Ao, we have

M{AL} < M{A,}. (1.19)

Proof: The normality axiom says M{I'} = 1, and the duality axiom says
M{A§} =1 —M{A1}. Since Ay C Ay, we have I' = A§ U Ap. By using the
subadditivity axiom, we obtain

1= M{T} < M{AS) + M{A} = 1 — M{Ar} + M{As}
Thus M{A;} < M{As}.

Theorem 1.2 Suppose that M is an uncertain measure. Then the empty set
0 has an uncertain measure zero, i.e.,

M{0} = 0. (1.20)
Proof: Since ) =T'“ and M{I'} = 1, it follows from the duality axiom that
M{P}=1-M{T} =1-1=0.

Theorem 1.3 Suppose that M is an uncertain measure. Then for any event
A, we have
0<M{A} <1 (1.21)
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Proof: It follows from the monotonicity theorem that 0 < M{A} < 1 because
0 cAcCT and M{0} =0, M{T'} = 1.

Theorem 1.4 Let Ay, Ay, -+ be a sequence of events with M{A;} — 0 as
1 — 00. Then for any event A, we have

lim M{AUA;} = lim M{A\A;} = M{A}. (1.22)
71— 00 1—> 00
Especially, an uncertain measure remains unchanged if the event is enlarged
or reduced by an event with uncertain measure zero.

Proof: It follows from the monotonicity theorem and subadditivity axiom
e M{A} < M{AUA;} < M{A} + M{A;}
for each i. Thus we get M{A U A;} — M{A} by using M{A;} — 0. Since
(A\A;) € A C ((A\A;) UA;), we have

M{A\A; } < M{A} < M{A\A;} + M{A;}.
Hence M{A\A;} — M{A} by using M{A;} — 0.

Theorem 1.5 (Asymptotic Theorem) For any events Ay, Ag,- -+, we have

E)m M{AZ} >0, if AT (1.23)
lim M{A;} <1, if A L0 (1.24)

Proof: Assume A; 1 I'. Since I' = U; Ay, it follows from the subadditivity
axiom that

1=M{T} <) M{A;}.
i=1
Since M{A;} is increasing with respect to 7, we have lim;_ o, M{A;} > 0. If
A; 1 0, then A 1T, It follows from the first inequality and the duality axiom
that
lim M{A;} =1 — lim M{A{} < 1.
11— 00 1— 00

The theorem is proved.

Example 1.9: Assume I is the set of real numbers. Let o be a number with
0 < a < 0.5. Define a set function as follows,

0, ifA=0
a, if A is upper bounded
M{A} = 0.5, if both A and A® are upper unbounded (1.25)
1—«, if A°is upper bounded
1 if A=T.

)

It is easy to verify that M is an uncertain measure. Write A; = (—o0, 1] for
i=1,2,--- Then A; 1 T and lim; ,oo M{A;} = a. Furthermore, we have
AS | 0 and lim; oo M{AS} =1 — a.
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1.4 TUncertainty Space

Definition 1.6 (Liu [122]) Let T' be a nonempty set, let L be a o-algebra
over I', and let M be an uncertain measure. Then the triplet (I', L, M) is
called an uncertainty space.

For practical purposes, the study of uncertainty spaces is sometimes re-
stricted to complete uncertainty spaces.

Definition 1.7 An uncertainty space (I'; L, M) is called complete if for any
A1, As € £ with M{A1} = M{A2} and any subset A with Ay C A C A, one
has A € L. In this case, we also have

M{A} = M{A;} = M{Az}. (1.26)

Exercise 1.4: Let (T, £,M) be a complete uncertainty space, and let A be
an event with M{A} = 0. Show that A is an event and M{A} = 0 whenever
ACA.

Exercise 1.5: Let (I, £, M) be a complete uncertainty space, and let A be
an event with M{A} = 1. Show that A is an event and M{A} = 1 whenever
ADA.

Definition 1.8 (Gao [48]) An uncertainty space (I', L, M) is called contin-

wous if for any events Ay, Ao, -+, we have
i) = i) aom

provided that lim;_, . A; exists.

Exercise 1.6: Let (I', £, M) be a continuous uncertainty space. For any
events A1, Ag, -+, show that

lim M{A;} =1, if A; 1T, (1.28)
1— 00
lim M{A;} =0, if A; ] 0. (1.29)
71— 00

1.5 Product Uncertain Measure

Product uncertain measure was defined by Liu [125] in 2009, thus producing
the fourth axiom of uncertainty theory. Let (T'y,Lx,My) be uncertainty
spaces for k =1,2,--- Write

F:F1XF2X--- (130)
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that is the set of all ordered tuples of the form (1,72, -+ ), where v, € T’

for k =1,2,--- A measurable rectangle in I' is a set
A=A xAy x--- (1.31)
where Ay € Ly for Kk = 1,2,--- The smallest o-algebra containing all mea-

surable rectangles of I is called the product o-algebra, denoted by
L:,ClXLQX"' (132)

Then the product uncertain measure M on the product o-algebra £ is defined
by the following product axiom (Liu [125]).

Axiom 4. (Product Aziom) Let (T, L, M) be uncertainty spaces for k =

1,2,--- The product uncertain measure M is an uncertain measure satisfying
oo o0

M{HAk} =\ Me{Ax} (1.33)
k=1 k=1

where Ay are arbitrarily chosen events from Ly for k = 1,2, -+, respectively.

Remark 1.6: Note that (1.33) defines a product uncertain measure only for
rectangles. How do we extend the uncertain measure M from the class of
rectangles to the product o-algebra L7 For each event A € £, we have

sup min Mg{Ax},
A1 XA2x---CA 1<k<oo

if sup min Mg{Ax} > 0.5
A1 XAgX--CA 1<k<oo

M= TS can BN (139
if sup min Mi{Ax} > 0.5

A xAgx-CAc 1Sk<o0

0.5, otherwise.

Remark 1.7: Note that the sum of the uncertain measures of the maximum
rectangles in A and A€ is always less than or equal to 1, i.e.,

sup min Mi{Ag} + sup min Mi{Az} < 1.
A1 xAgx--CA1Sk<oco Ay xAgx - CAc 1<k<oo

This means that at most one of

sup min M{Ar} and sup min My {Ax}

A xAax---CA1<k<oo A xAgX--CAc 1<k<oo

is greater than 0.5. Thus the expression (1.34) is reasonable.
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I

Figure 1.1: Extension from Rectangles to Product o-Algebra. The uncertain
measure of A (the disk) is essentially the acreage of its inscribed rectangle
A1 xAg ifit is greater than 0.5. Otherwise, we have to examine its complement
A¢. If the inscribed rectangle of A€ is greater than 0.5, then M{A¢} is just
its inscribed rectangle and M{A} = 1 — M{A°}. If there does not exist an
inscribed rectangle of A or A° greater than 0.5, then we set M{A} = 0.5.
Reprinted from Liu [129].

Remark 1.8: If the sum of the uncertain measures of the maximum rect-
angles in A and A€ is just 1, i.e.,

sup min Mg{Ag} + sup min Mg{Ax} =1,
ArxAgx--CA1Sk<oo A1 XAy X--CAc 1Sk<oo

then the product uncertain measure (1.34) is simplified as

MiA} = Ale;lf---o\ 1é%l<nooMk{Ak}' (1.35)

Theorem 1.6 (Peng and Iwamura [185]) The product uncertain measure
defined by (1.34) is an uncertain measure.

Proof: In order to prove that the product uncertain measure (1.34) is indeed
an uncertain measure, we should verify that the product uncertain measure
satisfies the normality, duality and subadditivity axioms.

STEP 1: The product uncertain measure is clearly normal, i.e., M{I'} = 1.

STEP 2: We prove the duality, i.e., M{A} + M{A°} = 1. The argument
breaks down into three cases. Case 1: Assume

sup min My{Ax} > 0.5.
Ay XAy x---CA 1Sk<oo
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Then we immediately have

Sup min M {Ax} < 0.5.
A1 XAgx---CA° 1<k<oc0

It follows from (1.34) that

M{A} = su min Mg{Ar},
{ } A1><A2>E)---CA 1<k<oco k{ k}
M{A}=1- sup min Mp{Ax} =1 - M{A}.

A1 XAz x--C(AC)e 1<k<oo

The duality is proved. Case 2: Assume

sup min M{Ax} > 0.5.
A1 XAy x---CAc 1<k<oo

This case may be proved by a similar process. Case 3: Assume

sup min Mg{Ax} <0.5
A1 XAax--CA 1<k<oo

and
sup min Mg{Ax} <0.5.

A1 XA x--CA° 1<k<oo
It follows from (1.34) that M{A} = M{A“} = 0.5 which proves the duality.

STEP 3: Let us prove that M is an increasing set function. Suppose A
and A are two events in £ with A C A. The argument breaks down into
three cases. Case 1: Assume

sup min M{Ax} > 0.5.
Ay xAgx---CA 1<k<o0

Then

sup min Mg{Ax} > sup min Mg{Ax} > 0.5.
A1 XxAgx-CA 1<k<oo A1 XAgx--CA 1<k<oo

It follows from (1.34) that M{A} < M{A}. Case 2: Assume

A XAs;ip“CAC 1Smki<nOO Mi{Ax} > 0.5.
Then
N ORE - SN SIE - S
Thus
WA =1 B N
<1- sup min Mi{Ar} = M{A}.

A1 xAgx--CAc 1Sk<oo
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Case 3: Assume
su min M{Ag} <0.5
AlXAzfch 1<k<oo Ak} <
and
su min Mp{A;.} <0.5.
A1><A2><p...cAc 1<k<oo k{Ar} <
Then

STEP 4: Finally, we prove the subadditivity of M. For simplicity, we only
prove the case of two events A and A. The argument breaks down into three
cases. Case 1: Assume M{A} < 0.5 and M{A} < 0.5. For any given ¢ > 0,
there are two rectangles

A1XA2X"'CAC, Ay X Ay X --- C A°

such that
_ i <
1 lgmklélooMk{Ak} _M{A}+E/2,
_ i < .
1 1§H1il<nooMk{Ak} < M{A} +E/2
Note that

(A1NAY) X (AaNAg) x--- C(AUA).
It follows from the duality and subadditivity axioms that
Mi{Ar N AR} =1 —Mp{(Ax NAR)} =1 —Mp{Af UAS}
> 1= (Me{AZ} + M {AL})
= 1= (1= Mp{Ax}) = (1 = My {Ar})
= Mi{Ar} + Mp{Ar} -1
for any k. Thus
M{AUA} <1- 1Smki<noo Mp{Ax N AL}
<1- 1;1%1300 Mp{Ar} +1— 1;1%2100 Mp{Ax}
<M{A} + M{A} +e.
Letting € — 0, we obtain
M{AUA} < M{A} + M{A}.

Case 2: Assume M{A} > 0.5 and M{A} < 0.5. When M{A U A} = 0.5, the
subadditivity is obvious. Now we consider the case M{A U A} > 0.5, i.e.,
M{A°N A°} < 0.5. By using A°UA = (A°NA°)UA and Case 1, we get

M{A®U A} < M{A° N A} + M{A}.
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Thus
M{AUA} =1 -M{A°NA°} <1-M{A°UA} +M{A}
<1—M{A} + M{A} = M{A} + M{A}.

Case 3: If both M{A} > 0.5 and M{A} > 0.5, then the subadditivity is
obvious because M{A} + M{A} > 1. The theorem is proved.

Definition 1.9 Assume (Ty, Li, My) are uncertainty spaces fork =1,2,---
LetF:F1XF2X"', L:,Cl XLQX"' andM:Ml/\Mg/\~~ Then the
triplet (I', £, M) is called a product uncertainty space.

1.6 Independence

Definition 1.10 (Liu [129]) The events Ay, Aa,--- , A, are said to be inde-
pendent if

M{ﬁA} - /H\M{Af} (1.36)

where A} are arbitrarily chosen from {A;,A§,T'}, i =1,2,---  n, respectively,
and T is the sure event.

Remark 1.9: Especially, two events A; and As are independent if and only
if

MA{AT N AL = M{AT} AM{AS} (1.37)
where A} are arbitrarily chosen from {A;, AS}, i = 1,2, respectively. That is,
the following four equations hold:

M{A; N Az} = M{AL} AM{ALD,
M{A] N Az} = M{AT} A M{Az},
M{A; N A5} = M{A} AN{AS),
M{AS N AS) = M{ASH A M{AS).

Example 1.10: The impossible event ) is independent of any event A be-
cause () =T and

M{ONA} =M{0} = M{D} A M{A},
M{0c N A} = M{A} = M{0°} A M{A},
M{ON A} =M{0} = M{0} A M{A°},

M{0c N A} = M{A°} = M{D°} A M{A°}.
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Example 1.11: The sure event I' is independent of any event A because
' =0 and
M{T N A} = M{A} = M{T} A M{A},

M{T¢ N A} = M{Te} = M{T¢} A M{A},
M{T NAC} = M{A} = M{T} A M{A},
M{Te N A} = M{Te} = M{T¢} A M{A°}.

Example 1.12: Generally speaking, an event A is not independent of itself
because
M{AN A} £ M{A} A M{A°}

whenever M{A} is neither 1 nor 0.

Theorem 1.7 (Liu [129]) The events A1, As,--- , A, are independent if and

only if
M{UA;‘} =\/ M{A;} (1.38)
=1 =1

where Af are arbitrarily chosen from {A;, AS,0}, i =1,2,--- ,n, respectively,
and () is the impossible event.

Proof: Assume Ay, As,---, A, are independent events. It follows from the
duality of uncertain measure that

M{OA;}_1_M{ﬁA;C}_1_}L\M{A;C}_\7M{A;}

where A} are arbitrarily chosen from {A;, A§,0}, i =1,2,--- ,n, respectively.
The equation (1.38) is proved. Conversely, if the equation (1.38) holds, then

M{ﬁA} :1-M{0A;0} =1- \TL/M{AZ*C}: /n\M{A;f}.

where A} are arbitrarily chosen from {A;, A§,T'}, i =1,2,--- ,n, respectively.
The equation (1.36) is true. The theorem is proved.

Theorem 1.8 (Liu [187]) Let (T'y, L, M) be uncertainty spaces and Ay, €
Ly fork=1,2,--- ,n. Then the events

My X X Ty X Apg X Ty X xTy, k=1,2,---.n (1.39)
are always independent in the product uncertainty space. That is, the events
Al; A23 e 7An (140)

are always independent if they are from different uncertainty spaces.
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Ty

A2 A1 X A2

I

Ay

Figure 1.2: (A1 xTo)N(T1 x Ag) = A1 X Ay
Proof: For simplicity, we only prove the case of n = 2. It follows from the
product axiom that the product uncertain measure of the intersection is
M{(A1 xT2) N (T x Ag)} = M{A; x Ag} = M{A1} AMo{As}.
By using M{A; x o} = M1{A1} and M{T'; x Ax} = My{A2}, we obtain
M{(A1 xTo)N(T1 x Ag)} = M{A; x T2} AM{T; x As}.
Similarly, we may prove that

M{(Al X Fg)c N (Fl X Ag)} = M{(Al X FQ)C} N M{Fl X AQ},
M{(Al X FQ) N (Fl X Ag)c} = M{Al X FQ} A\ M{(Fl X Ag)c},
M{(Al X FQ)C n (Fl X AQ)C} = M{(Al X Fg)c} A M{(Fl X AQ)C}.

Thus A; x I'ys and I'y x Ay are independent events. Furthermore, since Aq
and As are understood as Ay x I'y and I'; x Ay in the product uncertainty
space, respectively, the two events A; and As are also independent.

1.7 Polyrectangular Theorem

Let (T'y,£1,M;) and (T'2, L2, Mz) be two uncertainty spaces, A1 € L1 and
Ao € Lo. Tt follows from the product axiom that the rectangle A; x Ag has
an uncertain measure

M{A] X AQ} = MI{AI} A\ MQ{AQ} (141)

This section will extend this result to a more general case.
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Definition 1.11 (Liu [137]) Let (I'1,£1,My) and (T'y, Lo, M3) be two un-
certainty spaces. A set on I'y x 'y is called a polyrectangle if it has the form

m

A= U(Ali X Agi) (142)
1=1
where A1; € L1 and Ag; € Lo fori=1,2,--- . m, and
A1 CApC--- C A1m7 (143)
Ao D Aoy Do D Agppy. (144)

A rectangle Ay x Ao is clearly a polyrectangle. In addition, a “cross”-like
set is also a polyrectangle. See Figure 1.3.

Iy

Iy

Figure 1.3: Three Polyrectangles

Theorem 1.9 (Liu [187], Polyrectangular Theorem) Let (I'1,£1,My) and
(Tg, Lo, My) be two uncertainty spaces. Then the polyrectangle

m

A= U(Ali X Agi) (145)

i=1

on the product uncertainty space (I'1,L1,My) X (T'y, Lo, Ma) has an uncertain

measure
m

M{A} = \/ My{Ar} A Ma{As;}. (1.46)

i=1
Proof: It is clear that the maximum rectangle in the polyrectangle A is one
of Ay; x Ag;, i =1,2,--- ,n. Denote the maximum rectangle by Ajp X Agg.

Case I: If
M{A1k X Ao} = My{A1x},

then the maximum rectangle in A“is Ay x A3, ,, and

M{AT x Ag,kJrl} =Mi{AT} =1 - Mi{A}.
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Thus
M{A1g x Ao} + M{AT, x Ag 1} =1

Case II: If
M{A1r % Ao} = Ma{Aos},

then the maximum rectangle in A€ is Aik—l x AS,, and
M{Aik—l X Ay} = Ma{Ag} =1 — Ma{Aa}.
Thus
M{A1g x Mg} +M{AT 1 x A5} = 1.

No matter what case happens, the sum of the uncertain measures of the
maximum rectangles in A and A¢ is always 1. It follows from the product
axiom that (1.46) holds.

Remark 1.10: Note that the polyrectangular theorem is also applicable to
the polyrectangles that are unions of infinitely many rectangles. In this case,
the polyrectangles may become the shapes in Figure 1.4.

Iy

Iy

Figure 1.4: Three Deformed Polyrectangles

1.8 Conditional Uncertain Measure

We consider the uncertain measure of an event A after it has been learned
that some other event B has occurred. This new uncertain measure of A is
called the conditional uncertain measure of A given B.

In order to define a conditional uncertain measure M{A|B}, at first we
have to enlarge M{A N B} because M{A N B} < 1 for all events whenever
M{B} < 1. Tt seems that we have no alternative but to divide M{AN B} by
M{B}. Unfortunately, M{ANB}/M{B} is not always an uncertain measure.
However, the value M{A|B} should not be greater than M{A N B}/M{B}
(otherwise the normality will be lost), i.e.,

M{AN B}

M{AIB) < =

(1.47)
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On the other hand, in order to preserve the duality, we should have

M{A°n B}
B}

Furthermore, since (AN B) U (A° N B) = B, we have M{B} < M{AN B} +
M{A€ N B} by using the subadditivity axiom. Thus

M{A°NB} _M{An B}
BT < mr S U (1.49)

Hence any numbers between 1 —M{A°NB}/M{B} and M{ANB}/M{B} are
reasonable values that the conditional uncertain measure may take. Based
on the maximum uncertainty principle (Liu [122]), we have the following
conditional uncertain measure.

M{A|B} =1 - M{A°|B} > 1 — (1.48)

0<1~-

Definition 1.12 (Liu [122]) Let (T, £, M) be an uncertainty space, and A, B €
L. Then the conditional uncertain measure of A given B is defined by

M{AnN B} L M{AN B}
TMB} ZfiM{B} < 0.5
M{ABY = | _ M%EE}B}’ if M{j\ﬁg}B} “05 (1.50)
0.5, otherwise

provided that M{B} > 0.

Remark 1.11: It follows immediately from the definition of conditional

uncertain measure that

~ M{A°n B}
M{B}

M{AN B}

! M{B}

< M{A|B} < (1.51)

Furthermore, the conditional uncertain measure obeys the maximum uncer-
tainty principle, and takes values as close to 0.5 as possible.

Remark 1.12: The conditional uncertain measure M{A|B} yields the pos-
terior uncertain measure of A after the occurrence of event B.

Theorem 1.10 Let (T', £, M) be an uncertainty space, and let B be an event
with M{B} > 0. Then M{:|B} defined by (1.50) is an uncertain measure,
and (I, L, M{:|B}) is an uncertainty space.

Proof: It is sufficient to prove that M{-|B} satisfies the normality, duality
and subadditivity axioms. At first, it satisfies the normality axiom, i.e.,

M{Ir*n B} 1 M{0}

(B (B "

M{T|B} =1—
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For any event A, if

M{AN B}
—E 2 0.5,

M{A° N B}

> 0.
By =P

then we have M{A|B} + M{A¢|B} = 0.5+ 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose

M{AN B} M{A°N B}
MB] <0.5<7M{B} :

then we have

(i} + atgaripy = e (12 MEEE) -

M{B} M{B}

That is, M{:|B} satisfies the duality axiom. Finally, for any countable se-
quence {A;} of events, if M{A;|B} < 0.5 for all 4, it follows from (1.51) and
the subadditivity axiom that

GAmB iM{AmB} .

) 00}
M{UAi|B}g =1 < = = M{A;B}.

M{B} - MW{B}

Suppose there is one term greater than 0.5, say
M{A;|B} > 0.5, M{A4;|B} <0.5, i=2,3,--
If M{U;A;|B} = 0.5, then we immediately have
M { U 4 B} <Y M{4;|B}.
i=1 1=1

If M{U;A4;|B} > 0.5, we may prove the above inequality by the following
facts:

ASNBC G(AmB)u <ﬁA§mB>,

=2 i=1

M{AﬁmB}<§:M{AiﬂB}+M{ﬁAme}7

i=2 =1

M{B}

M{QAZB}1M{ﬁA5mB}
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N iM{AmB}
M{AsnBY &
Yoctaim)>1- a2

i=1

If there are at least two terms greater than 0.5, then the subadditivity is
clearly true. Thus M{-|B} satisfies the subadditivity axiom. Hence M{-|B} is
an uncertain measure. Furthermore, (T, £, M{:|B}) is an uncertainty space.

1.9 Bibliographic Notes

When no samples are available to estimate a probability distribution, we have
to invite some domain experts to evaluate the belief degree that each event
will happen. Perhaps some people think that the belief degree is subjective
probability or fuzzy concept. However, Liu [131] declared that it is usually
inappropriate because both probability theory and fuzzy set theory may lead
to counterintuitive results in this case.

In order to rationally deal with belief degrees, uncertainty theory was
founded by Liu [122] in 2007 and perfected by Liu [125] in 2009 with the
normality axiom, duality axiom, subadditivity axiom, and product axiom of
uncertain measure.

Furthermore, uncertain measure was also actively investigated by Gao
[48], Liu [129], Zhang [268], Peng and Iwamura [185], and Liu [137], among
others. Since then, the tool of uncertain measure was well developed and
became a rigorous footstone of uncertainty theory.



Chapter 2

Uncertain Variable

Uncertain variable is a fundamental concept in uncertainty theory. It is used
to represent quantities with uncertainty. The emphasis in this chapter is
mainly on uncertain variable, uncertainty distribution, independence, opera-
tional law, expected value, variance, moments, entropy, distance, conditional
uncertainty distribution, uncertain sequence, and uncertain vector.

2.1 Uncertain Variable

Roughly speaking, an uncertain variable is a measurable function on an un-
certainty space. A formal definition is given as follows.

Definition 2.1 (Liu [122]) An uncertain variable is a function & from an
uncertainty space (I'; L, M) to the set of real numbers such that {{ € B} is
an event for any Borel set B.

Figure 2.1: An Uncertain Variable. Reprinted from Liu [129].

© Springer-Verlag Berlin Heidelberg 2015 29
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Example 2.1: Take (I', £, M) to be {y1,72} with M{y} = M{y} = 0.5.
Then the function

07 if T="
is an uncertain variable.

Example 2.2: A crisp number b may be regarded as a special uncertain
variable. In fact, it is the constant function £(y) = b on the uncertainty
space (T', £, M).

Definition 2.2 An uncertain variable £ on the uncertainty space (I'; £, M) is
said to be (a) nonnegative if M{& < 0} = 0; and (b) positive if M{& < 0} = 0.

Definition 2.3 Let & and n be uncertain variables defined on the uncertainty
space (I L, M). We say € = n if £(v) = n(y) for almost all v € T.

Definition 2.4 Let &1,&, -+ , &, be uncertain variables, and let f be a real-
valued measurable function. Then & = f(&1,&2, -+ , &) 18 an uncertain vari-

able defined by

5(7) = f(£1(7)7£2(’7)7 T 7&%(’7))7 Vyel. (2'1)

Example 2.3: Let & and & be two uncertain variables. Then the sum
& = &1 + & is an uncertain variable defined by

E(v) =& () +&(y), Vyel.

The product & = £1&5 is also an uncertain variable defined by

E(y) =& () -&(v), VyeTl.

The reader may wonder whether £() defined by (2.1) is an uncertain
variable. The following theorem answers this question.

Theorem 2.1 Let &1,&, -+, &, be uncertain variables, and let f be a real-
valued measurable function. Then f(&1,&a, -+ ,&n) is an uncertain variable.

Proof: Since &1,&o, -+ , &, are uncertain variables, they are measurable func-
tions from an uncertainty space (I', £, M) to the set of real numbers. Thus
f(&1,&2,-+- , &) is also a measurable function from the uncertainty space
(T, £, M) to the set of real numbers. Hence f(&1,&2, - ,&,) is an uncertain
variable.
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2.2  Uncertainty Distribution

This section introduces a concept of uncertainty distribution in order to de-
scribe uncertain variables. Mention that uncertainty distribution is a carrier
of incomplete information of uncertain variable. However, in many cases, it
is sufficient to know the uncertainty distribution rather than the uncertain
variable itself.

Definition 2.5 (Liu [122]) The uncertainty distribution ® of an uncertain
variable & is defined by
B(x) = M ¢ <z} (22)

for any real number x.

Figure 2.2: An Uncertainty Distribution. Reprinted from Liu [129].

Il
s

Exercise 2.1: A real number b is a special uncertain variable &(v)
Show that such an uncertain variable has an uncertainty distribution

() = 0, ifz<b
TN 1, ite >

Exercise 2.2: Take an uncertainty space (I',£,M) to be {v1,72} with
M{y1} = 0.7 and M{~2} = 0.3. Show that the uncertain variable

_ 07 lf’Y:’Yl

0, ifz<0O
P(z)=< 07, f0<z<1
1, ifl<uz
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Exercise 2.3: Take an uncertainty space (I', £, M) to be {y1,72,v3} with
M{1} =06, M{yv}=03, M{p}=02

Show that the uncertain variable

17 if T="
) =9 2 frv=m
3, ify=13
has an uncertainty distribution
0, ifz<l

06, fl<xz<?2
0.8, if2<x<3
1, if3<ux.

O(x) =

Exercise 2.4: Take an uncertainty space (I', £, M) to be the interval [0, 1]
with Borel algebra and Lebesgue measure. Show that the uncertain variable
£(y) = 42 has an uncertainty distribution

0, ifz<0
O(r)=<( o, f0<z<1 (2.3)
1, ifz>1.

Definition 2.6 Uncertain variables are said to be identically distributed if
they have the same uncertainty distribution.

It is clear that uncertain variables ¢ and 7 are identically distributed if
& = n. However, identical distribution does not imply & = n. For example,
let (I, £, M) be {71,72} with M{y1} = M{~2} = 0.5. Define

17 1f7:71 _17 1f’V:’Yl
£(y) = { 1 iy =, n(y) = 1L ity =,
Then ¢ and n have the same uncertainty distribution,
0, ifz<-1
O(z)=¢ 05, if —1<z<1
1 if x > 1.

)

Thus the two uncertain variables £ and 7 are identically distributed but & # 7.
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Sufficient and Necessary Condition

Theorem 2.2 (Peng-Twamura Theorem [184]) A function ®(z) : R — [0,1]
s an uncertainty distribution if and only if it is a monotone increasing func-
tion except ®(x) =0 and &(x) = 1.

Proof: It is obvious that an uncertainty distribution ® is a monotone in-
creasing function. In addition, both ®(z) # 0 and ®(z) £ 1 follow from the
asymptotic theorem immediately. Conversely, suppose that ® is a monotone
increasing function but ®(z) # 0 and ®(z) £ 1. We will prove that there is
an uncertain variable whose uncertainty distribution is just ®. Let C be a
collection of all intervals of the form (—oo,a], (b,00), § and R. We define a
set function on R as follows,

M{(_Oo7a]} = (I)(a)7
M{(b,+00)} =1— ®(b),
M{B} =0, M{R}=1.

For an arbitrary Borel set B, there exists a sequence {4;} in € such that

B C D A;.
i=1

Note that such a sequence is not unique. Thus the set function M{B} is
defined by

inf > M{4;}, if inf > M{A;} <05

BC JA; i=1 BcC UJA; i=1
=1 =1
MBY=0 1 Som{4}, if  inf Y M{A;} <05
B“CiLin i=1 BCC@Ai i=1
0.5, otherwise.

We may prove that the set function M is indeed an uncertain measure on R,
and the uncertain variable defined by the identity function () = «y from the
uncertainty space (R, £, M) to R has the uncertainty distribution ®.

Example 2.4: Let ¢ be a number with 0 < ¢ < 1. Then ®(z) = ¢ is an
uncertainty distribution. When ¢ < 0.5, we define a set function over R as
follows,

0, ifA=0
c, if A is upper bounded
M{A} = 0.5, if both A and A€ are upper unbounded

1—¢, if A°is upper bounded
1, if A=T.



34 CHAPTER 2 - UNCERTAIN VARIABLE

Then (R, £, M) is an uncertainty space. It is easy to verify that the identity
function £() = « is an uncertain variable whose uncertainty distribution is
just ®(z) = c¢. When ¢ > 0.5, we define

0, iftA=0
1—¢, if A is upper bounded
M{A} = 0.5, if both A and A¢ are upper unbounded
c, if A€ is upper bounded
, if A=T.
Then the function &(y) = —v is an uncertain variable whose uncertainty

distribution is just ®(z) = c.

What is a “completely unknown number”?

A “completely unknown number” may be regarded as an uncertain variable
whose uncertainty distribution is

P(x) =05 (2.4)

for any real number z.

What is a “large number”?

A “large number” may be regarded as an uncertain variable. A possible
uncertainty distribution is

®(x) = = (1 + exp(1000 — z)) " (2.5)

N | =

for any real number z.

05 ...................................................

Figure 2.3: Uncertainty Distribution of “Large Number”
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What is a “small number”?

A “small number” may be regarded as an uncertain variable. A possible
uncertainty distribution is

0, if £ <0
O(z) = . (2.6)
(1 +exp(—10z)) ", ifz>0.
O(x)
1 .................
05 ..............................................................................
x
0

Figure 2.4: Uncertainty Distribution of “Small Number”

How old is John?

Someone thinks John is neither younger than 24 nor older than 28, and
presents an uncertainty distribution of John’s age as follows,

0, if # < 24
dlz)={ (z—24)/4, f24<z<28 (2.7)
1, if z > 28.

How tall is James?

Someone thinks James’ height is between 180 and 185 centimeters, and
presents the following uncertainty distribution,

0, if z < 180
®(z) ={ (x—180)/5, if180 <z < 185 (2.8)
1, if 2 > 185.
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Some Uncertainty Distributions

Definition 2.7 An uncertain variable £ is called linear if it has a linear
uncertainty distribution

0, ife<a
O(x)=<¢ (z—a)/(b—a), ifa<x<b (2.9)
1, ifx>0b

denoted by L(a,b) where a and b are real numbers with a < b.

Figure 2.5: Linear Uncertainty Distribution. Reprinted from Liu [129].
Example 2.5: John'’s age (2.7) is a linear uncertain variable £(24, 28), and
James’ height (2.8) is another linear uncertain variable £(180, 185).

Definition 2.8 An uncertain variable & is called zigzag if it has a zigzag
uncertainty distribution

0, ifr<a
_ (x —a)/2(b—a), ifa<z<b
() = (x+c—2b)/2(c—b), ifb<z<c (2.10)
1, ifx>c

denoted by Z(a,b,c) where a,b,c are real numbers with a < b < c.

Definition 2.9 An uncertain variable £ is called normal if it has a normal
uncertainty distribution

B(z) = (1 + exp <”(ef?j)>)_l zeR (2.11)

denoted by N (e, o) where e and o are real numbers with o > 0.
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Figure 2.7: Normal Uncertainty Distribution. Reprinted from Liu [129].

Definition 2.10 An uncertain variable & is called lognormal if In € is a nor-
mal uncertain variable N'(e, o). In other words, a lognormal uncertain vari-
able has an uncertainty distribution

() = (1 +exp (W»l L 23>0 (2.12)

denoted by LOGN (e, a), where e and o are real numbers with o > 0.

Definition 2.11 An uncertain variable £ is called empirical if it has an em-
pirical uncertainty distribution

0, if x <
6%} — o)\ — X . .
O(z) = Oéi—f'( - i )» ifo; <z <wi, 1<i<n (2.13)
Tit1 — T
1, if x > ay,

where x1 < X2 < - <xp and 0 < a1 <as <--- < a, <1.
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05 .............. /

0 el

Figure 2.8: Lognormal Uncertainty Distribution. Reprinted from Liu [129].
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Figure 2.9: Empirical Uncertainty Distribution

Measure Inversion Theorem

Theorem 2.3 (Liu [129], Measure Inversion Theorem) Let £ be an uncertain
variable with uncertainty distribution ®. Then for any real number x, we have

M{E <z}=0(x), M{>z}=1—(x). (2.14)

Proof: The equation M{¢ < 2} = ®(x) follows from the definition of uncer-
tainty distribution immediately. By using the duality of uncertain measure,

we get
M{E>zp=1-M{{<x}=1-d(z).

The theorem is verified.

Remark 2.1: When the uncertainty distribution ® is a continuous function,
we also have

M <a}=(x), M{E{>z}=1—D(x). (2.15)
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Theorem 2.4 Let £ be an uncertain variable with continuous uncertainty
distribution ®. Then for any interval [a,b], we have

D(b) — D) <M{a <E<B} < DB A(L—D(a).  (216)

Proof: It follows from the subadditivity of uncertain measure and the mea-
sure inversion theorem that

Ma <€ < b} +M{ < a} > M{{ < b}
That is,
M{a < € < b} + (a) > D(b).

Thus the inequality on the left hand side is verified. It follows from the
monotonicity of uncertain measure and the measure inversion theorem that
M{a <€ <b} < M{S € (—00,b]} = ©(b).

On the other hand,
M{a <z <b} <M{{E€[a,+0)} =1— D(a).
Hence the inequality on the right hand side is proved.

Remark 2.2: Perhaps some readers would like to get an exactly scalar value
of the uncertain measure M{a < x < b}. Generally speaking, it is an impos-
sible job (except a = —oco or b = +00) if only an uncertainty distribution is
available. I would like to ask if there is a need to know it. In fact, it is not
necessary for practical purpose. Would you believe? T hope so!

Regular Uncertainty Distribution

Definition 2.12 (Liu [129]) An uncertainty distribution ®(x) is said to be

reqular if it is a continuous and strictly increasing function with respect to x
at which 0 < ®(z) < 1, and

ZEIPOOQ(I) =0, mgrfoo@(m) =1 (2.17)

For example, linear uncertainty distribution, zigzag uncertainty distribu-

tion, normal uncertainty distribution, and lognormal uncertainty distribution
are all regular.

Stipulation 2.1 The uncertainty distribution of a crisp value c is regular.
That s, we will say
1, ifz>c

cI>(w)={ 0. ifz<c (2.18)

18 a continuous and strictly increasing function with respect to x at which
0 < ®(x) <1 even though it is discontinuous at c.
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Inverse Uncertainty Distribution

It is clear that a regular uncertainty distribution ®(x) has an inverse function
on the range of x with 0 < ®(z) < 1, and the inverse function ®~!(a) exists
on the open interval (0, 1).

Definition 2.13 (Liu [129]) Let & be an uncertain variable with regular un-
certainty distribution ®(x). Then the inverse function ®~1(a) is called the
inverse uncertainty distribution of .

Note that the inverse uncertainty distribution ®~!(a) is well defined on the
open interval (0,1). If needed, we may extend the domain to [0, 1] via

o7 H0) = 1(11% o Ha), ') = 1(11?11 ). (2.19)

Example 2.6: The inverse uncertainty distribution of linear uncertain vari-
able L(a,b) is
d a)=(1-a)a+ ab. (2.20)

Figure 2.10: Inverse Linear Uncertainty Distribution. Reprinted from Liu
[129].

Example 2.7: The inverse uncertainty distribution of zigzag uncertain vari-
able Z(a,b,c) is

(2.21)

o1(a) (1 —2a)a+ 2ab, if @« <0.5
(2—-20)b+ (2a—1)c, if a>0.5.

Example 2.8: The inverse uncertainty distribution of normal uncertain
variable N (e, o) is

(2.22)



SECTION 2.2 - UNCERTAINTY DISTRIBUTION 41

Figure 2.11: Inverse Zigzag Uncertainty Distribution. Reprinted from Liu
[129].

/

Figure 2.12: Inverse Normal Uncertainty Distribution. Reprinted from Liu
[129].

Example 2.9: The inverse uncertainty distribution of lognormal uncertain
variable LOGN (e, o) is

(2.23)

T 1—«

d ) = exp (e—i—m/gln c > .

Theorem 2.5 A function ®~1 is an inverse uncertainty distribution of an
uncertain variable & if and only if

M{E< P )} =a (2.24)
for all a € [0, 1].

Proof: Suppose ®! is the inverse uncertainty distribution of £&. Then for
any «, we have

M{E <@ ()} = 2@} (a) =
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Figure 2.13: Inverse Lognormal Uncertainty Distribution. Reprinted from
Liu [129].

Conversely, suppose ®~1 meets (2.24). Write z = ®~!(a). Then a = ®(z)
and
M{E <z} =a=(z).

That is, ® is the uncertainty distribution of € and ®~! is its inverse uncer-
tainty distribution. The theorem is verified.

Theorem 2.6 (Liu [134], Sufficient and Necessary Condition) A function
®~1(a): (0,1) — R is an inverse uncertainty distribution if and only if it is
a continuous and strictly increasing function with respect to .

Proof: Suppose ®~!(a) is an inverse uncertainty distribution. It follows
from the definition of inverse uncertainty distribution that ®~1(«) is a con-
tinuous and strictly increasing function with respect to o € (0, 1).
Conversely, suppose ®~!(a) is a continuous and strictly increasing func-
tion on (0,1). Define
0, ifzr<lim® !(a)
al0
B(z)={ o ifz=20""(a)
1, ifz>1lim® (a).
atl
It follows from Peng-Iwamura theorem that ®(z) is an uncertainty distribu-
tion of some uncertain variable £&. Then for each « € (0,1), we have

M{E <@ (a)} = 2@} (a)) =

Thus ®~!(a) is just the inverse uncertainty distribution of the uncertain
variable £. The theorem is verified.

Stipulation 2.2 We say a crisp value ¢ has an inverse uncertainty distri-
bution
o Ha)=c (2.25)
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and ®71(a) is a continuous and strictly increasing function with respect to
a € (0,1) even though it is not.

2.3 Independence

Independence has been explained in many ways. Personally, I think some
uncertain variables are independent if they can be separately defined on dif-
ferent uncertainty spaces. In order to ensure that we are able to do so, we
may define independence in the following mathematical form.

Definition 2.14 (Liu [125]) The uncertain variables £1,&2,- -+ ,&n are said
to be independent if

=1 i=1

for any Borel sets By, By, -+, By,.

Example 2.10: Let & (1) and &3(y2) be uncertain variables on the uncer-
tainty spaces (I'1, £1,M1) and (I'y, L2, M), respectively. It is clear that they
are also uncertain variables on the product uncertainty space (I'1, £1,M7) X
(T'g, L2, M5). Then for any Borel sets By and B, we have

M{(&1 € B1) N (&2 € By)}
= M{(71,72) |§1(11) € B, &2(712) € B2}
=M{(n [&(n) € B) x (12182(72) € B2)}
=M {71 [&(n) € Bi} AMz {72 [&(72) € B2}
=MA{& € Bi} AMA{& € By}
Thus &; and & are independent in the product uncertainty space. In fact, it

is true that uncertain variables are always independent if they are defined on
different uncertainty spaces.

Theorem 2.7 The uncertain variables £1,&2, -+ , &, are independent if and
only if

M{U(fz € Bz)} = \/ MA{& € Bi} (2.27)

i=1 i=1

for any Borel sets By, By, -+, By,.
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Proof: It follows from the duality of uncertain measure that &;,&2, -+ , &,
are independent if and only if

M{U(fz GBi)} _1M{n(fz EBiC)}

i=1 i=1
=1- AM{& e B} = \/ M{& € B}
1=1 =1

Thus the proof is complete.

Theorem 2.8 Let &1,&5,--- ,&, be independent uncertain variables, and let

fi, fa, -+, fn be measurable functions. Then f1(&1), f2(&), -, fu(&n) are
independent uncertain variables.

Proof: For any Borel sets By, Bo,--- , By, it follows from the definition of
independence that

{ﬂ fi(&) € By) } {ﬂ(&ef;l(Bm}

i=1

M{& € f71(Bi)} = \ M{fi(&) € Bi}.

1 i=1

[
>:

Thus f1(&1), f2(&2), -+, fn(&) are independent uncertain variables.

Example 2.11: Let & and & be independent uncertain variables. Then
their functions & + 2 and €3 + 3£, + 4 are also independent.

2.4 Operational Law

The operational law of independent uncertain variables was given by Liu
[129] for calculating the uncertainty distribution of strictly increasing func-
tion, strictly decreasing function, and strictly monotone function of uncer-
tain variables. This section will also discuss the uncertainty distribution of
Boolean function of Boolean uncertain variables.

Strictly Increasing Function of Uncertain Variables

A real-valued function f(x1,zq,- - ,x,) is said to be strictly increasing if
f(irlva»"' u‘rn)gf(ylay27"' 7yn) (228)
whenever x; < y; for i =1,2,--- ,n, and

f(x17x27"' 7xn)<f(y1ay27"' 7yn) (229)
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whenever x; < y; for ¢ = 1,2,--- ;n. The following are strictly increasing
functions,
flx1,22,- ,xn) =21 VX2 V-V,
f($1,932,'~ ,:I:n):xl/\xg/\~~/\xn,
flxr, e, - zp) =21+ 22+ -+ + Tpy,y
flxy, e, Jxp) = 2120+ Ty,  T1,T2,c 0 Ty > 0.

Theorem 2.9 (Liu [129]) Let &1,&, -+ , &, be independent uncertain vari-

ables with regular uncertainty distributions ®1, ®o, -+ , @, respectively. If f
18 a strictly increasing function, then the uncertain variable
ng(glag%"’ ,En) (230)

has an inverse uncertainty distribution
\IJ_l(O‘) = f(@;l(a),Q);l(a),-.- 7(1)_1(0‘))' (2'31)

n

Proof: For simplicity, we only prove the case n = 2. At first, we always have
{£ <V )} = {f(&. &) < F(@7 (@), 2, (o))}
On the one hand, since f is a strictly increasing function, we obtain
(€ <0 (a)} > {6 < T (@)} N {& < 07 (a)).
By using the independence of & and &», we get
ME<T )} > MG <o (@} AM{E < B (@)} =ana=a
On the other hand, since f is a strictly increasing function, we obtain
{e<v @)} c{a <o (@u{t <o (o)
By using the independence of & and &», we get
ME ST Ha) MG < e (@) VMG < @5 ()} =aVva=a.

It follows that M{¢ < U~!(a)} = a. That is, ¥~ ! is just the inverse uncer-
tainty distribution of £&. The theorem is proved.

Exercise 2.5: Let &1,&, -+ ,&, be independent uncertain variables with
regular uncertainty distributions ®1, @5, - , ®,,, respectively. Show that the
sum

=& +&+ -+ (2.32)

has an inverse uncertainty distribution

T (a) :<I>f1(a)+<I>§1(a)+---+@;1(a). (2.33)
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Exercise 2.6: Let &,&,---,&, be independent and positive uncertain
variables with regular uncertainty distributions ®1, ®,,--- , ®,,, respectively.
Show that the product

=& x&E X xX& (2.34)

has an inverse uncertainty distribution

T a) =d7a) x D5 (a) x - x &, (). (2.35)
Exercise 2.7: Let £1,&, -+ ,&, be independent uncertain variables with
regular uncertainty distributions ®1, ®o,--- , ®,,, respectively. Show that the
minimum
E=G NN N (2.36)
has an inverse uncertainty distribution
T )= a) AT H(a) A A D a). (2.37)
Exercise 2.8: Let &1,&,---,&, be independent uncertain variables with
regular uncertainty distributions ®1, ®o,--- , ®,,, respectively. Show that the
maximum
§=&6 V&V VE, (2.38)

has an inverse uncertainty distribution
U Ha)=o7 ) Vo () V- VO (a). (2.39)

Theorem 2.10 Assume that & and & are independent linear uncertain
variables L(ay1,b1) and L(ag,bs), respectively. Then the sum & + & is also a
linear uncertain variable L(a1 + az, by + ba), i.e.,

L'(al,bl) +£(a2,b2) :£(a1 + aq, by —‘rbg) (240)

The product of a linear uncertain variable L£(a,b) and a scalar number k > 0
is also a linear uncertain variable L(ka, kb), i.e.,

k- L(a,b) = L(ka, kb). (2.41)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

‘1’1_1(04) = (1 —a)ay + aby,

Oy (@) = (1 — a)ag + abs.

It follows from the operational law that the inverse uncertainty distribution
of &1 + & is

U a) = 7 (o) + @57 () = (1 = a) (a1 + az) + alby + ba).
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Hence the sum is also a linear uncertain variable £(a; + ag,b; + b2). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ L(a,b) is ®. It follows from the operational law that
when k > 0, the inverse uncertainty distribution of k¢ is

U a)=kd (a) = (1 —a)(ka) + a(kb).
Hence k€ is just a linear uncertain variable L(ka, kb).

Theorem 2.11 Assume that & and & are independent zigzag uncertain
variables Z(a1,b1,c1) and Z(az, by, c3), respectively. Then the sum & + &s is
also a zigzag uncertain variable Z(a1 + az, by + ba, c1 + c2), i.e.,

Z(al,bl,cl) —+ Z(CLQ,bQ,CQ) = Z(a1 —+ ag,bl + bg,cl —+ CQ). (242)

The product of a zigzag uncertain variable Z(a,b,c) and a scalar number
k > 0 is also a zigzag uncertain variable Z(ka, kb, kc), i.e.,

k- Z(a,b,c) = Z(ka, kb, kc). (2.43)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and ®,, respectively. Then

31 (a) = (1 —2a)a; + 2aby, ifa<0.5
! (2 —2a)by + (2a — 1)y, if a > 0.5,

1 (1 —2a)ag + 2ab,, if < 0.5
P, (a) =
(2—=2a)by+ (2a — 1)eg, if a > 0.5.

It follows from the operational law that the inverse uncertainty distribution
of &1 +&a is

\1171(04) _ { (1 — 20[)(&1 + az) + 204([)1 + bg), ifa<0.5
(2 —2a)(by + b2) + (2a — 1)(c1 + ¢2), if > 0.5.

Hence the sum is also a zigzag uncertain variable Z(aj + ag, by + ba, ¢1 + c2).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ Z(a, b, ¢) is ®. It follows from the operational law
that when &k > 0, the inverse uncertainty distribution of k¢ is

(1 —2a)(ka) + 2a(kbd), ifa<0.5

¥ (o) = ko7 () = { (2 - 20) (kD) + (20 — 1)(ke), ifa > 0.5.

Hence k€ is just a zigzag uncertain variable Z(ka, kb, kc).
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Theorem 2.12 Let & and & be independent normal uncertain variables
Ne1,01) and N (e, 02), respectively. Then the sum & + & is also a normal
uncertain variable N'(eq + e, 01 + 02), i.c.,

N(61,01)+N(62,02):N(61+62,01 +0’2). (244)

The product of a normal uncertain variable N(e,o) and a scalar number
k > 0 is also a normal uncertain variable N (ke, ko), i.e.,

k-N(e,o) = N(ke, ko). (2.45)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and ®,, respectively. Then

0'1\/3 «
s

In ,
11—«

o7 (a) =1 +

02\/3111 «

Dyl (o) = eg + - o

It follows from the operational law that the inverse uncertainty distribution
of {1 + & is

(01 +02)\/§1n e
T 1—a’

U a) = @ () + @3 () = (e1 +e2) +

Hence the sum is also a normal uncertain variable N'(e; + e2, 01 + 02). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ N (e, o) is ®. It follows from the operational law that,
when k > 0, the inverse uncertainty distribution of k¢ is

(ko)v'3, @

U a) = k®d () = (ke) + 1n1_a.

Hence k¢ is just a normal uncertain variable N (ke, ko).

Theorem 2.13 Assume that & and & are independent lognormal uncertain
variables LOGN (e1,01) and LOGN (e, 02), respectively. Then the product
&1 - & is also a lognormal uncertain variable LOGN (e1 + ea, 01 + 02), i.e.,

LOGN (e1,01) - LOGN (e2,02) = LOGN (e1 + ez, 01 + 02). (2.46)

The product of a lognormal uncertain variable LOGN (e, o) and a scalar num-
ber k > 0 is also a lognormal uncertain variable LOGN (e +Ink, o), i.e.,

k- LOGN (e,0) = LOGN (e +1nk,0). (2.47)
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Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and ®,, respectively. Then

0'1\/§ (0%
T Y

In
11—«

®7 ! (a) = exp <€1 +

®; ' (a) = exp <62 + 02;/5 c > .

In
l-«
It follows from the operational law that the inverse uncertainty distribution

of {1 - & is

In

™ l—«

U @) = 27 (a) - @3 ' (@) = exp ((61 +e2) + (01 +02)V3 o ) .

Hence the product is a lognormal uncertain variable LOGN (e1 +e3, 01 +02).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ LOGN (e, o) is ®. It follows from the operational
law that, when k£ > 0, the inverse uncertainty distribution of k¢ is

11—«

U a)=kd ! (a) =exp ((e +1Ink)+ UT\/gln a ) .

Hence k€ is just a lognormal uncertain variable LOGN (e + Ink, o).

Theorem 2.14 (Liu [129]) Let 1,82, -+ , &, be independent uncertain vari-

ables with uncertainty distributions ®1, Do, -, ®,,, respectively. If f is a
strictly increasing function, then the uncertain variable
52 f(€17£2a"' 7£’ﬂ) (248>
has an uncertainty distribution
U(z) = sup min ®;(z;). (2.49)
f(@1,@, - @)= 1SS

Proof: For simplicity, we only prove the case n = 2. Since f is a strictly
increasing function, it holds that

{f(&1,&) <z} = U (& <z1)N (& < x9).

f(zy,m2)=x

Thus the uncertainty distribution is

V() =M{f(6, &) <z} =MS  |J (@ <a)n(é<a)
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Note that for each given number x, the event

U (&1 <) N (& < x2)

f(z1,z2)=2

is just a polyrectangle. It follows from the polyrectangular theorem that

U(r) = sup M{(& <z1)N (€ <x2)}

fa1,a2)=2

= sup M{& <@ AM{E < a0}

f(z1,22)=w

= sup  Dq(21) A Po(22).

f(z1,22)=2
The theorem is proved.

Exercise 2.9: Let £ be an uncertain variable with uncertainty distribution @,
and let f be a strictly increasing function. Show that f(£) has an uncertainty

distribution
U(x) =d(f(z)), VzxeR (2.50)

Exercise 2.10: Let £1,&9, -+, &, be iid uncertain variables with a common
uncertainty distribution ®. Show that the sum

=6 +86+ - +&, (2.51)

has an uncertainty distribution

U(z) = (f) . (2.52)
n
Exercise 2.11: Let &1,&, - , &, beiid and positive uncertain variables with
a common uncertainty distribution ®. Show that the product
§=&& & (2.53)

has an uncertainty distribution

U(z) =0 (Vz). (2.54)

Exercise 2.12: Let &1,&,---,&, be independent uncertain variables with
uncertainty distributions &1, ®o, -+, ®,,, respectively. Show that the mini-
mum

E=GAEA AL, (2.55)

has an uncertainty distribution

U(zr) = ®1(z) V Po(x) V-V Py(x). (2.56)
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Exercise 2.13: Let &1,&,---,&, be independent uncertain variables with
uncertainty distributions ®1, @5, -, ®,,, respectively. Show that the maxi-
mum

E=&6 V&V VE, (2.57)

has an uncertainty distribution
V() = ®1(z) A Po(x) A--- A DPp(x). (2.58)

Theorem 2.15 (Liu [185], Extreme Value Theorem) Let &1,&2,--- ,&, be
independent uncertain variables. Assume that

Si=G+&++& (2.59)
have uncertainty distributions V; for i = 1,2,---  n, respectively. Then the
mazimum

S=51VSV---VvS§, (2.60)

has an uncertainty distribution
T(x) = Wi(z) AWa(z) A-- AW, (2); (2.61)

and the minimum
S=S1ASA---AS, (2.62)

has an uncertainty distribution
YT(z) =Ty(z) VIx) V.- VI, (2). (2.63)

Proof: Assume that the uncertainty distributions of the uncertain variables
£,89,-+- &, are ©1, Py, -+ | D, respectively. Define

flzr, o, Jzp) =1 V(1 +22) V- V(B1 + 22+ -+ Tp)-
Then f is a strictly increasing function and

S:f(glvg%"' 7§n)

It follows from Theorem 2.14 that S has an uncertainty distribution

T(JC) = sup (1)1(931) A ‘I)Q(IQ) VANEEIA (I)n(xn)
f(z1,22, 20 )=2
= min sup Dy (1) A Po(x2) Ao ADi(x;)
1<iSn gy t@o+ ;=2
= min U, (x).

Thus (2.61) is verified. Similarly, define

flxi, 2o, xn) =i A1+ 22) A Az + 22+ -+ 25).
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Then f is a strictly increasing function and

S:f(§17£27"' 7577,)

It follows from Theorem 2.14 that S has an uncertainty distribution

Y(z) = sup Dy (1) APa(x2) A A Dy (2)
f(x1,22, ,@n)=2
= max sup @1(.131) /\@2(1‘2)/\ /\(I)z(l‘l)
1<iSn gy f@o 4o tai=a
= max U, (z).

Thus (2.63) is verified.

Strictly Decreasing Function of Uncertain Variables

A real-valued function f(z1, 22, - ,x,) is said to be strictly decreasing if

f(.’I,'hl'Q,"' 7xn)2f(ylay27"' >yn) (264)
whenever x; < y; for i =1,2,--- ,n, and

[y, @, @n) > fy1,y2, 5 yn) (2.65)
whenever z; < y; for i =1,2,--- n. If f(z1, 29, -+ ,2,) is a strictly increas-
ing function, then —f(z1, 22, ,2,) is a strictly decreasing function. Fur-
thermore, 1/f(x1, 22, ,2,) is also a strictly decreasing function provided
that f is positive. Especially, the following are strictly decreasing functions,

f(ﬂf) = -7,

Theorem 2.16 (Liu [129]) Let 1,82, , &, be independent uncertain vari-

ables with regular uncertainty distributions ®1, ®o, - , ®,,, respectively. If f
is a strictly decreasing function, then the uncertain variable
§:f(£1>£27"’ ,En) (266)

has an inverse uncertainty distribution
Vi) = (@' (1 —a), @3 (1 —a),--, @, (1 - a)). (2.67)
Proof: For simplicity, we only prove the case n = 2. At first, we always have

<V )} ={f(&,&) < f(O7' (1 —a), @ (1 —a))}.
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On the one hand, since f is a strictly decreasing function, we obtain
e<vi@}o{a > (1-a)}n{e > (1-a)l

By using the independence of & and &», we get

ME<ST )} >M& > (1-a)}AM{E > (1-a)} =ara=a.

On the other hand, since f is a strictly decreasing function, we obtain
e<vi@yc{a > (1-a)}u{e> o' (1-a)l

By using the independence of &; and &», we get

ME ST Ha) <M& > (1-a)} VM{&E > @' (1-a)} =aVa =a.

It follows that M{¢ < ¥~(a)} = . That is, ¥~ is just the inverse uncer-
tainty distribution of £. The theorem is proved.

Exercise 2.14: Let £ be a positive uncertain variable with regular uncer-
tainty distribution ®. Show that the reciprocal 1/£ has an inverse uncertainty

distribution 1

U (a)= T a)

(2.68)

Exercise 2.15: Let £ be an uncertain variable with regular uncertainty
distribution ®. Show that exp(—¢) has an inverse uncertainty distribution

U l(a) =exp (—@_1(1 — a)) . (2.69)
Theorem 2.17 (Liu [129]) Let &1,&2, -+ , &, be independent uncertain vari-
ables with continuous uncertainty distributions ®1, ®o,--- , P, respectively.

If f is a strictly decreasing function, then the uncertain variable
g: f(€17£27"' 7£n) (270)

has an uncertainty distribution
U(z) = sup min (1 — ®;(z;)). (2.71)
flar,@2, on)=a 1SIST

Proof: For simplicity, we only prove the case n = 2. Since f is a strictly
decreasing function, it holds that

{fé)<at= | (@G@=z)n(&>)

f(z1,22)=2

Thus the uncertainty distribution is

V() =M{f(6, &) <z} =MS | @ za)n(&>a)
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Note that for each given number x, the event
U (&1 2 21) N (& = 22)
f(z1,22)=2

is just a polyrectangle. It follows from the polyrectangular theorem that
U(z) = ( sup) MA(& = 21) N (&2 > x2)}
f(x1,z2)=2

= sup M{& > AM{E > xo}

f(z1,z2)=2

= sup (1= Py(z1)) A (1= Pa(x2)).

flz1,22)=2
The theorem is proved.

Exercise 2.16: Let £ be an uncertain variable with continuous uncertainty
distribution ®, and let f be a strictly decreasing function. Show that f(§)
has an uncertainty distribution

U(z)=1-d(f'(z), VYreR (2.72)
Exercise 2.17: Let £ be an uncertain variable with continuous uncertainty

distribution ®, and let a and b be real numbers with a < 0. Show that a§ +b
has an uncertainty distribution

€T —

U(z)=1-& ( b) , VzeR (2.73)

a

Exercise 2.18: Let £ be a positive uncertain variable with continuous un-
certainty distribution ®. Show that 1/¢ has an uncertainty distribution

U(z)=1-® (;) ., Vx> 0. (2.74)

Exercise 2.19: Let £ be an uncertain variable with continuous uncertainty
distribution ®. Show that exp(—¢) has an uncertainty distribution

U(z) =1— ®(—In(x)), Vz>0. (2.75)

Strictly Monotone Function of Uncertain Variables

A real-valued function f(x1,x9,--- ,,) is said to be strictly monotone if it
is strictly increasing with respect to x1, s, -+ ,z,, and strictly decreasing
with respect to ym41, T2, -+, Ty, that is,

f(xh'" sy Ty Tm41," " 7:5774) é f(yh sYmoy Ym+1, "7 7yn) (276)
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whenever x; <y; fori =1,2,--- mand x; >y, fori=m+1,m+2,---,n,
and

f(xla"' yTmy Tm+41," " ,’l}n) < f(yla yYms Ym—+1, - ,yn) (277)
whenever xz; < y; fort =1,2,--- ymand z; >y, fori =m+1,m+2,--- n.

The following are strictly monotone functions,

f($17$2) =1 — T2,
flz1,@2) = 1 /20, x1,29 >0,

f($1,$2):$1/($1 +.’172), T,z > 0.

Note that both strictly increasing function and strictly decreasing function
are special cases of strictly monotone function.

Theorem 2.18 (Liu [129]) Let 1,82, , &, be independent uncertain vari-

ables with reqular uncertainty distributions ®1, ®o, -, @, respectively. If
the function f(x1, 22, - ,xn) is strictly increasing with respect to xq, g, - -,
Ty and strictly decreasing with respect t0 Ty+1, Tm+2, "+ , Tn, then the un-

certain variable
§:f(€17€27"' 7£TL) (278)

has an inverse uncertainty distribution
U Ha) = f(07 (@), 25 (), 2 1 (1 — @) 2 (1 - a)). (2.79)
Proof: We only prove the case of m = 1 and n = 2. At first, we always have
{e<v o)} = {[(&1.&) < F(P1 (), 257 (1 — @)}

On the one hand, since the function f(x1,x2) is strictly increasing with re-
spect to x1 and strictly decreasing with x5, we obtain

{e<v M} o{a<eri(@n{e>2'(1- o)
By using the independence of & and &», we get
ME<STHa)} > M{& <P () AM{E >0 (1-a)} =ana=a.

On the other hand, since the function f(x1,z2) is strictly increasing with
respect to 1 and strictly decreasing with x5, we obtain

{e<v @ c{a<er(@u{e =o' (1-a)}
By using the independence of & and &;, we get

MEST o)} MG <27 (@)} vM{&E 28 (1-a)} =aVa=a.
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It follows that M{¢ < ¥~1(a)} = a. That is, ¥~! is just the inverse uncer-
tainty distribution of £&. The theorem is proved.

Exercise 2.20: Let &; and &5 be independent uncertain variables with regu-
lar uncertainty distributions ®; and @5, respectively. Show that the inverse
uncertainty distribution of the difference & — &5 is

U Ha) =07 a) — 8,1 (1 — ). (2.80)

Exercise 2.21: Let & and & be independent and positive uncertain vari-
ables with regular uncertainty distributions ®; and ®,, respectively. Show
that the inverse uncertainty distribution of the quotient &; /&5 is

;' ()

U (a) = 20 —a) (2.81)

Exercise 2.22: Assume & and & are independent and positive uncer-
tain variables with regular uncertainty distributions ®; and ®5, respectively.
Show that the inverse uncertainty distribution of & /(&1 + &2) is

o) ' (a)

VO S )

(2.82)

Theorem 2.19 (Liu [129]) Let &1,&2,- -+ , &, be independent uncertain vari-

ables with continuous uncertainty distributions ®1, ®o, -, D, respectively.
If the function f(x1,2a, - ,2,) s strictly increasing with respect to x1, 2,
-, Ty, and strictly decreasing with respect t0 Tyyi1, T2, -+ , Ty, then the
uncertain variable

ng(é'lag%"’ ,gn) (283)

has an uncertainty distribution
U(x) = 3 in ®;(x; i 1—®;(x; . 2.84
0= o (e, i (- we). @8

Proof: For simplicity, we only prove the case of m = 1 and n = 2. Since
f(x1, o) is strictly increasing with respect to z; and strictly decreasing with
respect to o, it holds that

{f(&1,&) <z} = U (& <z1)N (& > x9).

flz1,22)=2

Thus the uncertainty distribution is

V() =M{f(6, &) <z} =MS  |J (@ <a)n(é>a)

f(z1,22)=2
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Note that for each given number x, the event

U (&1 <z1)N (&2 > 22)

f(z1,22)=2
is just a polyrectangle. It follows from the polyrectangular theorem that

V() sup M{(& <z)N(& >x9)}

f(z1,22)=2
= sup M{& <@ AM{E > zo}

f(z1,22)=2

= sup  Pi(z1) A (1= Pa(z2)).

f(z1,22)=2

The theorem is proved.

Exercise 2.23: Let & and & be independent uncertain variables with con-
tinuous uncertainty distributions ®; and P, respectively. Show that &; — &
has an uncertainty distribution

U(x) = sgg%(ﬂc +y) A (1= Da(y)) (2.85)

Exercise 2.24: Let & and & be independent and positive uncertain vari-
ables with continuous uncertainty distributions ®; and ®5, respectively. Show
that &; /€5 has an uncertainty distribution

U(z) = sup Dy (zy) A (1= @2(y)). (2.86)

Exercise 2.25: Let £ and & be independent and positive uncertain vari-
ables with continuous uncertainty distributions ®; and ®5, respectively. Show
that & /(&1 + &2) has an uncertainty distribution

U(x) = sup D1 (zy) A (1= o(y — zy)). (2.87)

Some Useful Theorems

In many cases, it is required to calculate M{f(&1,&a, - ,&,) < 0}. Perhaps
the first idea is to produce the uncertainty distribution ¥(x) of f(&1,&2, -+, &n)
by the operational law, and then the uncertain measure is just ¥(0). How-
ever, for convenience, we may use the following theorems.

Theorem 2.20 (Liu [128]) Let &1,&2,- -+ , &, be independent uncertain vari-
ables with reqular uncertainty distributions ®1,®o, -, ®,,, respectively. If
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f(&1, &2, -+, &) is strictly increasing with respect to €1,&a, -+, & and strictly

decreasing with respect to Emit1,Em+2,, En, then
M{f(&1,82,+ &) <0} (2.88)
18 just the root a of the equation
F@7H (@), @ (), L (1 - a), -, @ (1 - a)) = 0. (2.89)

Proof: It follows from Theorem 2.18 that f(&1,&2,- - ,&,) is an uncertain
variable whose inverse uncertainty distribution is

Vo) = f(@7 N (a), -, @50 (), @k (1= a), -, (1 = a)).

Since M{f(&1,&2,-+- ,&n) < 0} = ¥(0), it is the solution « of the equation
U~!(a) = 0. The theorem is proved.

Remark 2.3: Keep in mind that sometimes the equation (2.89) may not
have a root. In this case, if

f(@;l(a)’-..7<l) ( ) (I)ml-',-l( a)""’¢;1<1_a))<0 (2-90)
for all o, then we set the root o = 1; and if

f@7Ha), - @ (), @0 (1 —a), -, @, (1 - ) > 0 (2.91)
for all o, then we set the root a = 0.

Remark 2.4: Since f(&1,&2, -+ ,&) is strictly increasing with respect to
&1,&9, -+, & and strictly decreasing with respect to 41, &mt2, - 5 &n, the
function f(®; " (a), -+, @l (a), @, (1 — @), -+, @, (1 — a)) is a strictly
increasing function with respect to «. See Figure 2.14. Thus its root o may
be estimated by the bisection method:

Step 1. Set a=0,b=1and ¢ = (a +b)/2.

Step 2. If f(‘bl_l(c)v T (I)m ( ) (I)f_n+1(1 C)a t 7(1)771(1 _C)) <0, then set
a = c¢. Otherwise, set b = c.

Step 3. If |b — a| > ¢ (a predetermined precision), then set ¢ = (b —a)/2
and go to Step 2. Otherwise, output b as the root.

Theorem 2.21 (Liu [128]) Let 1,82, , &, be independent uncertain vari-
ables with reqular uncertainty distributions ®1,Po, -, @, respectively. If
f(&1, &, -+ &) is strictly increasing with respect to &1,&a, - -+, & and strictly
decreasing with respect to €1, Emt2, -, En, then

M{f (&, 825+ ,€n) > 0} (2.92)

18 just the root a of the equation

f@r'(l—a) - @ (1—a), @ (), @, () =0. (2.93)
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Figure 2.14: f(®7 (), -+, @, (), @, (1—a),-- @, (1 — )

Proof: It follows from Theorem 2.18 that f(&1,&a, - ,&,) is an uncertain
variable whose inverse uncertainty distribution is

Ul a) = f(@7 (@), @5 (@), @14 (1 —a), -, 07 (1 - a)).

Since M{f(&1,82,- -+ ;&) > 0} = 1—=U(0), it is the solution « of the equation
U~1(1 — a) = 0. The theorem is proved.

Remark 2.5: Keep in mind that sometimes the equation (2.93) may not
have a root. In this case, if

f(@;l(l - a)>' te aq)_l(l - O‘)?(I);@LI(O‘)W o ’q)_l(a)) <0 (2'94)

m n

for all o, then we set the root a = 0; and if
f((bl_l(l_a)v 7¢’;11( ) q):n+1( ) o 7(I);1(a))>0 (295)
for all o, then we set the root a = 1.

Remark 2.6: Since f(&1,&2, -+ ,&,) is strictly increasing with respect to
&,8&, -+, &y and strictly decreasing with respect to &41, Emt2, -+, €n, the
function f(®7'(1 —a), -, 2,11 — a), @, (a), -+, @, (a)) is a strictly
decreasing function with respect to . See Figure 2.15. Thus its root o may

be estimated by the bisection method:
Step 1. Set a=0,b=1and ¢ = (a+b)/2.
Step 2. If f(®7'(1—c), -, @, (1—¢), ®,.} 1 (c), -+, @5 (c)) > 0, then set

m n
a = c¢. Otherwise, set b = c.
Step 3. If |b — a| > ¢ (a predetermined precision), then set ¢ = (b — a)/2
and go to Step 2. Otherwise, output b as the root.

Theorem 2.22 Let &1,&s, -+ ,&, be independent uncertain variables with
regular uncertainty distributions @1, ®o,--- , D, respectively. If the func-
tion f(&1,&2, -+ ,&n) is strictly increasing with respect to £1,&a, -+ ,&m and
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Figure 2.15: f(®7*(1 — ), -, ®;' (1 — ), ‘I)mhq( )y @M (@)

strictly decreasing with respect to &mi1,Emt2, -, &n, then

MA{f(&, 6, ,6n) <0} > a (2.96)
if and only if
f(@fl(a),-~-,(1) ( ) (I)mlJrl( Oz),“-,fI)T_Ll(l—O())SO. (2'97)

Proof: It follows from Theorem 2.18 that the inverse uncertainty distribution

Off(flvf%"' 7571) is
U ) = f(@] ), D a), (I)ml-',—l( —a), 0T (1 - a).

Thus (2.96) holds if and only if ¥=1(a) < 0. The theorem is thus verified.

Boolean Function of Boolean Uncertain Variables

A function is said to be Boolean if it is a mapping from {0, 1}" to {0,1}. For
example,
f(ajl,(I}g,.Tg) =21 Vae Nzxs3 (298)

is a Boolean function. An uncertain variable is said to be Boolean if it
takes values either 0 or 1. For example, the following is a Boolean uncertain
variable,

1 with uncertain measure a
&= (2.99)

0 with uncertain measure 1 — a

where a is a number between 0 and 1. This subsection introduces an opera-
tional law for Boolean system.

Theorem 2.23 (Liu [129]) Assume &1,&2,- -+ ,&, are independent Boolean
uncertain variables, i.e.,

1 with uncertain measure a;
&= (2.100)

0 with uncertain measure 1 — a;
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fori=1,2,--- n. If f is a Boolean function (not necessarily monotone),
then &€ = f(&1,&a,- - , &) is a Boolean uncertain variable such that

sup min v;(xz;)
F(z1,m0, o, )=1 155N Ll
if sup min v;(z;) < 0.5
f(z1,m0, yon)=1 151510 A
Me=1}= 1 . (z:) (2.101)
- sup min v;(z;),
F(@1,22, zn)=0 1SS0 LA
Zf sup mln V(.’L') 2 0.5
fz1,m0, zn)=115E<0 e

where x; take values either 0 or 1, and v; are defined by

i fx; =1
vile) =9 Z.fx (2.102)
1—a;, ifx;=0

fori=1,2,---,n, respectively.

Proof: Let By, Ba,- -+, B, be nonempty subsets of {0,1}. In other words,
they take values of {0}, {1} or {0,1}. Write

A={e=1}, A°={=0}, A;={& € By}
for:=1,2,--- ,n. It is easy to verify that
Ay X Ag x -+ x A, = Aif and only if f(By, By, -, B,) = {1},

A1 X A2 X X An = A if and only if f(Bl,Bg, s 7Bn) = {0}

It follows from the product axiom that

sup min M{¢; € B;},
f(BhBZ""an):{l} l<isn { }

if sup min M{&; € B;} > 0.5

F(By,Bayos Bu)={1} 15050
M{E=1}=¢ 1- sup min M{¢; € B;}, (2.103)
f(B1,Bz,wr,Bn)={0} IS1Sn

if sup min M{¢, € B;} > 0.5
f(B1,Bs, ,By)={0} 1Si<n

0.5, otherwise.
Please note that
Vi(l) = M{& = 1}7 VZ‘(O) = M{gz = O}

for i = 1,2,--- ,n. The argument breaks down into four cases. Case 1:
Assume

sup min v;(x;) < 0.5.
flar,@o, - wn)=1 15150
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Then we have

sup min M{¢; € B;} =1— sup min v;(x;) > 0.5.
f(B1,Ba, - By)={0} LSisn Flanwa,eean)=1 1SIS0
It follows from (2.103) that
M{E=1} = sup min v;(x;).
f(@1,m0, o )=1 15150

Case 2: Assume

sup min v;(x;) > 0.5.
Flar,ma, wy)=1 1510

Then we have

sup min M{§;, € B;} =1— sup min v;(x;) > 0.5.
F(By By Bo)=1y 1Sisn T Farwa, an)=0 15050

It follows from (2.103) that
M{E=1}=1- sup min v;(x;).

fla,@2, - w,)=0 1SISR

Case 3: Assume

sup Hlin l/(l') = 0.5’
(1m0, yn)=1 15050 L
sup min v;(z;) = 0.5.

f(z1,22, ,20)=0 l<isn

Then we have

sup min M{¢; € B;} = 0.5,
f(By, By, Bn)={1} 1Sisn
sup min M{¢; € B;} = 0.5.

f(B1,Ba,,By)={0} 1Sisn
Tt follows from (2.103) that

M{E=1}=05=1— sup min v;(x;).

f(z1,22, ,2,)=0 1<i<n
Case 4: Assume
sup min v;(x;) = 0.5,
f(@1,@0,0 n)=1 15050 o
sup min v;(x;) < 0.5.
f(@1,m2, - @,)=0 1IN o
Then we have
sup min M{¢ € B;} =1— sup min v;(x;) > 0.5.
f(B1,Ba,- ,By)={1} 15i<n ! ! F(@1,m2, - yon)=0 15150 A
It follows from (2.103) that
M{E=1}=1- sup min v;(x;).
f(z1,22, ,2,)=0 1<i<n o

Hence the equation (2.101) is proved for the four cases.
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Theorem 2.24 Assume that &1,&s,--- , &, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
=4 1" ‘ (2.104)
0 with uncertain measure 1 — a;
fori=1,2,--- n. Then the minimum
=& NN N (2.105)
is a Boolean uncertain variable such that
M{E=1}=ar Nag A A ay, (2.106)
M{E=0t=(1—-a1)V(1l—aa)V---V(1—ay). (2.107)

Proof: Since £ is the minimum of Boolean uncertain variables, the corre-
sponding Boolean function is

fly,@e, - jxp) =21 A2 Ao - Ay (2.108)

Without loss of generality, we assume a1 > as > --+ > a,. Then we have

o 2,50 = g ) =0
i () = (1 — i (1 — as
o 2,00 = (=) i 0V (1= )

where v;(z;) are defined by (2.102) for ¢ = 1,2,--- ,n, respectively. When
an < 0.5, we have

sup min v;(x;) = a, < 0.5.
flar,a, - w,)=1 1SISN

It follows from Theorem 2.23 that

= 1 = 1 . S ) = .
M 4 f(arl,mj}-l-P,mn):l 121’1%1" vil@:) = an
When a,, > 0.5, we have
sup min v;(x;) = a, > 0.5.

F(@1,2, ) =1 1SISN

It follows from Theorem 2.23 that

M{E=1}=1- sup min v;(x;) =1— (1 —ay) = ay.
f(z1,m2, y2n)=0 1S9<70
Thus M{¢ = 1} is always a,, i.e., the minimum value of a;,as, -+ ,a,. Thus
the equation (2.106) is proved. The equation (2.107) may be verified by the
duality of uncertain measure.
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Theorem 2.25 Assume that &1,&9,--- , &, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
& = ‘ ‘ (2.109)
0 with uncertain measure 1 — a;
fori=1,2,--- n. Then the maximum
E=6VEV---VE, (2.110)
is a Boolean uncertain variable such that
M{E=1}=a1VaaV---Vay, (2.111)
M{E=0t=1Q—-a)A(1—ax)A---A(1—ay). (2.112)

Proof: Since £ is the maximum of Boolean uncertain variables, the corre-
sponding Boolean function is

flxy,@e, - jzp) =21 Vaa V- Va,. (2.113)

Without loss of generality, we assume a1 > as > --+ > a,. Then we have

in v;(2;) = a1 A min (a; V(1 —a
im0 = o1 A i (00 (1 =)

o
o, i) = i 0) =1 o

where v;(z;) are defined by (2.102) for ¢ = 1,2,--- ,n, respectively. When
ay > 0.5, we have

sup min v;(x;) > 0.5.
fl@1,22, an)=1 15150
It follows from Theorem 2.23 that
M{g=1}=1- sup min v;(z;) =1—(1—a1) = ay.

fl1,@2, z,)=0 15150

When a; < 0.5, we have

sup min v;(x;) = a; < 0.5.
Fa1,az, o, )=1 15050

It follows from Theorem 2.23 that

M{E=1} = sup min v;(x;) = a;.
f(@1,m0, 2 )=1 15950
Thus M{¢ = 1} is always a4, i.e., the maximum value of a;,as, - ,a,. Thus

the equation (2.111) is proved. The equation (2.112) may be verified by the
duality of uncertain measure.
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Theorem 2.26 Assume that £1,&s,--- ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
&= ) ) (2.114)
0 with uncertain measure 1 — a;
fori=1,2,--- . n. Then
€= fate ; (2.115)
0, f&+&+-+& <k
is a Boolean uncertain variable such that
M{{ =1} = k-max a1, az, -, ap) (2.116)
and
M{{ =0} =k-min[l —a;,1—ag, - ,1— ay] (2.117)

where k-max represents the kth largest value, and k-min represents the kth
smallest value.

Proof: This is the so-called k-out-of-n system. The corresponding Boolean
function is

1, ifei+a04+---+z, >k

. (2.118)
0, ifxy +axo+--+z, <k.

flxy, o, ,xn)={

Without loss of generality, we assume a3 > ay > --- > a,. Then we have

3 () — A 3 (1 —a
o S i) = o i (o 1)
sup min v;(x;) = (1 —ak) A min (a; V (1 —a;))

flar,@a, - wn)=0 LSISN k<i<n

where v;(z;) are defined by (2.102) for ¢ = 1,2,--- ,n, respectively. When
ar > 0.5, we have

sup min v;(x;) > 0.5.
f(z1,m0, - yn)=1 1SS0

It follows from Theorem 2.23 that

M{E=1}=1- sup min v;(x;) =1— (1 —ag) = ax.

f(@1,m2, - wn)=0 151N
When aj, < 0.5, we have

sup min v;(x;) = ax < 0.5.
f@1,@2, a,)=1 1510
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It follows from Theorem 2.23 that

M{E=1} = sup min v;(z;) = ag.
Fl@1,@a, on)=11515n
Thus M{¢ = 1} is always ag, i.e., the kth largest value of aj,as, - ,ay.

Thus the equation (2.116) is proved. The equation (2.117) may be verified
by the duality of uncertain measure.

Boolean System Calculator

Boolean System Calculator is a function in the Matlab Uncertainty Toolbox
(http://orsc.edu.cn/liu/resources.htm) for computing the uncertain measure
like

M{f(flag%"' 7£n):1}a M{f(glag%'” »gn)zo} (2119)

where &1,&5, -+ , &, are independent Boolean uncertain variables and f is a
Boolean function. For example, let &1, &2, &3 be independent Boolean uncer-
tain variables,
¢ { 1 with uncertain mesure 0.8
L=

0 with uncertain mesure 0.2,

1 with uncertain mesure 0.7
2T 0 with uncertain mesure 0.3,

¢ 1 with uncertain mesure 0.6
3 0 with uncertain mesure 0.4.

We also assume the Boolean function is

1, ifzi+x94+23=00r2
0, if:Cl—FCCQ—FIg:lOI‘?).

f(x17x27x3) = {
The Boolean System Calculator yields M{f(&1,&2,&3) =1} = 0.4.

2.5 Expected Value

Expected value is the average value of uncertain variable in the sense of
uncertain measure, and represents the size of uncertain variable.

Definition 2.15 (Liu [122]) Let & be an uncertain variable. Then the ex-
pected value of £ is defined by
“+o0 0
Bl = [ M¢>a}de— / M{¢ < 2}dz (2.120)
0 —oo

provided that at least one of the two integrals is finite.
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Theorem 2.27 (Liu [122]) Let & be an uncertain variable with uncertainty
distribution ®. Then

400 0
E[¢] = /0 (1 —®(x))dx — /_ O (x)dz. (2.121)

Proof: It follows from the measure inversion theorem that for almost all
numbers z, we have M{¢ > z} =1 — ®&(z) and M{{ < a2} = ®(x). By using
the definition of expected value operator, we obtain

+oo

Bl = [ (e > ahda - / M{€ < 2}da

:A+m(1—®(x))dx—/o ®(x)dz.

— 00

See Figure 2.16. The theorem is proved.

d(x)

1

Figure 2.16: E[§] = / (1 —®(x))dx — / ®(z)dz. Reprinted from Liu
0
[129].

Theorem 2.28 (Liu [129]) Let & be an uncertain variable with uncertainty
distribution ®. Then

“+o0
E[¢] = / xd®(x). (2.122)

— 00

Proof: It follows from the integration by parts and Theorem 2.27 that the
expected value is

+o0o 0
Ele] :/0 (1_q>(x))dx—/ (x)dz

— 00

:/(:OOxd(I)(x)—i—/o xd@(x)=/+ooxd@(x).

— 00 — 00
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—+oo

1
Figure 2.17: E[¢] = / xd®(z) = / & !(a)da. Reprinted from Liu
0

[129]. -

See Figure 2.17. The theorem is proved.

Remark 2.7: If the uncertainty distribution ®(x) has a derivative ¢(x),
then we immediately have

+o00o
Elg] = /_ 26(x)dz. (2.123)

However, it is inappropriate to regard ¢(x) as an uncertainty density function
because uncertain measure is not additive, i.e., generally speaking,

b
Ma <¢<b)£ / 6(x)da. (2.124)

Theorem 2.29 (Liu [129]) Let £ be an uncertain variable with regular un-
certainty distribution ®. Then

E[¢] = /O & Ha)da. (2.125)

Proof: Substituting ®(x) with « and = with ®~1(«), it follows from the
change of variables of integral and Theorem 2.28 that the expected value is

El¢] = /M rd®(z) = /01 & a)da.

See Figure 2.17. The theorem is proved.

Exercise 2.26: Show that the linear uncertain variable £ ~ £(a,b) has an

expected value
b
El¢] = a; . (2.126)
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Exercise 2.27: Show that the zigzag uncertain variable £ ~ Z(a,b,¢) has

an expected value
a+2b+c

E[¢] = 1 (2.127)
Exercise 2.28: Show that the normal uncertain variable £ ~ N (e, o) has

an expected value e, i.e.,
E[¢] =e. (2.128)

Exercise 2.29: Show that the lognormal uncertain variable £ ~ LOGN (e, o)
has an expected value

Bl — ov/3exp(e) csc(ov/3), if o < /3
= +00, ifo > 7r/\/§

This formula was first discovered by Dr. Zhongfeng Qin with the help of
Maple software, and was verified again by Dr. Kai Yao through a rigorous
mathematical derivation.

(2.129)

Exercise 2.30: Let £ be an uncertain variable with empirical uncertainty
distribution

0, ifx <z
i1 —og)(r — ) . )
d(z) = ai+(”1 i)( Z), ifr; <z <wzipq,1<i<n
Tit1 — T
1, if x>z,

where v1 < a9 < - <xpand 0 <oy <ag <--- <, <1. Show that

n—1
Ble) = @xl P <1 _ %—1;%> . (2.130)
1=2

Expected Value of Monotone Function of Uncertain Variables

Theorem 2.30 (Liu and Ha [147]) Assume &1,&2, - ,&, are independent
uncertain variables with regqular uncertainty distributions ®1, ®o, -+, Dy, Te-
spectively. If f(x1, @9, -+ ,xy) is strictly increasing with respect to x1, o, - -,
Ty and strictly decreasing with respect t0 Ty+1, Tm+2, "+ , Tn, then the un-
certain variable £ = f(&1,&2, -+ ,&n) has an expected value

1
Elf] = / F@7H @), d5k(a), @k (1 a), - 7 1(1 - a))da. (2131)

Proof: Since the function f(z1, a2, ,x,) is strictly increasing with respect
to x1, 29, - -,y and strictly decreasing with respect to z,, 41, Timt2, - , ZTn,
it follows from Theorem 2.18 that the inverse uncertainty distribution of ¢ is

Vo) = f(@7H(a), -, @50 (@), @ (1= a), -, (1 — a)).
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By using Theorem 2.29, we obtain (2.131). The theorem is proved.

Exercise 2.31: Let £ be an uncertain variable with regular uncertainty
distribution ®, and let f(z) be a strictly monotone (increasing or decreasing)
function. Show that

Bl ()] = / (@ (a))do (2.132)

Exercise 2.32: Let £ be an uncertain variable with uncertainty distribution
®, and let f(x) be a strictly monotone (increasing or decreasing) function.

Show that
—+oo

Blf(€)] = / f(2)dd(z). (2.133)

— 00

Exercise 2.33: Let £ and n be independent and positive uncertain variables
with regular uncertainty distributions ® and W, respectively. Show that

1
Elén) = /0 &)U a)da. (2.134)

Exercise 2.34: Let £ and n be independent and positive uncertain variables
with regular uncertainty distributions ® and V¥, respectively. Show that

E m = /01 mda. (2.135)

Exercise 2.35: Assume £ and 7 are independent and positive uncertain
variables with regular uncertainty distributions ® and W, respectively. Show

that
S B AR () .
ELM] _/0 (@) o (1—a) ™ (2.136)

Linearity of Expected Value Operator

Theorem 2.31 (Liu [129]) Let & and n be independent uncertain variables
with finite expected values. Then for any real numbers a and b, we have

Ela& + bn] = aE[¢] + bEn). (2.137)

Proof: Without loss of generality, suppose £ and 1 have regular uncertainty
distributions ® and V¥, respectively. Otherwise, we may give the uncertainty
distributions a small perturbation such that they become regular.

STEP 1: We first prove E[a&] = aE[¢]. If a = 0, then the equation holds
trivially. If @ > 0, then the inverse uncertainty distribution of a§ is

T (a)=a® (a).
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It follows from Theorem 2.29 that

1 1
Elag] :/ a® ! (a)da = a/ & a)da = aB[g].
0 0
If a < 0, then the inverse uncertainty distribution of a¢ is
T a)=a® (1 -a).

It follows from Theorem 2.29 that
1 1
Elag] = / a® (1 — a)da = a/ & Ha)da = aE[E].
0 0

Thus we always have E[af] = aE[¢].

STEP 2: We prove E[¢ + 1] = E[¢] + E[n]. The inverse uncertainty
distribution of the sum & + 7 is

T a)=d"a)+ T (a).

It follows from Theorem 2.29 that
1 1 1
E[¢+n] = / Tfl(oz)doz = / ‘Ifl(oz)da +/ \Iffl(oz)doz = E[¢] + E[n).
0 0 0

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1
and 2 that

Elag + bn] = Elaf] + E[bn] = aE[¢] + bE[n].
The theorem is proved.

Example 2.12: Generally speaking, the expected value operator is not
necessarily linear if the independence is not assumed. For example, take
(T, £, M) to be {71, 72,73} with M{~v1} = 0.7, M{y2} = 0.3 and M{3} = 0.2.
It follows from the extension theorem that M{~;,v2} = 0.8, M{v1,v3} = 0.7,
M{~2,73} = 0.3. Define two uncertain variables as follows,

1, ifyvy=m 0, ify=m
E()=4 0, ify=9 nH)=q 2, ify=27
2, if v =13, 3, ify=ns.

Note that £ and 7 are not independent, and their sum is

]-7 lf’Y:’Vl
E+m) =1 2, ify=7
5, ify=n1s.
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It is easy to verify that E[¢] = 0.9, E[n] = 0.8, and E[{ + 1] = 1.9. Thus we
have

E[§ +n] > E[¢] + En].

If the uncertain variables are defined by

0, ify=m 0, ify=m
E) =49 1, ify=2n n)=4q 3, ify=m%
27 lf’}/:"}/?,, 17 lf’}/:"}/?)
Then
07 lf’Y:’Yl
E+m) =15 4 fvy=1
37 lf’Y:’Y?)

It is easy to verify that E[¢] = 0.5, E[n] = 0.9, and E[§ + n] = 1.2. Thus we
have

E[§+n] < El¢] + Eln].

Comonotonic Functions of Uncertain Variable

Two real-valued functions f and g are said to be comonotonic if for any
numbers x and y, we always have

(f(z) = fy)(g(z) —g(y)) > 0. (2.138)

It is easy to verify that (i) any function is comonotonic with any positive
constant multiple of the function; (ii) any monotone increasing functions are
comonotonic with each other; and (iii) any monotone decreasing functions
are also comonotonic with each other.

Theorem 2.32 (Yang [240]) Let f and g be comonotonic functions. Then
for any uncertain variable £, we have

E[f(&) +9(©)] = E[f ()] + Elg()]- (2.139)

Proof: Without loss of generality, suppose f(§) and g(¢) have regular un-
certainty distributions ® and W, respectively. Otherwise, we may give the
uncertainty distributions a small perturbation such that they become regu-
lar. Since f and g are comonotonic functions, at least one of the following
relations is true,

{f(© <7 ()} c {g(&) < T ()},
{f(©) <27 (a)} > {g(&) < ¥ (a)}.
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On the one hand, we have
M{f(&) +9(8) < 2 Ha) + ¥~ (o)}
> M{(f(§) < 7)) N (9(§) < ¥ Ha))}
M{f(§) < @7 Ha)} A M{g(§) < ¥™H(a)}

=alNa=a.

On the other hand, we have
ML) +9(8) < @7 Ha) + ¥~ Ha)}
<M(F(9) < @7 (@) U (9(§) < ¥7Ha))}
=M{f() < 2 M)} v M{g(&) < T (a)}
=aVaoa=a.
It follows that
M{F(€) + 9(8) D7) + ¥~ (@)} =

holds for each .. That is, @ 1(a) + ¥ ~!(«) is the inverse uncertainty distri-
bution of f(§) + g(£). By using Theorem 2.29, we obtain

EL£(©) + 9(6)] = / (&1 (a) + T} ())da

/01 O a)da + /01 U (a)da
E[f(&)] + Elg(&)]-

The theorem is verified.

Exercise 2.36: Let ¢ be a positive uncertain variable. Show that Inz and
exp(x) are comonotonic functions on (0, +0c0), and

Eln¢ + exp(€)] = E[ln€] + Eexp(€)]. (2.140)

Exercise 2.37: Let & be a positive uncertain variable. Show that z,z?,
-, &™ are comonotonic functions on [0, +00), and

Ef¢+& 4+ =EE+ EE°]+---+ E[¢"]. (2.141)

Some Inequalities

Theorem 2.33 (Liu [122]) Let £ be an uncertain variable, and let f be a
nonnegative function. If f is even and increasing on [0,00), then for any
given number t > 0, we have

M{je| > 1) < E%f” (2.142)
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Proof: It is clear that M{|¢| > f~!(r)} is a monotone decreasing function
of r on [0,00). It follows from the nonnegativity of f(&) that

“+o00 “+ o0

E[f(€)] = A M{f(§) = a}dz = ; M{[¢] > f7H(z)}d

f(t) f(t)
-1 -1
> / M{El > £ (@)}de > / M{el > £ (1) }da

f(t)
- M{[¢] > t}dx = f(t) - M{|¢] > t}

which proves the inequality.

Theorem 2.34 (Liu [122], Markov Inequality) Let & be an uncertain vari-
able. Then for any given numbers t > 0 and p > 0, we have

wflel > 1) < R (2.143)

Proof: It is a special case of Theorem 2.33 when f(x) = |z|P.

Example 2.13: For any given positive number ¢, we define an uncertain
variable as follows,

- 0 with uncertain measure 1/2
| t with uncertain measure 1,/2.
Then E[¢P] =tP/2 and M{¢ >t} = 1/2 = E[¢P]/tP.

Theorem 2.35 (Liu [122], Holder’s Inequality) Let p and q be positive num-
bers with 1/p+1/q = 1, and let & and n be independent uncertain variables
with E[|€P] < oo and E[n]?] < co. Then we have

Ellgnl] < & ElEPI/ Ellnl4]- (2.144)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s.
Now we assume E[|£|P] > 0 and E[|n|9] > 0. It is easy to prove that the
function f(z,y) = ¢/xyy is a concave function on {(x,y) : © > 0,y > 0}.
Thus for any point (zg,yo) with g > 0 and yo > 0, there exist two real
numbers a and b such that

f(%y)—f(ﬂ?myo) Sa(x_x0)+b(y_y0)v VxZOvZJZO
Letting zo = E[|¢[F], yo = E|n|?], x = [{|" and y = |n|?, we have
FUER, ") = F(ELEPL Ellnl?]) < allgl” = E{E[P]) + b(Inl* = Elln|*]).
Taking the expected values on both sides, we obtain

E[f(E17, [nID] < FENEP], Ellnl*]).-
Hence the inequality (2.144) holds.
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Theorem 2.36 (Liu [122], Minkowski Inequality) Let p be a real number
with p > 1, and let & and n be independent uncertain variables with E[|£[P] <
oo and E[|nP] < co. Then we have

YElE +nl] < YE[EP] + /Ellnl)- (2.145)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s. Now
we assume F[|¢|P] > 0 and E[|n?] > 0. It is easy to prove that the function
f(z,y) = (Y/z + ¢/y)P is a concave function on {(z,y) : x > 0,y > 0}. Thus
for any point (xg,yo) with o > 0 and yo > 0, there exist two real numbers
a and b such that

f(@,y) = f(xo,y0) < alz —x0) + by —yo), Vo =0,y >0.
Letting @0 = B[I€l7], yo = Ellnl”], = = [¢]? and y = [n|?, we have
FUEP, [nl?) = FEEPL EllnlP]) < a([€]P = E[I€F]) + b(Inf” = E[[n|?]).
Taking the expected values on both sides, we obtain

E[f(EP, In[")) < FCETEF], Ellnl?])-

Hence the inequality (2.145) holds.

Theorem 2.37 (Liu [122], Jensen’s Inequality) Let & be an uncertain vari-
able, and let f be a conver function. If E[€] and E[f(£)] are finite, then

f(E[E]) < ELf(§)]- (2.146)
Especially, when f(x) = |z|P and p > 1, we have |E[€]|P < E[|¢]P].

Proof: Since f is a convex function, for each y, there exists a number k such
that f(xz)— f(y) > k- (x —y). Replacing « with £ and y with FE[£], we obtain

f(&) = FE[E]) = k- (& — E[E]).

Taking the expected values on both sides, we have

E[f(&)] — f(E[E]) 2 k- (E[§] — E[¢]) =0
which proves the inequality.

Exercise 2.38: (Zhang [268]) Let &1,&2,- - ,&, be independent uncertain
variables with finite expected values, and let f be a convex function. Show
that

f(EG] Eléa], -, El6a]) < EIf (61,82, , &)l (2.147)
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2.6 Variance

The variance of uncertain variable provides a degree of the spread of the
distribution around its expected value. A small value of variance indicates
that the uncertain variable is tightly concentrated around its expected value;
and a large value of variance indicates that the uncertain variable has a wide
spread around its expected value.

Definition 2.16 (Liu [122]) Let £ be an uncertain variable with finite ex-
pected value e. Then the variance of £ is

Vel = E[(€ —¢)?). (2.148)
This definition tells us that the variance is just the expected value of
(€ —e)?. Since (£ — €)? is a nonnegative uncertain variable, we also have

+o0o
V(¢ = M{(¢€ —€)* > z}da. (2.149)
0
Theorem 2.38 If & is an uncertain variable with finite expected value, a and
b are real numbers, then

V]a& +b] = a*V[¢]. (2.150)

Proof: Let e be the expected value of £&. Then a{ + b has an expected value
ae + b. It follows from the definition of variance that

Viaé +b] = E [(a& + b — (ae +b))*] = a®E[(¢ — €)*] = a®V[¢].
The theorem is thus verified.

Theorem 2.39 Let £ be an uncertain variable with expected value e. Then
V[E] = 0 if and only if M{¢ = e} = 1. That is, the uncertain variable £ is
essentially the constant e.

Proof: We first assume V[¢] = 0. It follows from the equation (2.149) that

o M{(¢ —e)® > a}dr =0
0

which implies M{(¢ — e)? > 2} = 0 for any = > 0. Hence we have
M{(E— e =0} = 1.

That is, M{¢{ = e} = 1. Conversely, assume M{¢ = e} = 1. Then we
immediately have M{(¢ — e)? = 0} = 1 and M{(¢ — e)? > x} = 0 for any

x > 0. Thus
“+o0

VIE] = | M{(§ —e)* > a}dz = 0.

The theorem is proved.
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Theorem 2.40 (Yao [254]) Let & and n be independent uncertain variables
whose variances exist. Then

VVIE+ 1] < VVIE+V V- (2.151)

Proof: It is a special case of Theorem 2.36 when p = 2 and the uncertain
variables ¢ and 7 are replaced with £ — E[¢] and n — E[n], respectively.

Theorem 2.41 (Liu [122], Chebyshev Inequality) Let & be an uncertain vari-
able whose variance exists. Then for any given number t > 0, we have

49

M{le - Ble)| 2 1} <

(2.152)

Proof: It is a special case of Theorem 2.33 when the uncertain variable ¢ is
replaced with & — E[¢], and f(z) = 2%

Example 2.14: For any given positive number ¢, we define an uncertain
variable as follows,

¢ = { —t with uncertain measure 1/2

t with uncertain measure 1/2.
Then V[¢] = t? and M{|¢ — E[¢]| > t} =1 = V[¢]/t2.

How to Obtain Variance from Uncertainty Distribution?

Let € be an uncertain variable with expected value e. If we only know its
uncertainty distribution ®, then the variance

+oo
Vid= | &= €)? > w}dz

—+oo

= M{(§>e+Va)U(€ <e—a)hde

0

+oo
< [tz e va) + M6 < e - Vi

+oo
= / (1—®(e+ )+ ®(e — Vr))dz.
0
Thus we have the following stipulation.

Stipulation 2.3 Let £ be an uncertain variable with uncertainty distribution
® and finite expected value e. Then

+oo
V[ = /0 (1—®(e+vz) + (e — V))du. (2.153)
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Theorem 2.42 Let £ be an uncertain variable with uncertainty distribution
® and finite expected value e. Then

+oo
Ve :/_ (z — ¢)2dd(x). (2.154)

Proof: This theorem is based on Stipulation 2.3 that says the variance of &
is

+oo +oo
Vi = / (1 - ®(e + 7))y + / B(e — y7)dy.

Substituting e + /y with 2 and y with (z — e)?, the change of variables and
integration by parts produce

+oo +oo oo
— (& = — i 117762: 33762 xZ).
/0 (1- ®(e + vi))dy / (1 - ®(@)d(z — ) / (x — ¢)*dd(x)

Similarly, substituting e — /y with  and y with (z — e)?, we obtain
+00 —00 €
/ Qe —/y)dy = / O(z)d(x —e)? = / (z — €)2d®(x).
0 e —o00
It follows that the variance is
—+oo e —+oo
Vg = / (z — e)?d®(z) + / (z —e)?dd(x) = / (r — e)?dd(x).

The theorem is verified.

Theorem 2.43 (Yao [254]) Let € be an uncertain variable with regular un-
certainty distribution ® and finite expected value e. Then

Vie] = /O (@ (a) — )2da. (2.155)

Proof: Substituting ®(x) with o and x with ®~1(a), it follows from the
change of variables of integral and Theorem 2.42 that the variance is

+o0 1
Vg = / (x —e)?d®(x) = /0 (@ () — e)?da.

— 00

The theorem is verified.

Exercise 2.39: Show that the linear uncertain variable & ~ L(a,b) has a
variance

Vel = : (2.156)

Exercise 2.40: Show that the normal uncertain variable £ ~ A(e, o) has a
variance

V[¢] = o2 (2.157)
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Theorem 2.44 (Yao [25/]) Assume &1,&a,- -+ , &, are independent uncertain

variables with regular uncertainty distributions ®1, ®o, - , D, respectively.
If f(z1,29, -+ ,xy,) is strictly increasing with respect to x1,%2, -, Tm and
strictly decreasing with respect t0 XTypy1,Tmt2, - ,Tn, then the uncertain
variable £ = f(&1,&2,- -+ ,&n) has a variance

1
Vel = [ (@7 @), 0310, 87411 = 0), 871 — ) —e)¥da
where e is the expected value of &.

Proof: Since the function f(x1, 3, -,y ) is strictly increasing with respect
to x1,x9, -,y and strictly decreasing with respect to Zp,41, T2, -+ 5 Tn,
the inverse uncertainty distribution of £ is

U a) = f(@7 (@), -, @ (), @0 (1 —a), -, @, (1 - a)).
It follows from Theorem 2.43 that the result holds.

Exercise 2.41: Let ¢ and 1 be independent uncertain variables with regular
uncertainty distributions ® and ¥, respectively. Assume there exist two real
numbers a and b such that

dHa)=aV t(a)+b (2.158)

for all & € (0,1). Show that

VVIE+ = VVIE+ Vi (2.159)

in the sense of Stipulation 2.3.

Remark 2.8: If £ and 7 are independent linear uncertain variables, then the
condition (2.158) is met. If they are independent normal uncertain variables,
then the condition (2.158) is also met.

2.7 Moment

Definition 2.17 (Liu [122]) Let £ be an uncertain variable and let k be a
positive integer. Then E[¢¥] is called the k-th moment of €.

Theorem 2.45 Let & be an uncertain variable with uncertainty distribution
D, and let k be an odd number. Then the k-th moment of & is

E[¢M = /O+OO(1 —@(W))dx—/ (Y/x)da. (2.160)

— 00
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Proof: Since k is an odd number, it follows from the definition of expected
value operator that

+oo 0
E[¢¥] = M{eF > z}dax — / M{eF < zldx
0 —o0

+oo

0
— [ e > Yayde - / M{e < Yalda
0 —00

:/O+w(1—¢(¢/5))dx—/o ({/7)dz.

—o0
The theorem is proved.

However, when k is an even number, the k-th moment of £ cannot be
uniquely determined by the uncertainty distribution ®. In this case, we have

Bt = [ e > oy

+oo

= [ aliez vm UL < - Ve
+o0
< /O (M{e > ¥/} + M{e < — a})de

+oo
= / (1 —®(¥x) + &(—/x))dz.
0
Thus for the even number k, we have the following stipulation.

Stipulation 2.4 Let £ be an uncertain variable with uncertainty distribution
D, and let k be an even number. Then the k-th moment of £ is

+oo
Bleh = / (1 - B(4/a) + B(— ¥))d. (2.161)

Theorem 2.46 Let & be an uncertain variable with uncertainty distribution
D, and let k be a positive integer. Then the k-th moment of £ is

E[¢F] = /m 2 dd (). (2.162)

Proof: When £ is an odd number, Theorem 2.45 says that the k-th moment

1S
0

—+00
Bleh = / (1 - &(/7)dy - / D(/)dy.

— 00
Substituting ¢/ with x and y with x¥ . the change of variables and integration
by parts produce

+oo +oo Foo
— Y = — ®(z))dz* = z* T
/0 (1= 2(¥y))dy /0 (1—&(x))d /0 dd(z)
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and

/0 @(w)dy_/o @(x)dzk_—/o zFdd(z).

Thus we have
+o0 0 +oo
EleM = / 2R (z) + / 2Edd(x) = / 2R (z).
0 oo oo

When £ is an even number, the theorem is based on Stipulation 2.4 that says
the k-th moment is

+oo
Bl*) = / (1= () + O(— ¥7))dy.

Substituting {/% with x and y with x*, the change of variables and integration
by parts produce

“+o00 +oo +o0
— k = — €T (L’k: J?k xZ).
/0 (1 - ®(4/7))dy / (1 - ®(x))d / ad(z)

Similarly, substituting — {/y with x and y with x¥. we obtain

/Om @(—W)dy:/o @(x)dxk:/_oooxkdtb(x).

— 00

It follows that the k-th moment is

E[£¥] :/()+Ooxkd<1>(x)+/0 xkdtb(x):/+ooxkd<1>(x).

— 00 — 00

The theorem is thus verified for any positive integer k.

Theorem 2.47 (Sheng and Kar [213]) Let & be an uncertain variable with
regular uncertainty distribution ®, and let k be a positive integer. Then the
k-th moment of & is

ElM = /O (@ Ya))*da. (2.163)

Proof: Substituting ®(x) with  and = with ®~1(«), it follows from the
change of variables of integral and Theorem 2.46 that the k-th moment is

+oo 1
B¢t = / 2Fdd(z) = /0 (@~ (a))*da

— 00

The theorem is verified.

Exercise 2.42: Show that the second moment of linear uncertain variable
&~ L(a,b) is
a’®+ab+ b2

Bl = 8

(2.164)
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Exercise 2.43: Show that the second moment of normal uncertain variable
E~N(eo)is
E[¢%] = €% + o2 (2.165)

Theorem 2.48 (Sheng and Kar [213]) Assume &1,&a, -+ ,&, are indepen-
dent uncertain variables with regular uncertainty distributions ®1, Po, -+ , D,
respectively, and k is a positive integer. If f(xy,x9, -+ ,xy) is strictly in-
creasing with respect to x1,xa, -+, Tm and strictly decreasing with respect to
Tont1y Tmt2, T, then the k-th moment of £ = f(&1,&2,- -+ ,&n) is

1
E[&’“]:/O FH@T @), @n (@), @5 L, (1 - a), -, @71 (1 - a))da.

Proof: Since the function f(z1,xa, - ,x,) is strictly increasing with respect
to x1, 29, - , Ty, and strictly decreasing with respect to z,, 41, T2, -, Zn,
the inverse uncertainty distribution of £ is

U a) = f(@7(a), -, @5 (@), 2L, (1 —a), -, 1 (1 — a)).

It follows from Theorem 2.47 that the result holds.

2.8 Entropy

This section provides a definition of entropy to characterize the uncertainty
of uncertain variables.

Definition 2.18 (Liu [125]) Suppose that & is an uncertain variable with
uncertainty distribution ®. Then its entropy is defined by

+oo
Hg) = / S(®(z))da (2.166)

— 00

where S(t) = —tlnt — (1 —¢) In(1 — ¢).

Example 2.15: Let £ be an uncertain variable with uncertainty distribution

0, ifx<a
O(x) = . (2.167)
1, ifz>a.

Essentially, £ is a constant a. It follows from the definition of entropy that

a +o0
H[g]:—/ (Oan—l—llnl)dx—/ (1ln1+0In0)dz = 0.

— 00

This means a constant has no uncertainty.
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t

0 0.5 1

Figure 2.18: Function S(t) = —tInt — (1 — ¢)In(1 — ¢). It is easy to verify
that S(t) is a symmetric function about ¢ = 0.5, strictly increasing on the
interval [0,0.5], strictly decreasing on the interval [0.5,1], and reaches its
unique maximum In 2 at ¢ = 0.5. Reprinted from Liu [129].

Example 2.16: Let £ be a linear uncertain variable £(a, b). Then its entropy
is

r—a. T—a b—xz b—=z b—a

b
H[ﬂ:_/a (b—alnb—a+b—alnb—a>dx_ 2 (2.168)

Exercise 2.44: Show that the zigzag uncertain variable £ ~ Z(a,b,c) has
an entropy

HMZC;G. (2.169)

Exercise 2.45: Show that the normal uncertain variable & ~ N(e, o) has

an entropy
o

7
Theorem 2.49 Let £ be an uncertain variable. Then H[€] > 0 and equality
holds if € is essentially a constant.

H[{] = (2.170)

Proof: The nonnegativity is clear. In addition, when an uncertain variable
tends to a constant, its entropy tends to the minimum 0.

Theorem 2.50 Let £ be an uncertain variable taking values on the interval
[a,b]. Then
H[(]<(b—a)ln2 (2.171)

and equality holds if & has an uncertainty distribution ®(x) = 0.5 on [a,b].

Proof: The theorem follows from the fact that the function S(¢) reaches its
maximum In2 at ¢t = 0.5.
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Theorem 2.51 Let £ be an uncertain variable, and let ¢ be a real number.
Then

H[¢+ ] = H[E. (2.172)
That s, the entropy is invariant under arbitrary translations.
Proof: Write the uncertainty distribution of £ by ®. Then the uncertain

variable £ 4 ¢ has an uncertainty distribution ®(z — ¢). It follows from the
definition of entropy that

+oo +oo
HIE+d] = /_ S (®(x — o)) do = /_ S(®(x))dz = HIE].
The theorem is proved.

Theorem 2.52 (Dai and Chen [27]) Let & be an uncertain variable with
reqular uncertainty distribution ®. Then

Hig] :/0 7 (a)In - a

—

da. (2.173)

Proof: It is clear that S(«) is a derivable function with S’(a) = —Inea/(1 —

«). Since
1

P(x)
S(®(x)) = /0 S (a)da = — S'(a)da

(x)
we have

+<>o <I>(:c) 4oo  pl
HI¢] :/ ))dz —/ / a)dadz —/ S'(a)dadz.
—0 0 P(x)

It follows from Fubini theorem that

/<I>(0)/ l(a) dxda—[b(o)/ a)dzda
:_/:)(0 ()8 ( )da—[m) H@)S' (@)da

- _/01<1)_1(a)5’(a)da — /Olqu(a) n % da.

The theorem is verified.

Theorem 2.53 (Dai and Chen [27]) Let &1,&a, - -+ , &, be independent uncer-
tain variables with regular uncertainty distributions ®1, @, --- , P, respec-
tively. If f(x1, 22, ,xn) is strictly increasing with respect to T1, X2, , Tm
and strictly decreasing with respect t0 Tyy41, T2, , Tn, then the uncertain
variable £ = f(&1,&2,- -+ ,&€,) has an entropy

do.

1 [0}
= [ £@T ) Bl @), (1=a) 8 (=) g
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Proof: Since f(x1,x2, - , 2, ) is strictly increasing with respect to x1, o, - - -,
X, and strictly decreasing with respect to 11, T2, - 5 Tn, it follows from
Theorem 2.18 that the inverse uncertainty distribution of £ is

Vo) = f(@7H(a), -, @50 (@), @k (1= a), -, 8N (1 — a)).
By using Theorem 2.52, we get the entropy formula.

Exercise 2.46: Let £ and 7 be independent and positive uncertain variables
with regular uncertainty distributions ® and W, respectively. Show that

do.

mign] = [ 7 (@)% (@) n 2

Exercise 2.47: Let £ and 1 be independent and positive uncertain variables
with regular uncertainty distributions ® and W, respectively. Show that

][ et

Exercise 2.48: Let £ and 7 be independent and positive uncertain variables
with regular uncertainty distributions ® and ¥, respectively. Show that

¢ /1 ) o
g = 1 da.
[Sﬂz 0 @@+ VI I—a) 1-a""
Theorem 2.54 (Dai and Chen [27]) Let & and n be independent uncertain
variables. Then for any real numbers a and b, we have

Hla& + bn] = |a|H[¢] + |b|H n). (2.174)

Proof: Without loss of generality, suppose ¢ and n have regular uncertainty
distributions ® and ¥, respectively. Otherwise, we may give the uncertainty
distributions a small perturbation such that they become regular.

STEP 1: We prove H[a&] = |a|H[£]. If @ > 0, then the inverse uncertainty
distribution of a¢ is
T a)=a® (a).

It follows from Theorem 2.52 that

[0 «

1
da = a/ d ! (a)ln 1

S 0 ©da = |a|H[¢).

1
Hlaé] :/0 a® (a)ln

If a = 0, then we immediately have H[a&] = 0 = |a|H[¢]. If a < 0, then the
inverse uncertainty distribution of a§ is

T a)=a® (1 -a).
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It follows from Theorem 2.52 that

(0% (0%

1
da :(—a)/o d Ha)ln 1 da = |a|H[E].

Thus we always have H[a&] = |a|H[¢].

STEP 2: We prove H[ + 1] = H[§] + H[n]. Note that the inverse uncer-
tainty distribution of & + 7 is

1
Hla&] :/0 a® (1 —a)ln 1

— —

T a)=d"a)+ T a).
It follows from Theorem 2.52 that

(07

i+ = [ (@7(@)+ ¥ (@) In 2 da = I + H

—

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1
and 2 that

Hlag +bn] = Hlag] + H{bn] = [a| H[¢] + [b|H [n].

The theorem is proved.

Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible uncertainty distributions. Which uncertainty
distribution shall we take? The mazimum entropy principle attempts to
select the uncertainty distribution that has maximum entropy and satisfies
the prescribed constraints.

Theorem 2.55 (Chen and Dai [15]) Let £ be an uncertain variable whose

uncertainty distribution is arbitrary but the expected value e and variance o2.

Then

HI¢] (2.175)

<™
V3

and the equality holds if £ is a normal uncertain variable N (e, o).

Proof: Let ®(x) be the uncertainty distribution of ¢ and write ¥(z) =
®(2¢ — z) for x > e. It follows from the stipulation (2.3) and the change of
variable of integral that the variance is

+o0 +oo
1413 :2/ (m—e)(l—@(m))dx+2/ (z —e)¥(z)dz = 2.

Thus there exists a real number x such that

+oo
2/ (z —e)(1 — ®(x))dx = ro?,
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+oo
2/ (z —e)¥(z)dr = (1 — K)o>.

The maximum entropy distribution ® should maximize the entropy

+oo +oo +oo
H[g]:/ S(@(m))dm:/ S((b(m))dx+/ S(¥(z))dx

— 00

subject to the above two constraints. The Lagrangian is
+oo +oo
L :/ S(@(x))dx+/ S(U(x))dx
+oo
—« (2/ (x —e)(1 — P(x))dx — HJO'2>

-8B (2 /:o"(a: —e)¥(z)dz — (1 - K)02> .

The maximum entropy distribution meets Euler-Lagrange equations
In®(z) — In(l — &(x)) = 2a(z — e),
In¥(z) —In(l—¥(x)) =28(e —x).
Thus ® and ¥ have the forms
®(x) = (1 + exp(2ale — 2))) 7 F,

U(2) = (1+ exp(28(z — €))) ™

Substituting them into the variance constraints, we get

o0 (1 (=),

-1
m(x —e)
Ux)=|14exp | ———= .
(@) < ( 6(1 — n)a))

Then the entropy is
oK N mov1—k

V6 V6
which achieves the maximum when x« = 1/2. Thus the maximum entropy
distribution is just the normal uncertainty distribution A (e, o).

H[¢ =
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2.9 Distance

Definition 2.19 (Liu [122]) The distance between uncertain variables & and
1 is defined as

d(&,m) = E[|§ —nl]. (2.176)

That is, the distance between £ and 7 is just the expected value of |£ —n].
Since |£ — 1| is a nonnegative uncertain variable, we always have

+oo
di&m = | Ml —nf = wida. (2.177)

Theorem 2.56 Let £,7,7 be uncertain variables, and let d(-,-) be the dis-
tance. Then we have

(a) (Nonnegativity) d(¢,n) > 0;

(b) (Identification) d(&,n) = 0 if and only if £ = n;

(¢) (Symmetry) d(&,n) = d(n,§);

(d) (Triangle Inequality) d(&,n) < 2d(&,7) + 2d(n, 7).

Proof: The parts (a), (b) and (c) follow immediately from the definition.
Now we prove the part (d). It follows from the subadditivity axiom that
+oo
d(&,n) = MLE —nl =} de
0

“+o0
< M{E =7+ |7 —nl >z} da
0

+oo
< [ M=l = 2/ Ul ] > 2/2)} do

“+o0
< / (OM{J€ = 7] > 2/2} + M{|7 — 5] > 2/2}) do
= B¢ — 7] + 2E[7 — ] = 2d(£, 7) + 2d(r. 7).

Example 2.17: Let I' = {v1,72,73}. Define M{0} = 0, M{T'} = 1 and
M{A} = 1/2 for any subset A (excluding () and I"). We set uncertain variables
&, n and 7 as follows,

L, ify=m 0, ify=m
) =9 1 ify=2% nH)=q -1 ify=7 7(y)=0.
07 1f’7:’73> _17 lf’Y:’Y&

It is easy to verify that d(&,7) = d(7,n) = 1/2 and d(§,n) = 3/2. Thus

(€ m) = S((E7) + d(r ).

A conjecture is d(&,n) < 1.5(d(§, 7)+d(7,n)) for arbitrary uncertain variables
&, n and 7. This is an open problem.
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How to Obtain Distance from Uncertainty Distributions?

Let £ and n be independent uncertain variables. If £ — 7 has an uncertainty
distribution Y, then the distance is

+oo
d(&,m) = ; M —n| > r}dx
+oo

=, M{E-n=2)U(—n< —x)}de

+oo
s/o (M{E = > 2} +M{ —n < —2})da

+oo
= / (1="(x) +YT(—x))dz.
0
Thus we have the following stipulation.

Stipulation 2.5 Let £ and n be independent uncertain variables, and let T
be the uncertainty distribution of &€ —n. Then the distance between £ and 1 is

+oo
(€, n) :/0 (1—Y(2)+Y(—2))da. (2.178)

Theorem 2.57 Let & and n be independent uncertain variables with reqular
uncertainty distributions ® and V, respectively. Then the distance between &
and n is

1
d(e, ) :/ 1 (a) - TL(1 — a)|da. (2.179)

0
Proof: Assume £ — n has an uncertainty distribution Y. Substituting Y (x)

with o and x with T~!(«a), the change of variables and integration by parts
produce

+o0 1 1
/ (1 T(z))dz = / (1-a)dr @)= [ T '(a)da
0 Y(0) T(0)
Similarly, substituting Y (—x) with a and x with —T~!(«), we obtain
/ Y(—z)dx = / ad(=T"Ha)) = —/ T (a)da.
0 1(0) 0
Based on the stipulation (2.178), we have
1 1(0) 1
d(&,m) = / T a)da — / T (a)da = / T (a)|da.
1(0) 0 0

Since Y~}(a) = @7 (a) — ¥71(1 — a), we immediately obtain the result.
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2.10 Conditional Uncertainty Distribution

Definition 2.20 (Liu [122]) The conditional uncertainty distribution ® of
an uncertain variable £ given B is defined by

(x| B) = M{¢ < z|B} (2.180)
provided that M{B} > 0.

Theorem 2.58 (Liu [129]) Let & be an uncertain variable with uncertainty
distribution ®(z), and let t be a real number with ®(t) < 1. Then the condi-
tional uncertainty distribution of € given & >t is

0, if ®(x) < (1)
o(x) .
B(z|(t,+00)) ={ T—d() " 0.5, if D(t) < P(x) < (1+D(t))/2
O(x) —2(t)
o ¥ (1+@(t))/2 < ().

Proof: It follows from ®(z|(t, +00)) = M{& < z|¢ > ¢} and the definition of
conditional uncertainty that

ME=a)n(E>t)}  ME=x)n(E>1)}

M{§>t} ) 1 M{£>t} <05
®(a|(t, +00)) =, - M(E>2) N>} ME>2)NE>)} .
M >t} ’ M{¢ >t} :
0.5, otherwise.

When ®(z) < ®(t), we have z < ¢, and
ME<zx)n(E>}  M{0}

MESt 1-e@n 0
Hhos M{E<a)n(E>1
O(x|(t, +00)) = {(53%{12 S fi >0k,

When ®(t) < ®(z) < (1 + ®(t))/2, we have z > ¢, and
M{E>z)n(E>t)} 1—(x) S 1= (1+@(t))/2

M{¢ > t} S 1-9() 1—®(t) =05
and
M{E<D)N(E>D) _ D)
M{¢ > t} ~1-9(t)
It follows from the maximum uncertainty principle that
B (al(t, +00) = — )7 g5,

11— ®(1)
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When (14 ®(t))/2 < ®&(x), we have > ¢, and

ME>x)N(E>0)}  1-2(x) _1-(1+2())/2
D U T O

Thus

M{¢ >t} B 1—-@()  1-o(@)

D(al(t o)) =1 - WE>DNE >0} ) 1-0@) _ DMa)— )

The theorem is proved.

Exercise 2.49: Let £ be a linear uncertain variable £(a, b), and let ¢ be a real
number with a < t < b. Show that the conditional uncertainty distribution
of £ given £ >t is

r—a .
B(|(t,+00)) =4 p_g NOP Ht<az<(b+1)/2
—t
i_tM, if (b+1t)/2 <.

Figure 2.19: Conditional Uncertainty Distribution ®(z|(t, 4+00))

Theorem 2.59 (Liu [129]) Let & be an uncertain variable with uncertainty
distribution ®(x), and let t be a real number with ®(t) > 0. Then the condi-
tional uncertainty distribution of & given & <t is

D(x) .
20" if @(x) < ©(t)/2
O(z|(—00,1]) = ¢ P(z) + (I))(t) “ o5, i a()/2 < d) < )

ot
1, if B(t) < D(x).
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Proof: It follows from ®(z|(—o0,t]) = M {¢ < x| <t} and the definition of
conditional uncertainty that

ME=)nE=t)}  ME=2)N(E<1)}

Me<e 0 0 e 0P
O(z|(—o0,t]) = ME>2)n(E<)) ME>2)N(E<t)}
1-— ME< 1) , if M{E<t) < 0.5
0.5, otherwise.

When ®(z) < ®(t)/2, we have z < t, and

ME<nnE<nt ) _ 20)/2 o

ME <t} S0 T oe(t)

Thus

CM{E<anE<y) )
Yoot =" e <y T B

When ®(t)/2 < &(x) < ®(t), we have x < t, and

ME=o)nE<t)y o) 8(t)/2

MEe<t) o) - b
and
M{(E > @) N (€<} _ 1-9()
ME<t = a0

ME>x)n(E<t)}  ®(x) + () —1
Mg <t} - (1)

It follows from the maximum uncertainty principle that

1—

O(x)+P(t) — 1

O(z|(—o0,t]) = 0 v 0.5.
When ®(t) < &(x), we have z > t, and
ME> nE<H) M0 o

M <t} o(t)

Thus
=1-0=1.

o ME>r)nE<t)}
‘I)(x‘(_oovﬂ)_l_ M{fgt}

The theorem is proved.

Exercise 2.50: Let £ be a linear uncertain variable £(a, b), and let ¢ be a real
number with a < t < b. Show that the conditional uncertainty distribution
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of € given € <t is

j:Z\/O, ifx<(a+t)/2
®(x|(—00,t]) = (1—i:z)vo.5, if (a+t)/2<z<t
1, if x >t
®(z|(—o0,t])
1 | /
,

Figure 2.20: Conditional Uncertainty Distribution ®(z|(—o0,t])

2.11 Uncertain Sequence

Uncertain sequence is a sequence of uncertain variables indexed by integers.
This section introduces four convergence concepts of uncertain sequence: con-
vergence almost surely (a.s.), convergence in measure, convergence in mean,
and convergence in distribution.

Table 2.1: Relationship among Convergence Concepts

Convergence Convergence Convergence
=

in Mean in Measure in Distribution

Convergence Almost Surely

Definition 2.21 (Liu [122]) The uncertain sequence {&;} is said to be con-
vergent a.s. to & if there exists an event A with M{A} = 1 such that

Jim [&6(7) =€) =0 (2.181)
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for every v € A. In that case we write & — &, a.s.

Definition 2.22 (Liu [122]) The uncertain sequence {&;} is said to be con-
vergent in measure to £ if

lim M {J& — €] > e} =0 (2.182)
1—> 00
for every e > 0.

Definition 2.23 (Liu [122]) The uncertain sequence {&;} is said to be con-
vergent in mean to & if
lim E[|¢; — €[] = 0. (2.183)
71— 00

Definition 2.24 (Liu [122]) Let ®,®q, Dy, -+ be the uncertainty distribu-
tions of uncertain variables &,&1,&2, - -+, respectively. We say the uncertain
sequence {&;} converges in distribution to £ if

lim ®;(z) = ®(z) (2.184)

i—00

for all x at which ®(x) is continuous.

Convergence in Mean vs. Convergence in Measure

Theorem 2.60 (Liu [122]) If the uncertain sequence {&;} converges in mean
to &, then {&;} converges in measure to &.

Proof: It follows from the Markov inequality that for any given number
e > 0, we have

Blg-€

M{l& =€ > e} < .

as i — oo. Thus {;} converges in measure to £. The theorem is proved.

Example 2.18: Convergence in measure does not imply convergence in
mean. Take an uncertainty space (I', £, M) to be {v1,72, -} with

sup 1/, if sup 1/i < 0.5

YiEA YiEA
M{A}=4¢ 1—supl/i, if sup 1/i <0.5
Vi EA vi €A
0.5, otherwise.

The uncertain variables are defined by

., =3
é‘l('yj):{ 2 I 7 2

0, otherwise
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fort=1,2,--- and £ = 0. For some small number ¢ > 0, we have

MU&:*SIZs}:M{|§i7§|25}:%%O

as © — oo. That is, the sequence {&;} converges in measure to £. However,
for each i, we have

Ell& — ¢l = 1.

That is, the sequence {&;} does not converge in mean to &.

Convergence in Measure vs. Convergence in Distribution

Theorem 2.61 (Liu [122]) If the uncertain sequence {&;} converges in mea-
sure to &, then {&;} converges in distribution to §.

Proof: Let x be a given continuity point of the uncertainty distribution .
On the one hand, for any y > x, we have

{G<a}={& <z e<ytu{&a<z.{>ytc{E<ytu{l&—¢& >y —=}

It follows from the subadditivity axiom that
Pi(z) < @(y) + M{|& — & =y — =}

Since {¢;} converges in measure to &, we have M{|§; —&| >y —z} — 0 as
i — 0o. Thus we obtain limsup,_, . ®;(x) < ®(y) for any y > z. Letting
Yy — x, we get

lim sup ®;(z) < ®(z). (2.185)

On the other hand, for any ;ZO;, we have
(< ={G<u<ztu{é>n <z c{a<atu{ls—¢lza—2}
which implies that
(z) < () + M{[& — & >z — 2}
Since M{|¢; — €| > « — z} — 0, we obtain ®(z) < liminf; , ®;(x) for any
z < x. Letting z — x, we get

®(z) < liminf ®;(x). (2.186)

1—00

It follows from (2.185) and (2.186) that ®,(x) — ®(x) as ¢ — oo. The
theorem is proved.

Example 2.19: Convergence in distribution does not imply convergence in
measure. Take an uncertainty space (T', £, M) to be {v1,72} with M{y} =
M{~y2} = 1/2. We define an uncertain variable as

-1, 1f7:71
E(v) = e
1, ify=ns.
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We also define &; = —¢ for ¢ = 1,2,--- Then ; and ¢ have the same chance
distribution. Thus {;} converges in distribution to £. However, for some
small number € > 0, we have

M{|& =&l > e =M{|& — €l > e} = 1.

That is, the sequence {¢;} does not converge in measure to &.

Convergence Almost Surely vs. Convergence in Measure

Example 2.20: Convergence a.s. does not imply convergence in measure.
Take an uncertainty space (I', £, M) to be {71,792, - } with

supi/(2i+1), if supi/(2i+1)<0.5

YiEA YiEA
M{A}=<¢ 1—supi/(2i+1), if supi/(2¢+1)<0.5
v €A Vi EA
0.5, otherwise.

Then we define uncertain variables as

i
mm{l nI

0, otherwise

for i =1,2,--- and £ = 0. The sequence {;} converges a.s. to £&. However,
for some small number ¢ > 0, we have
) 1

M{\Ei—ﬂZE}ZM{|€i—§|Z€}=m—>§

as ¢ — oo. That is, the sequence {&;} does not converge in measure to .

Example 2.21: Convergence in measure does not imply convergence a.s.
Take an uncertainty space (I',£,M) to be [0,1] with Borel algebra and
Lebesgue measure. For any positive integer 4, there is an integer j such
that i = 27 + k, where k is an integer between 0 and 2/ — 1. Then we define
uncertain variables as

1, ifk/29 <~y<(k+1)/27
&i(v) = .
0, otherwise

fort=1,2,--- and £ = 0. For some small number ¢ > 0, we have

Ml — € 2 e} = M{le — € 2} = 55 0

as i — oco. That is, the sequence {§;} converges in measure to {. However, for
any 7 € [0,1], there is an infinite number of intervals of the form [k/27, (k +
1)/27] containing . Thus &;(7) does not converge to 0. In other words, the
sequence {&;} does not converge a.s. to £.
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Convergence Almost Surely vs. Convergence in Mean

Example 2.22: Convergence a.s. does not imply convergence in mean. Take
an uncertainty space (I', £, M) to be {71,732, -} with
1
M{A} = 2

2"
YiEA

The uncertain variables are defined by

21’, .f.:.
&m){ nI

0, otherwise

fori=1,2,--- and £ = 0. Then &; converges a.s. to £. However, the sequence
{&} does not converge in mean to £ because F[|§; — &|] = 1 for each i.

Example 2.23: Convergence in mean does not imply convergence a.s. Take
an uncertainty space (I', £, M) to be [0,1] with Borel algebra and Lebesgue
measure. For any positive integer i, there is an integer j such that i = 27 4+ k,
where k is an integer between 0 and 27 — 1. The uncertain variables are
defined by

1, ifk/29 <~y<(k+1)/27
&) = 0, otherwise

fori=1,2,--- and £ = 0. Then

1
E& - €|l = % —0

as i — oo. That is, the sequence {&;} converges in mean to £. However, for
any v € [0,1], there is an infinite number of intervals of the form [k/27, (k +
1)/27] containing . Thus &;(7y) does not converge to 0. In other words, the
sequence {&;} does not converge a.s. to &.

Convergence Almost Surely vs. Convergence in Distribution

Example 2.24: Convergence in distribution does not imply convergence a.s.
Take an uncertainty space (I', £, M) to be {y1,72} with M{y1} = M{.} =
1/2. We define an uncertain variable & as

-1, 1f7:71
£(v) = o
1, ifvy=ns.

We also define & = —¢€ for ¢ = 1,2,--- Then ¢ and £ have the same uncer-
tainty distribution. Thus {;} converges in distribution to £. However, the
sequence {&;} does not converge a.s. to £.
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Example 2.25: Convergence a.s. does not imply convergence in distribution.
Take an uncertainty space (I', £, M) to be {v1,72, -} with

sup ¢/(2i +1), if supi/(2i+1)<0.5

vi €A Yi€A
M{A}=¢ 1—supi/(2i+1), if supi/(2i+1)<0.5
YigA YiEA
0.5, otherwise.

The uncertain variables are defined by

i\Vj) =

0, otherwise

for i = 1,2,--- and £ = 0. Then the sequence {{;} converges a.s. to &.
However, the uncertainty distributions of &; are

0, ifx <0
Di(x)=¢ (t+1)/(20+1), if0<ax<i
1, if x>
fori=1,2,---, respectively. The uncertainty distribution of £ is
0, ifz<0
() = { 1, ifz>0.

It is clear that ®;(x) does not converge to ®(x) at x > 0. That is, the
sequence {&;} does not converge in distribution to &.

2.12 Uncertain Vector

As an extension of uncertain variable, this section introduces a concept of
uncertain vector whose components are uncertain variables.

Definition 2.25 (Liu [122]) A k-dimensional uncertain vector is a function
& from an uncertainty space (I', L, M) to the set of k-dimensional real vectors
such that {€ € B} is an event for any k-dimensional Borel set B.

Theorem 2.62 (Liu [122]) The vector (£1,&2, -+ , &) is an uncertain vector
if and only if £&1,&2, -+ , &k are uncertain variables.

Proof: Write & = (§1,&2,- -+ ,&). Suppose that £ is an uncertain vector on
the uncertainty space (I', £, M). For any Borel set B over R, the set B x k1
is a k-dimensional Borel set. Thus the set

{6 eB}={& €BLER, - GeR={€eBx R}
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is an event. Hence & is an uncertain variable. A similar process may prove
that &o, &3, - , &, are uncertain variables.

Conversely, suppose that all &;,&s, -+ , &, are uncertain variables on the
uncertainty space (', £,M). We define

B:{BC%’“HéGB}isanevent}.

The vector € = (£1,&2, -+ ,&k) is proved to be an uncertain vector if we can
prove that B contains all k-dimensional Borel sets. First, the class B contains
all open intervals of % because

k k
{£ € H(aiabi)} = ﬂ {&i € (ai, bi)}

is an event. Next, the class B is a o-algebra over R* because (i) we have
RF € B since {¢& € R*} =T (ii) if B € B, then {¢ € B} is an event, and
{€e B} ={¢c B}

is an event. This means that B¢ € B; (iii) if B; € B for ¢ = 1,2,---, then
{€ € B;} are events and

{56 UBz} = Jt¢e By

i=1

is an event. This means that U;B; € B. Since the smallest o-algebra con-
taining all open intervals of R* is just the Borel algebra over R*, the class B
contains all k-dimensional Borel sets. The theorem is proved.

Definition 2.26 (Liu [122]) The joint uncertainty distribution of an uncer-
tain vector (£1,&a, -+ , &) is defined by

P(x1, 22, o) = M{& < 21,86 < @250+, 6 < T} (2.187)
for any real numbers x1,xs,- -, Tk.

Theorem 2.63 (Liu [122]) Let &1,&a, -+ , & be independent uncertain vari-
ables with uncertainty distributions ®1, @, -+, Py, respectively. Then the
uncertain vector (§1,&2,- -+ , &) has a joint uncertainty distribution

<I>(x1,x2, cee ,l‘k) = ‘1)1(331) A\ q)g(l'g) VANREIWAN q’k(-%'k) (2.188)
for any real numbers x1,x2, -, x.

Proof: Since &;,&s, -, &, are independent uncertain variables, we have

k
1=

k k
O(z1, 22, ,Tk) :jv[{ & < fﬂz)} = /\M{fz <z} = /\‘I’z(%)

1
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for any real numbers 1,3, -+ ,xr. The theorem is proved.

Remark 2.9: However, the equation (2.188) does not imply that the uncer-
tain variables are independent. For example, let £ be an uncertain variable
with uncertainty distribution ®. Then the joint uncertainty distribution ¥
of uncertain vector (£,§) is

U(wy,29) = M{(§ < 21) N (§ < 22)} = P(21) A P(22)

for any real numbers x; and z5. But, generally speaking, an uncertain vari-
able is not independent with itself.

Definition 2.27 (Liu [137]) The k-dimensional uncertain vectors &€,,&,,- - -,
&, are said to be independent if for any k-dimensional Borel sets By, Ba, - -,
B,,, we have

M {ﬁ(ﬁz € Bi)} = /n\ M € B} (2.189)

i=1 i=1

Exercise 2.51: Let (&1,&, -+ ,&) and (11,72, -+ ,7k) be independent un-
certain vectors. Show that & and (11, 7) are independent.

Theorem 2.64 (Liu [137]) The k-dimensional uncertain vectors &€,,€q, -,
&, are independent if and only if

M{O(éz € Bz)} = \n/ MA{E; € Bi} (2.190)

i=1
for any k-dimensional Borel sets By, Ba,--- , By,.
Proof: It follows from the duality of uncertain measure that &£,,&5, - ,&,

are independent if and only if

M{O(ﬁi eBZ-)} = 1—M{ﬁ(£i GBS)}

i=1 i=1

=1- A\M{¢ € B} = \/ M{¢ € B}

=1 i=1

The theorem is thus proved.

Theorem 2.65 Let &,,&,, - ,&,, be independent uncertain vectors, and let
f1s fa,+, fn be vector-valued measurable functions. Then f1(&;), f2(&€5), -+,
fn(€,) are also independent uncertain vectors.
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Proof: For any Borel sets By, Bs,--- , By, it follows from the definition of
independence that

{ﬂ(ﬁ(& ) € } = M{ﬂ(& € fﬂ(Bi))}
i=1 =1

/\ & ef /\ M{fi(&:) € Bi}.
Thus f1(&;), f2(&s),- -+, fu(€,,) are independent uncertain variables.

Normal Uncertain Vector

Definition 2.28 (Liu [137]) Let 71,72, -+ ,Tm be independent normal un-
certain variables with expected value 0 and variance 1. Then

T= (71,72, ) (2.191)
1s called a standard normal uncertain vector.

It is easy to verify that a standard normal uncertain vector (71, 72, -+ , Tpm)
has a joint uncertainty distribution

O(z1, 09, Tm) = (1—|—exp (-”(“’M@\%MA%)))_I (2.192)

for any real numbers x1, s, - ,Z,,. It is also easy to show that
lim ®(zq,22, - ,2m) =0, for each 1, (2.193)
T;—>—00
lim O(x1, 22, ,Tm) = 1. (2.194)

(1,22, ;@m ) —+00

Furthermore, the limit

lim D(x1, 22, , Tm) (2.195)

(T2, i1, i1, T ) —>F00

is a standard normal distribution with respect to z;.

Definition 2.29 (Liu [137]) Let (11,72, -+ ,Tm) be a standard normal un-
certain vector, and let e;,0;5,1=1,2,--- k, 5 =1,2,--- ,m be real numbers.
Define

m

G=eit+ Y 0y (2.196)

fori=1,2,--- k. Then (&,&, -+ ,&k) is called a normal uncertain vector.
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That is, an uncertain vector £ has a multivariate normal distribution if it
can be represented in the form

E=e+oT (2.197)

for some real vector e and some real matrix o, where 7 is a standard normal
uncertain vector. Note that &, e and T are understood as column vectors.
Please also note that for every index ¢, the component &; is a normal uncertain
variable with expected value e; and standard variance

m

> ol (2.198)

j=1

Theorem 2.66 (Liu [137]) Assume & is a normal uncertain vector, ¢ is a
real vector, and D is a real matriz. Then

n=c+ D¢ (2.199)
is another normal uncertain vector.

Proof: Since £ is a normal uncertain vector, there exists a standard normal
uncertain vector 7, a real vector e and a real matrix o such that £ = e+oT.
It follows that

n=c+Dé=c+D(e+o1)=(c+ De)+ (Do)r.

Hence 1 is a normal uncertain vector.

2.13 Bibliographic Notes

As a fundamental concept in uncertainty theory, the uncertain variable was
presented by Liu [122] in 2007. In order to describe uncertain variable, Liu
[122] also introduced the concept of uncertainty distribution. Later, Peng and
Iwamura [184] proved a sufficient and necessary condition for uncertainty dis-
tribution. In addition, Liu [129] proposed the concept of inverse uncertainty
distribution, and Liu [134] verified a sufficient and necessary condition for it.
More importantly, a measure inversion theorem was given by Liu [129] that
may yield uncertain measures from the uncertainty distribution of the corre-
sponding uncertain variable. Furthermore, Liu [122] proposed the concept of
conditional uncertainty distribution of uncertain variable, and derived some
formulas for calculating it.

Following the independence concept of uncertain variables proposed by
Liu [125], the operational law was given by Liu [129] for calculating the uncer-
tainty distribution and inverse uncertainty distribution of strictly monotone
function of independent uncertain variables.
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In order to rank uncertain variables, Liu [122] proposed the concept of
expected value operator. In addition, the linearity of expected value operator
was verified by Liu [129]. As an important contribution, Liu and Ha [147]
derived a useful formula for calculating the expected values of strictly mono-
tone functions of independent uncertain variables. Based on the expected
value operator, Liu [122] presented the concepts of variance, moments and
distance of uncertain variables.

The concept of entropy was proposed by Liu [125] for characterizing the
uncertainty of uncertain variables. Dai and Chen [27] verified the positive
linearity of entropy and derived some formulas for calculating the entropy
of monotone function of uncertain variables. In addition, Chen and Dai
[15] discussed the maximum entropy principle in order to select the uncer-
tainty distribution that has maximum entropy and satisfies the prescribed
constraints. Especially, normal uncertainty distribution is proved to have
maximum entropy when the expected value and variance are fixed in ad-
vance. As an extension of entropy, Chen, Kar and Ralescu [16] proposed a
concept of cross entropy for comparing an uncertainty distribution against a
reference uncertainty distribution.

The concept of uncertain sequence was presented by Liu [122] with con-
vergence almost surely, convergence in measure, convergence in mean, and
convergence in distribution. Liu [122] also discussed the relationship among
those convergence concepts. Furthermore, Gao [48], You [258], Zhang [268],
and Chen, Li and Ralescu [22] developed some other concepts of convergence
and investigated their mathematical properties.

The concept of uncertain vector was defined by Liu [122]. In addition,
Liu [137] discussed the independence of uncertain vectors and proposed the
concept of normal uncertain vector.



Chapter 3

Uncertain Programming

Uncertain programming was founded by Liu [124] in 2009. This chapter will
provide a theory of uncertain programming, and present some uncertain pro-
gramming models for machine scheduling problem, vehicle routing problem,
and project scheduling problem.

3.1 Uncertain Programming

Uncertain programming is a type of mathematical programming involving
uncertain variables. Assume that « is a decision vector, and £ is an uncer-
tain vector. Since an uncertain objective function f(x, &) cannot be directly
minimized, we may minimize its expected value, i.e.,

min B[ f (. £)]. (3.1)

In addition, since the uncertain constraints g;(x,£) < 0,5 =1,2,--- ,pdonot
define a crisp feasible set, it is naturally desired that the uncertain constraints
hold with confidence levels a;,as, - ,0p. Then we have a set of chance
constraints,

M{g(x,&) <0} >«a;, j=1,2,---,p. (3.2)
In order to obtain a decision with minimum expected objective value subject
to a set of chance constraints, Liu [124] proposed the following uncertain
programming model,

min B[/ (@, €)]
subject to: (3.3)

Definition 3.1 (Liu [124]) A vector x is called a feasible solution to the
uncertain programming model (3.3) if

M{gj(z,€) <0} = a; (3-4)

© Springer-Verlag Berlin Heidelberg 2015 105
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DOI 10.1007/978-3-662-44354-5_4
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fOT’j:LQ,"‘ yD-

Definition 3.2 (Liu [124]) A feasible solution x* is called an optimal solu-
tion to the uncertain programming model (3.3) if

E[f(z",8)] < E[f(=,)] (3.5)

for any feasible solution x.

Theorem 3.1 Assume the objective function f(x,&1,&2, -+ ,&) is strictly

increasing with respect to &1,&s,--- ,&n and strictly decreasing with respect
to Emt1sEmray - En. If &1,&, -+ &, are independent uncertain variables
with uncertainty distributions ®1, Py, --- , D, respectively, then the expected

objective function E[f(x,&1,&2, - ,&n)] is equal to

1
/0 @, @7 a), - B (), 85k (1 —a), - B (1 —a))da.  (3.6)

Proof: It follows from Theorem 2.30 immediately.

Exercise 3.1: Assume f(x, &) = hy(x)& + ha(x)& + - - + hpn(x)En + ho(x)
where hy(x), ha(x),- - , hn(x), ho(x) are real-valued functions and &7, &a, - - -,
&, are independent uncertain variables. Show that

E[f(x,€)] = hi(@)El&1] + ha(T) E[S2] + -+ + hn (@) E[n] 4 ho(z).  (3.7)

Theorem 3.2 Assume the constraint function g(x,&1,&2,- -+ , &) is strictly
increasing with respect to £1,&a, -+ , &k and strictly decreasing with respect
to ki1, €kr2y s En. If £1,&0,--- &, are independent uncertain variables
with uncertainty distributions @1, ®s,--- , Dy, respectively, then the chance
constraint

M{g(w,glvf% 7§n)§0}2a (38)
holds if and only if

g(@, @7 (), &M (a), B (1 - ), 0 (1 - ) 0. (3.9)

Proof: It follows from Theorem 2.22 immediately.

Exercise 3.2: Assume 1, 22, - , I, are nonnegative decision variables, and
£1,8, -+, &, € are independent linear uncertain variables £(a1,b1), L(az, ba),

< L(an, by), L(a,b), respectively. Show that for any confidence level « €
(0,1), the chance constraint

M{Zn:fixi S&} >« (3.10)

i=1
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holds if and only if

n

Z((l —a)a; +ab)z; < aa+ (1 — a)b. (3.11)
i=1
Exercise 3.3: Assume x7,2%s, - ,%, are nonnegative decision variables,
and &1,&,-++,&,, € are independent normal uncertain variables N (e1,01),

N(ez,09), -+ ,N(en,0n), N (e, o), respectively. Show that for any confidence
level « € (0, 1), the chance constraint

M{ifm <§} >« (3.12)

i=1

holds if and only if

Z(eiJrgi;/gln a >z1<em[ln <. (3.13)

< l—« - 11—«
=1

Exercise 3.4: Assume &p,&s,---,&, are independent uncertain variables
with regular uncertainty distributions ®1, ®q, - - - , ®,,, respectively, and hq(x),
ho(x), -, hn(x), ho(x) are real-valued functions. Show that

{Zh )& < hol )}Za (3.14)

holds if and only if

> b (@)@ (@) = > by (@)@ (1 - a) < ho(x) (3.15)
=1 )

i=1
where
hi(x), if h;(x 0
W)= § M (@) (3.16)
0, if hy(x) <0,
—hi(x), if hi(x)
h; = 3.17
i (@) { 0, if hij(x) >0 (3.17)
fori=1,2,---,n
Theorem 3.3 Assume f(x,&1,&2, -+ ,&n) is strictly increasing with respect
to £1,&a, -+ ,&n and strictly decreasing with respect t0 &1, Ema2y 5 n,
and gj(ﬂ?,flvfz, <, &) are strictly increasing with respect to &1,8a, -+, &k

and strictly decreasing with respect to &gy1,&kt2,+ ,&n for j =1,2,--- |p
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If &1,&, -+, &, are independent uncertain variables with uncertainty distri-
butions &1, ®o, - -+, @, respectively, then the uncertain programming

H}rinE[f(w7§17€27 o 7€n)]
subject to: (3.18)
M{gj<w7€17£277£n)go}2a77 j:1727.-.7p

s equivalent to the crisp mathematical programming

1
min/ f(w,q)fl(a),--- ,q),:ll(a),q):nh_l(l —a), - ,q);l(l —a))da
T Jo

subject to:
gi(@, @7 (ay), -, @ (o), @ (1 — ), -+, @ (1 — @) <0

j:1527"'ap'

Proof: It follows from Theorems 3.1 and 3.2 immediately.

3.2 Numerical Method

When the objective functions and constraint functions are monotone with
respect to the uncertain parameters, the uncertain programming model may
be converted to a crisp mathematical programming.

It is fortunate for us that almost all objective and constraint functions
in practical problems are indeed monotone with respect to the uncertain
parameters (not decision variables).

From the mathematical viewpoint, there is no difference between crisp
mathematical programming and classical mathematical programming except
for an integral. Thus we may solve it by simplex method, branch-and-bound
method, cutting plane method, implicit enumeration method, interior point
method, gradient method, genetic algorithm, particle swarm optimization,
neural networks, tabu search, and so on.

Example 3.1: Assume that xy, 9,23 are nonnegative decision variables,
£1,&2,&3 are independent linear uncertain variables £(1,2), £(2,3), £(3,4),
and 71, 12, n3 are independent zigzag uncertain variables Z(1,2,3), Z(2, 3, 4),
Z(3,4,5), respectively. Consider the uncertain programming,

max E[\/xl +51+\/$2+§2+\/333+§3]

T1,22,T3

subject to:
M{(z1 +m)? + (22 +n2)* + (23 +n3)* < 100} > 0.9

L1,T2,T3 > 0.

Note that /z1 + & + Vxa + & + Vo3 + &5 is a strictly increasing function
with respect to &1, &2, &3, and (21 +n01)% + (29 +12)% + (23 +n3)? is a strictly
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increasing function with respect to 7m1,72,7m3. It is easy to verify that the
uncertain programming model can be converted to the crisp model,

1
max / (\/xl + &) +\/z2 + B () + (/a3 + @gl(a)> da
0

xr1,T2,T3
subject to:
(z1 +U71(0.9)% + (w2 + 951(0.9))% + (z3 + ¥51(0.9))2 < 100

z1,T2,73 > 0

where CI)l_l, <I)2_1, CI)gl, \Ill_l, \112_1, \Ilg1 are inverse uncertainty distributions of
uncertain variables &1, &2, €3, 11, 12, N3, respectively. The Matlab Uncertainty
Toolbox (http://orsc.edu.cn/liu/resources.htm) may solve this model and ob-
tain an optimal solution

(27, x5, 2%) = (2.9735,1.9735,0.9735)
whose objective value is 6.3419.

Example 3.2: Assume that x; and x5 are decision variables, £; and & are iid
linear uncertain variables £(0,7/2). Consider the uncertain programming,

min F [z sin(z; — &) — 22 cos(xa + &)
Z1,22

subject to:

T
0§$1§§, 0<z <

e

It is clear that zsin(z; — &) — zo cos(za + &2) is strictly decreasing with
respect to & and strictly increasing with respect to &. Thus the uncertain
programming is equivalent to the crisp model,

1
min / (z1sin(z1 — @71 (1 — @) — 22 cos(z2 + €5 ' (a))) da
T1,T2 Jq
subject to:
™ T
0<z1 <=, 02K =
ST s g Sr2s g
where <I>1_1, 0 1 are inverse uncertainty distributions of &;, &, respectively.
The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
solve this model and obtain an optimal solution

(x7,x3) = (0.4026, 0.4026)

whose objective value is —0.2708.
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3.3 Machine Scheduling Problem

Machine scheduling problem is concerned with finding an efficient schedule
during an uninterrupted period of time for a set of machines to process a set
of jobs. A lot of research work has been done on this type of problem. The
study of machine scheduling problem with uncertain processing times was
started by Liu [129] in 2010.

Machine
M5 Js Jr7
Ms Jy Js

M| S Jo J3

Time

< Makespan —

Figure 3.1: A Machine Schedule with 3 Machines and 7 Jobs. Reprinted from
Liu [129].

In a machine scheduling problem, we assume that (a) each job can be
processed on any machine without interruption; (b) each machine can process
only one job at a time; and (c) the processing times are uncertain variables
with known uncertainty distributions. We also use the following indices and
parameters:

1=1,2,--- ,n: jobs;

k=1,2,---,m: machines;

&+ uncertain processing time of job ¢ on machine k;

®,: uncertainty distribution of &;.

How to Represent a Schedule?

Liu [114] suggested that a schedule should be represented by two decision
vectors & and y, where

x = (x1,x2, -+ ,x,): integer decision vector representing n jobs with
1<z;<nandz; #x; forall i # j,4,j =1,2,--- ,n. That is, the sequence
{z1,%2, -+ ,x,} is a rearrangement of {1,2,--- ,n};

y = (y1,Y2, * ,Ym—1): integer decision vector with yo =0 < y; < yo <

S Ym—1 SN= Y,

We note that the schedule is fully determined by the decision vectors «
and y in the following way. For each k (1 < k < m), if yx = yr—1, then the
machine k is not used; if yx > yi—_1, then the machine k is used and processes
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jobs Ty, L 41,%y, 42, ", Ty, in turn. Thus the schedule of all machines is
as follows,

Machine 1: zy 11 = Tyo42 = - — Ty,;
Machine 2: @y, 41 = Ty 42 = -+ = Tyy; 5.19)

Machine m: xy,, 41 — Ty, 142 —> " —> Ty,

© 6o 6o o

Figure 3.2: Formulation of Schedule in which Machine 1 processes Jobs z1, z2,
Machine 2 processes Jobs x3,r4 and Machine 3 processes Jobs x5, xg, T7.
Reprinted from Liu [129].

Completion Times

Let C;(x, y, &) be the completion times of jobs ¢, i = 1,2, -+ , n, respectively.
For each k with 1 < k < m, if the machine k is used (i.e., yx > yx—1), then
we have

Czl/k71+1(m7ya€) = gl‘?/k71+1k (320)

and
Czyk71+j (mvyaé) = Ca:yk71+j_1(w7 y,é) + fxyk71+jk (321)

for 2 <j <wyp —yr-1.
If the machine k is used, then the completion time C’wyk71+1(az,y,£) of
job zy, 41 is an uncertain variable whose inverse uncertainty distribution is
~1 —1
\Ilz?/k71+1(a:,y, a) = (I)wyk,1+1k(a)' (3.22)
Generally, suppose the completion time Cy, v (x,y,€) has an in-
verse uncertainty distribution \I/;ylk i (z,y,a). Then the completion time

Cuy 14 (z,y, €) has an inverse uncertainty distribution
-1 -1 -1
\Ijmyk_1+j ($, Y, O[) = \Ij:ryk_1+j,1 (wv Y, 0[) + (szk—l*'jk(a)' (323)

This recursive process may produce all inverse uncertainty distributions of
completion times of jobs.
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Makespan

Note that, for each k (1 < k < m), the value C;, (x,y,§) is just the time
that the machine k finishes all jobs assigned to it. Thus the makespan of the
schedule (x,y) is determined by

f(wvyas) = max Cﬂcyk (337'!/,5) (324)

1<k<m
whose inverse uncertainty distribution is

-1 _ -1
T (m,y,a) - lg}cagxm \Ilmyk (w,y,a). (325)

Machine Scheduling Model

In order to minimize the expected makespan E[f(x,y,&)], we have the fol-
lowing machine scheduling model,

min E[f(z, y, §)]

Yy

subject to:
lél’ién, i:172a"'7n
xi7éxjv 17&‘77 ivj:1723"'7n
0<y1<y2- <Ym-1<n

(3.26)

Y5, t=12,---,n, j=12,--- m—1, integers.

Since Y~1(x,y,a) is the inverse uncertainty distribution of f(zx,y,€), the
machine scheduling model is simplified as follows,

min/1 Tz, y,a)da
,Y 0
subject to:
1<z;<n, i=12,---,n (3.27)
xi F#xy, £ 4,7=12,--,n
0<y1<y2- <Ym-1<n

Y5, t=1,2,---,n, j=12,---,m—1, integers.

Numerical Experiment

Assume that there are 3 machines and 7 jobs with the following linear un-
certain processing times

51k~£(272+k)u i:1727"'777k:17273

where i is the index of jobs and k is the index of machines. The Matlab
Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) yields that the
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optimal solution is
2" = (1,4,5,3,7,2,6), y* = (3,5). (3.28)

In other words, the optimal machine schedule is

Machine 1: 1 -4 — 5
Machine 2: 3 — 7
Machine 3: 2 — 6

whose expected makespan is 12.

3.4 Vehicle Routing Problem

Vehicle routing problem (VRP) is concerned with finding efficient routes,
beginning and ending at a central depot, for a fleet of vehicles to serve a
number of customers.

Figure 3.3: A Vehicle Routing Plan with Single Depot and 7 Customers.
Reprinted from Liu [129)].

Due to its wide applicability and economic importance, vehicle routing
problem has been extensively studied. Liu [129] first introduced uncertainty
theory into the research area of vehicle routing problem in 2010. In this
section, vehicle routing problem will be modelled by uncertain programming
in which the travel times are assumed to be uncertain variables with known
uncertainty distributions.

We assume that (a) a vehicle will be assigned for only one route on which
there may be more than one customer; (b) a customer will be visited by one
and only one vehicle; (c) each route begins and ends at the depot; and (d) each
customer specifies its time window within which the delivery is permitted or
preferred to start.

Let us first introduce the following indices and model parameters:

1 = 0: depot;



114 CHAPTER 3 - UNCERTAIN PROGRAMMING

1 =1,2,--- ,n: customers;

k=1,2,---,m: vehicles;

D;;: travel distance from customers 7 to j, ¢,7 =0,1,2,--- ,n;

T;j: uncertain travel time from customers ¢ to j, 4,7 =0,1,2,--- ,n;
®;;: uncertainty distribution of Tj;, 4,5 = 0,1,2,--- ,n;

[a;, b;]: time window of customer i, i =1,2,--- ,n.

Operational Plan

Liu [114] suggested that an operational plan should be represented by three
decision vectors «, y and t, where

x = (x1,22, - ,x,): integer decision vector representing n customers
with 1 < x; <nand x; # x; for all ¢ # j, 4,5 = 1,2,--- ,n. That is, the
sequence {21, xa, - ,x,} is a rearrangement of {1,2,--- n};

vy =(y1,Y2, " ,Ym—1): integer decision vector with yp =0 < y1 < yo <
S Ym—1 SN Y

t = (t1,t2, -+ ,t;m): each ¢ represents the starting time of vehicle k at

the depot, k =1,2,--- ,m.

We note that the operational plan is fully determined by the decision
vectors @, y and t in the following way. For each k (1 < k < m), if yp = yr_1,
then vehicle £ is not used; if yx > yi_1, then vehicle k is used and starts from
the depot at time ¢, and the tour of vehicle k is 0 — =y, _, 41 — Ty, _, 42 —
-+ = xy, — 0. Thus the tours of all vehicles are as follows:

Vehicle 1: 0 = zyy41 — Tyo42 — - = Ty, — 0;
Vehicle 2: 0 = 2y, 41 = Ty, 42 = -+ = 2y, — 0;

Vehicle m: 0 = xy, 41— Ty, 42 = - — Ty, — 0.

Y Y Y Y3

© 6060 e ae

Figure 3.4: Formulation of Operational Plan in which Vehicle 1 visits Cus-
tomers x1, xo, Vehicle 2 visits Customers x3, x4 and Vehicle 3 visits Customers
x5, e, x7. Reprinted from Liu [129].

It is clear that this type of representation is intuitive, and the total number
of decision variables is n 4+ 2m — 1. We also note that the above decision
variables @, y and t ensure that: (a) each vehicle will be used at most one
time; (b) all tours begin and end at the depot; (c) each customer will be
visited by one and only one vehicle; and (d) there is no subtour.
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Arrival Times

Let fi(x,y,t) be the arrival time function of some vehicles at customers i
for i =1,2,--- ,n. We remind readers that f;(x,y,t) are determined by the
decision variables , y and ¢, i = 1,2, - -- ,n. Since unloading can start either
immediately, or later, when a vehicle arrives at a customer, the calculation of
fi(x,y,t) is heavily dependent on the operational strategy. Here we assume
that the customer does not permit a delivery earlier than the time window.
That is, the vehicle will wait to unload until the beginning of the time window
if it arrives before the time window. If a vehicle arrives at a customer after
the beginning of the time window, unloading will start immediately. For each
k with 1 < k < m, if vehicle k is used (i.e., yx > yr—1), then we have

fxyk71+l (.’1}, Y, t) =tk + TO;C,yk71+1

and

fzyk,1+.7' (m’ Y, t) :fryk,r%—j—l (m’ Y, t) v amyk,ﬁ—j—l + Tmyk,1+j—lzyk,1+j

for 2 < j < yr —yx—1. If the vehicle k is used, i.e., yp > yr_1, then the arrival
time f;,  ,,(x,y,t) at the customer z,, 41 is an uncertain variable whose
inverse uncertainty distribution is

—1
Typ_1+1

(w>y7t7 a) = tk + (I)aavl,yk71+1 (Oé)

Generally, suppose the arrival time f,, .., (z,y,t) has an inverse uncer-
tainty distribution W !

Yp—1+ti—1
verse uncertainty distribution

(z,y,t, ). Then f,, ., (@ y,t) has an in-

—1
Lyp _1+3

(w,y7t,a)=\11_1 (:c7y,15,oz)\/cz%k_lJrJ.,l—|—<P_1 ()

Typ _1+5—1 LTyp _1+i—1Typ_1+3j
for 2 < j < yr — yg—1- This recursive process may produce all inverse
uncertainty distributions of arrival times at customers.

Travel Distance

Let g(x,y) be the total travel distance of all vehicles. Then we have

m
k=1
where
yr—1 )
gk(w7 y) = Doxyk71+1 + J:y§l+1 ijxj+1 + nyko’ lf yk > yk_l
0, if yr = yp—1

fork=1,2,--- ,m.
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Vehicle Routing Model

If we hope that each customer i (1 < i < n) is visited within its time window
[a;, b;] with confidence level «; (i.e., the vehicle arrives at customer i before
time b;), then we have the following chance constraint,

M{fi(z,y,t) < bi} > ;. (3.30)

If we want to minimize the total travel distance of all vehicles subject to the
time window constraint, then we have the following vehicle routing model,

min g(z, y)
x,y,t
subject to:
M{fi(z,y,t) <b;} >a;, i=1,2,---,n
1<z;<n, i=1,2,---,n (3.31)

l'i#l'j, Z#]v ivj:1727"‘,n
0<y <y < <ym-1<nm
iy, t=12,---.n, j=12--- m—1, integers

which is equivalent to

min g(z,y)
xz,y,t
subject to:
‘I’;l(muyat7ai)§bi, 7;:1727"'77?

ZL’i?éij, 7’7&]7 ivj:LQv"‘,n
0<y<yp<--<ym1<n

i Y5, t=12,---.n, j=12--- m—1, integers

where \I/i_l(a:, y,t,«) are the inverse uncertainty distributions of f;(x,y,t)
fori=1,2,---,n, respectively.

Numerical Experiment

Assume that there are 3 vehicles and 7 customers with time windows shown in
Table 3.1, and each customer is visited within time windows with confidence
level 0.90.

We also assume that the distances are D;; = |i—j| fori,j =0,1,2,---,7,
and the travel times are normal uncertain variables

Ty ~N(Q2li —j|,1), 4,7=0,1,2,---,7.

The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
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Table 3.1: Time Windows of Customers

Node Window Node Window
1 [7:00,9 :00] 5 [15: 00,17 : 00]
2 [7:00,9 :00] 6 19:00,21:00
3 [15: 00,17 : 00] 7 19:00,21:00
4 [15: 00,17 : 00]

yield that the optimal solution is

x* = (1,3,2,5,7,4,6),
y* = (2,5), (3.33)
t*=(6:18,4:18,8: 18).

In other words, the optimal operational plan is

Vehicle 1: depot — 1 — 3 — depot (the latest starting time is 6:18)
Vehicle 2: depot — 2 — 5 — 7 — depot (the latest starting time is 4:18)
Vehicle 3: depot — 4 — 6 — depot (the latest starting time is 8:18)

whose total travel distance is 32.

3.5 Project Scheduling Problem

Project scheduling problem is to determine the schedule of allocating re-
sources so as to balance the total cost and the completion time. The study
of project scheduling problem with uncertain factors was started by Liu [129]
in 2010. This section presents an uncertain programming model for project
scheduling problem in which the duration times are assumed to be uncertain
variables with known uncertainty distributions.

Project scheduling is usually represented by a directed acyclic network
where nodes correspond to milestones, and arcs to activities which are basi-
cally characterized by the times and costs consumed.

Let (V,A) be a directed acyclic graph, where V = {1,2,--- ;n,n+ 1} is
the set of nodes, A is the set of arcs, (i,7) € A is the arc of the graph (V, A)
from nodes ¢ to j. It is well-known that we can rearrange the indexes of the
nodes in V such that i < j for all (7, ) € A.

Before we begin to study project scheduling problem with uncertain ac-
tivity duration times, we first make some assumptions: (a) all of the costs
needed are obtained via loans with some given interest rate; and (b) each
activity can be processed only if the loan needed is allocated and all the
foregoing activities are finished.

In order to model the project scheduling problem, we introduce the fol-
lowing indices and parameters:
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Figure 3.5: A Project with 8 Milestones and 11 Activities. Reprinted from
Liu [129)].

&;;: uncertain duration time of activity (¢, j) in A;

®;;: uncertainty distribution of &;;;

ci;: cost of activity (4, ) in A;

r: interest rate;

x;: integer decision variable representing the allocating time of all loans
needed for all activities (4,7) in A.

Starting Times

For simplicity, we write £ = {&; : (4,7) € A} and & = (z1,22, -+ ,2,). Let
T;(x, &) denote the starting time of all activities (¢, ) in A. According to the
assumptions, the starting time of the total project (i.e., the starting time of
of all activities (1,7) in .A) should be

Ty(x,§) = a1 (3.34)

whose inverse uncertainty distribution may be written as
Uz, a) = 2. (3.35)
From the starting time T} (x, &), we deduce that the starting time of activity

(2,5) is
Ty(x, &) = x2 V (21 + &12) (3.36)

whose inverse uncertainty distribution may be written as
UoH(x,a) = 29 V (21 + P15 (a)). (3.37)

Generally, suppose that the starting time Ty (x, &) of all activities (k,4) in A
has an inverse uncertainty distribution ¥, '(x,a). Then the starting time
Ti(x, &) of all activities (7, ) in A should be

T;(w, &) = a; V (ﬁ;\gﬁ(ﬂ(w, &) + &i) (3.38)
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whose inverse uncertainty distribution is

pol =gV pt i . 3.39
THwa) =2 (,gggigﬂ( Pl (@) + 9 (o) (3.39)

This recursive process may produce all inverse uncertainty distributions of
starting times of activities.

Completion Time

The completion time T'(x, &) of the total project (i.e, the finish time of all
activities (k,n + 1) in A) is

T(.’I), 5) = (k,ﬂai)){e./l (Tk(xa 6) + gk,n—i-l) (340)

whose inverse uncertainty distribution is

-1 _ -1 -1
U~ Hx,a) = (k,ﬂaﬁeA (\I/k (z,a) + <I>k7n+1(a)) . (3.41)

Total Cost

Based on the completion time T'(x, &), the total cost of the project can be
written as
Ola, &)= Y ey (14n)T@O=] (3.42)
(i,)eA
where [a] represents the minimal integer greater than or equal to a. Note that
C(z, &) is a discrete uncertain variable whose inverse uncertainty distribution
is

T Nz, a) = Z cij (1+7) [ (@) —=i] (3.43)
(1,7)€A

for0<a<l.

Project Scheduling Model

In order to minimize the expected cost of the project under the completion
time constraint, we may construct the following project scheduling model,

min E[C(.€)
subject to:
M{T(x,€) < To} = ao

x > 0, integer vector

(3.44)

where Ty is a due date of the project, g is a predetermined confidence level,
T(z, &) is the completion time defined by (3.40), and C(z, §) is the total cost



120 CHAPTER 3 - UNCERTAIN PROGRAMMING

defined by (3.42). This model is equivalent to

1
min/ T (x,a)da
z Jo
subject to: (3.45)
Uz, 00) < Ty

x > 0, integer vector

where U1 (z, o) is the inverse uncertainty distribution of T'(z, £) determined
by (3.41) and Y~!(x,a) is the inverse uncertainty distribution of C(zx,§&)
determined by (3.43).

Numerical Experiment

Consider a project scheduling problem shown by Figure 3.5 in which there are
8 milestones and 11 activities. Assume that all duration times of activities
are linear uncertain variables,

& ~ L(34,35), V(i,j)eA
and assume that the costs of activities are
cij =1i+j, V(ij) €A
In addition, we also suppose that the interest rate is » = 0.02, the due date is
Ty = 60, and the confidence level is g = 0.85. The Matlab Uncertainty Tool-

box (http://orsc.edu.cn/liu/resources.htm) yields that the optimal solution
is

x* = (7,24,17,16, 35,33, 30). (3.46)

In other words, the optimal allocating times of all loans needed for all activ-
ities are shown in Table 3.2 whose expected total cost is 190.6, and

M{T(x*, &) < 60} = 0.88.

Table 3.2: Optimal Allocating Times of Loans

Date || 7 |16 | 17|24 |30 | 33 | 35
Node|[ 1 |4 |3 |2 |7]6]|5
Loan || 12|11 |27 | 7 | 15| 14| 13
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3.6 Uncertain Multiobjective Programming

It has been increasingly recognized that many real decision-making problems
involve multiple, noncommensurable, and conflicting objectives which should
be considered simultaneously. In order to optimize multiple objectives, mul-
tiobjective programming has been well developed and applied widely. For
modelling multiobjective decision-making problems with uncertain param-
eters, Liu and Chen [141] presented the following uncertain multiobjective
programming,

H%L_in (E[f1(ﬂ?7£)], E[fQ(mvs)]’ T 7E[fm(ma€)})
subject to: (3.47)

M{gj(w7£)§0}2ajv j:1727"'7p

where f;(x,£) are objective functions for ¢ = 1,2,--- ,m, and g;(z, &) are
constraint functions for j =1,2,--- ,p.

Since the objectives are usually in conflict, there is no optimal solution
that simultaneously minimizes all the objective functions. In this case, we
have to introduce the concept of Pareto solution, which means that it is
impossible to improve any one objective without sacrificing on one or more
of the other objectives.

Definition 3.3 A feasible solution x* is said to be Pareto to the uncertain
multiobjective programming (3.47) if there is no feasible solution & such that

Elfi(x, &) < Blfi(z*,€)], i=1,2,---,m (3.48)
and E[f;j(x,&)] < E[f;(x*,&)] for at least one index j.

If the decision maker has a real-valued preference function aggregating
the m objective functions, then we may minimize the aggregating preference
function subject to the same set of chance constraints. This model is referred
to as a compromise model whose solution is called a compromise solution.
It has been proved that the compromise solution is Pareto to the original
multiobjective model.

The first well-known compromise model is set up by weighting the objec-
tive functions, i.e.,

min i NE[fi(x, €)]

subject to: (3.49)
M{gj(w7€)§0}2aj7 j:1727"'7p
where the weights A1, Ao, -, A, are nonnegative numbers with A\; + Ao +

<o+ Ay =1, for example, \; =1/m for i =1,2,--- ,m.
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The second way is related to minimizing the distance function from a
solution

(Elf1(z,€)], E[f2(2, )], -, E[fm(z,£)]) (3.50)
to an ideal vector (fy, fa, -+, f), where f are the optimal values of the
1th objective functions without considering other objectives, i =1,2,--- ,m,

respectively. That is,

min g M (ELfi(x,€)] — f7)?

subject to: (3.51)
M{gj(x, &) <0} >a;, j=1,2,---,p
where the weights A1, Ao, -, A\, are nonnegative numbers with A\; + Ao +

<-4+ Ay, =1, for example, \; = 1/m for i =1,2,--- ,m.

By the third way a compromise solution can be found via an interactive
approach consisting of a sequence of decision phases and computation phases.
Various interactive approaches have been developed.

3.7 Uncertain Goal Programming

The concept of goal programming was presented by Charnes and Cooper
[11] in 1961 and subsequently studied by many researchers. Goal program-
ming can be regarded as a special compromise model for multiobjective op-
timization and has been applied in a wide variety of real-world problems.
In multiobjective decision-making problems, we assume that the decision-
maker is able to assign a target level for each goal and the key idea is to
minimize the deviations (positive, negative, or both) from the target levels.
In the real-world situation, the goals are achievable only at the expense of
other goals and these goals are usually incompatible. In order to balance
multiple conflicting objectives, a decision-maker may establish a hierarchy of
importance among these incompatible goals so as to satisfy as many goals as
possible in the order specified. For multiobjective decision-making problems
with uncertain parameters, Liu and Chen [141] proposed an uncertain goal
programming,

l m

min Pj Z(Umdj_ + ’de:)

T =1 4=l

subject to:

) o , (3.52)
E[fl(wﬂg)]+dz _d’L :b’i7 7/:1,2,"‘,771
M{g](m,E)SO}ZOz], j:1727"'ap
df,d; >0, i=1,2,---,m

where P; is the preemptive priority factor which expresses the relative im-
portance of various goals, P; > Pji1, for all j, u;; is the weighting factor
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corresponding to positive deviation for goal ¢ with priority j assigned, v;;
is the weighting factor corresponding to negative deviation for goal ¢ with
priority j assigned, d;r is the positive deviation from the target of goal 7, d;
is the negative deviation from the target of goal 7, f; is a function in goal con-
straints, g; is a function in real constraints, b; is the target value according
to goal ¢, [ is the number of priorities, m is the number of goal constraints,
and p is the number of real constraints. Note that the positive and negative
deviations are calculated by

1 ) - bi; if [ ) b’L
. { Blfi(@. ) ~ b, if Elfi(@.)] > .
0, otherwise
and ;
bi - F 3 ) ) if & % ) bl
. { fi(,€)), i Elfi(w. )] < -
0, otherwise

for each i. Sometimes, the objective function in the goal programming model
is written as follows,

lexmin {Z(uzldl+ +vad; ), Z(uigd;r + viad; ), - 7Z(Uild;r + 'Uildi)}

i=1 i=1 i=1

where lexmin represents lexicographically minimizing the objective vector.

3.8 Uncertain Multilevel Programming

Multilevel programming offers a means of studying decentralized decision
systems in which we assume that the leader and followers may have their
own decision variables and objective functions, and the leader can only influ-
ence the reactions of followers through his own decision variables, while the
followers have full authority to decide how to optimize their own objective
functions in view of the decisions of the leader and other followers.

Assume that in a decentralized two-level decision system there is one
leader and m followers. Let  and y,; be the control vectors of the leader

and the ith followers, ¢ = 1,2,--- ,m, respectively. We also assume that the
objective functions of the leader and ith followers are F(x,yq, - ,Y,,, &) and
file,yqy -, Ym, &), © = 1,2,--- ,m, respectively, where £ is an uncertain
vector.

Let the feasible set of control vector & of the leader be defined by the
chance constraint

M{G(z,§) <0} = (3.55)

where G is a constraint function, and « is a predetermined confidence level.
Then for each decision @ chosen by the leader, the feasibility of control vec-
tors y, of the ith followers should be dependent on not only x but also
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Y, Y1 Yir1s " Ym, and generally represented by the chance con-
straints,

M{gi(@ y1:Y2, Yo ) S0} > (3.56)

where g; are constraint functions, and «; are predetermined confidence levels,
1=1,2,--- ,m, respectively.

Assume that the leader first chooses his control vector x, and the fol-
lowers determine their control array (y1,ys, - ,¥,,) after that. In order to
minimize the expected objective of the leader, Liu and Yao [140] proposed
the following uncertain multilevel programming,

min E[F(@, y7,y5, - Y5, §)]
subject to:
M{G(x, &) <0} > «
(y%,y5, - ,yk,) solves problems (i = 1,2,--- ,m) (3.57)
H;llnE[fz(mv Y1:Y2, s Yms §)]
subject to:
M{gi(®, Y1, Y2: Y §) <0} > .

Definition 3.4 Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (y3,ys, - ,yk,) with respect to
x if
Elfi(®,y1, - ¥l 1Yo Yl Y €]
> E[fz(wv y>'1<7 e ay:—la yfvy;-&-l? T 7y;knv€)]

for any feasible array (yi, - ,Yi 1, Y5 Yip1, Ys) and i =1,2,---  m.

(3.58)

Definition 3.5 Suppose that ©* is a feasible control vector of the leader and

(Y1, 9%, - ,yr,) is a Nash equilibrium of followers with respect to x*. We call
the array (x*,y7,v5, -+ ,yr,) a Stackelberg-Nash equilibrium to the uncertain
multilevel programming (3.57) if

E[F(§7§17§27 e 7§m7€)] Z E[F(x*vyifyza e 7y:n?€)] (359)
for any feasible control vector T and the Nash equilibrium (Y1, Yo, s Ypm)

with respect to T.

3.9 Bibliographic Notes

Uncertain programming was founded by Liu [124] in 2009 and was applied to
machine scheduling problem, vehicle routing problem and project scheduling
problem by Liu [129] in 2010.

As extensions of uncertain programming theory, Liu and Chen [141] de-
veloped an uncertain multiobjective programming and an uncertain goal pro-
gramming. In addition, Liu and Yao [140] suggested an uncertain multilevel
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programming for modeling decentralized decision systems with uncertain fac-
tors.

After that, the uncertain programming has obtained fruitful results in
both theory and practice. For exploring more books and papers, the inter-
ested reader may visit the website at http: //orsc.edu.cn/online.



Chapter 4

Uncertain Statistics

The study of uncertain statistics was started by Liu [129] in 2010. It is a
methodology for collecting and interpreting expert’s experimental data by un-
certainty theory. This chapter will design a questionnaire survey for collecting
expert’s experimental data, and introduce empirical uncertainty distribution
(i.e., linear interpolation method), principle of least squares, method of mo-
ments, and Delphi method for determining uncertainty distributions from
expert’s experimental data.

4.1 Expert’s Experimental Data

Uncertain statistics is based on expert’s experimental data rather than histor-
ical data. How do we obtain expert’s experimental data? Liu [129] proposed
a questionnaire survey for collecting expert’s experimental data. The start-
ing point is to invite one or more domain experts who are asked to complete
a questionnaire about the meaning of an uncertain variable ¢ like “how far
from Beijing to Tianjin”.

We first ask the domain expert to choose a possible value x (say 110km)
that the uncertain variable £ may take, and then quiz him

“How likely is & less than or equal to x?7” (4.1)

Denote the expert’s belief degree by « (say 0.6). Note that the expert’s belief
degree of £ greater than z must be 1 — a due to the self-duality of uncertain
measure. An expert’s experimental data

(z,a) = (110,0.6) (4.2)

is thus acquired from the domain expert.
Repeating the above process, the following expert’s experimental data are
obtained by the questionnaire,

(33'1,&1), ($2,0é2), Tty (‘Tnyan)~ (43)

© Springer-Verlag Berlin Heidelberg 2015 127
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e’ 1l -«

M{E < =} M > o}

Figure 4.1: Expert’s Experimental Data (z, ). Reprinted from Liu [129].

Remark 4.1: None of z, « and n could be assigned a value in the question-
naire before asking the domain expert. Otherwise, the domain expert may
have no knowledge or experiments enough to answer your questions.

4.2 Questionnaire Survey

Beijing is the capital of China, and Tianjin is a coastal city. Assume that
the real distance between them is not exactly known for us. It is more ac-
ceptable to regard such an unknown quantity as an uncertain variable than
a random variable or a fuzzy variable. Chen and Ralescu [18] employed un-
certain statistics to estimate the travel distance between Beijing and Tianjin.
The consultation process is as follows:

Q1: May I ask you how far is from Beijing to Tianjin? What do you think
is the minimum distance?

A1l: 100km. (an expert’s experimental data (100,0) is acquired)

Q2: What do you think is the maximum distance?

A2: 150km. (an expert’s experimental data (150,1) is acquired)

Q3: What do you think is a likely distance?

A3: 130km.

Q4: What is the belief degree that the real distance is less than 130km?
A4: 0.6. (an expert’s experimental data (130,0.6) is acquired)

Q5: Is there another number this distance may be?

A5: 140km.

Q6: What is the belief degree that the real distance is less than 140km?
A6: 0.9. (an expert’s experimental data (140,0.9) is acquired)

QT7: Is there another number this distance may be?

AT7: 120km.
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Q8: What is the belief degree that the real distance is less than 120km?
A8: 0.3. (an expert’s experimental data (120,0.3) is acquired)

Q9: Is there another number this distance may be?

A9: No idea.

By using the questionnaire survey, five expert’s experimental data of the
travel distance between Beijing and Tianjin are acquired from the domain
expert,

(100,0), (120,0.3), (130,0.6), (140,0.9), (150, 1). (4.4)

4.3 Empirical Uncertainty Distribution

How do we determine the uncertainty distribution for an uncertain variable?
Assume that we have obtained a set of expert’s experimental data

(Ilaal)v('r%om)a"' ,(Z‘n,OLn) (45)
that meet the following consistence condition (perhaps after a rearrangement)
T <9< <xp, 0<ap<ar<---<a, <1 (4.6)

Based on those expert’s experimental data, Liu [129] suggested an empirical
uncertainty distribution,

0, ife<a
Br)={ o+ Qi )@ =) -y 1<i<n (4.7)
Tit+1 — T4
1, if x > x,.

Essentially, it is a type of linear interpolation method.
The empirical uncertainty distribution ® determined by (4.7) has an ex-
pected value

n—1
Ele] = %xl Py GO, (1 _ a12+a) . (48)
=2

If all x;’s are nonnegative, then the k-th empirical moments are
n—1 k

1 o
E[¢") = ana + Pl Z Z(ai-H - ai)xng;f + (1 — ay)ak. (4.9)
i=1 j=0

Example 4.1: Recall that the five expert’s experimental data (100,0),
(120,0.3), (130,0.6), (140,0.9), (150,1) of the travel distance between Bei-
jing and Tianjin have been acquired in Section 4.2. Based on those expert’s
experimental data, an empirical uncertainty distribution of travel distance is
shown in Figure 4.3.
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P ()
1 ........................................................
(w4, q)
T2,02)
(z2, a2 (23,0)
(w1,01)
0 x

Figure 4.2: Empirical Uncertainty Distribution ®(z). Reprinted from Liu
[129].

4.4 Principle of Least Squares

Assume that an uncertainty distribution to be determined has a known func-
tional form ®(z|f) with an unknown parameter §. In order to estimate the
parameter 6, Liu [129] employed the principle of least squares that minimizes
the sum of the squares of the distance of the expert’s experimental data to
the uncertainty distribution. This minimization can be performed in either
the vertical or horizontal direction. If the expert’s experimental data

(1’17041)7(.%270[2),--- ,(:vman) (410)

are obtained and the vertical direction is accepted, then we have
mlnz (z4]0) — )% (4.11)

The optimal solution 6 of (4.11) is called the least squares estimate of 6, and
then the least squares uncertainty distribution is ®(x|@).

Example 4.2: Assume that an uncertainty distribution has a linear form
with two unknown parameters a and b, i.e.,

0, ifz<a
O(z)=< (r—a)/(b—a), fa<z<b (4.12)
1, if © > 0.

We also assume the following expert’s experimental data,

(1,0.15), (2,0.45), (3,0.55), (4,0.85), (5,0.95). (4.13)
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®(x)
1 _______________________________________________________
(130,0.6)
(120,0.3)
0 (100, 0) .

Figure 4.3: Empirical Uncertainty Distribution of Travel Distance between
Beijing and Tianjin. Note that the empirical expected distance is 125.5km
and the real distance is 127km in the google earth.

D(z[0)

Figure 4.4: Principle of Least Squares

The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
yield that a = 0.2273, b = 4.7727 and the least squares uncertainty distribu-
tion is

0, if # < 0.2273
®(z) ={ (x—0.2273)/4.5454, if 0.2273 < x < 4.7727 (4.14)
1, if @ > 4.7727.

Example 4.3: Assume that an uncertainty distribution has a lognormal
form with two unknown parameters e and o, i.e.,

B(zle,0) = <1+exp (W))_l (4.15)
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We also assume the following expert’s experimental data,
(0.6,0.1), (1.0,0.3), (1.5,0.4), (2.0,0.6), (2.8,0.8), (3.6,0.9). (4.16)

The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
yield that e = 0.4825, 0 = 0.7852 and the least squares uncertainty distribu-

tion is )
0.4825 —Inz B
d(z)=1(1 _— . 4.1
(@) ( e ( 0.4329 >) (4.17)

4.5 Method of Moments

Assume that a nonnegative uncertain variable has an uncertainty distribution

q)(x|917927"' 79;7) (418)
with unknown parameters 61,62, --- ,0,. Given a set of expert’s experimental
data

(xhal)v(vaaQ)a“' 7(xn7an) (419)
with
0<z1 <2<+ <Zp, 0<a; << <a, <1, (4.20)

Wang and Peng [230] proposed a method of moments to estimate the un-
known parameters of uncertainty distribution. At first, the kth empirical
moments of the expert’s experimental data are defined as that of the corre-
sponding empirical uncertainty distribution, i.e.,

n—1 k

&k = apat + k—i—lzz Qit1 — ;)] ’L+1 I+ (1 — ap)zk. (4.21)
=1 7=0

The moment estimates 51, 52, .- 5 are then obtained by equating the first
p moments of ®(xz|61,602,---,6, ) to the correbpondlng first p empirical mo-

ments. In other words, the moment estimates 01, 02, . 9 should solve the
system of equations,

+o00 _
/ (1—®(Yx|01,09,--,0,))dz =€, k=1,2,---,p (4.22)
0

where £1,€2, ... | P are empirical moments determined by (4.21).

Example 4.4: Assume that a questionnaire survey has successfully acquired
the following expert’s experimental data,

(1.2,0.1), (1.5,0.3), (1.8,0.4), (2.5,0.6), (3.9,0.8), (4.6,0.9). (4.23)
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Then the first three empirical moments are 2.5100, 7.7226 and 29.4936. We
also assume that the uncertainty distribution to be determined has a zigzag
form with three unknown parameters a,b and c, i.e.,

0, ifz<a
(x —a)/2(b—a), ifa<z<b
(x+c—2b)/2(c—b), ifb<z<c
1, ifxz>c.

®(x|a,b,c) = (4.24)

From the expert’s experimental data, we may believe that the unknown pa-
rameters must be positive numbers. Thus the first three moments of the
zigzag uncertainty distribution ®(x|a,b, c) are

a+2b+c
1 )
a® + ab + 2b% + be + 2
6 ;
a® 4 a?b + ab® + 20> + b?c + bc? + 3
8

It follows from the method of moments that the unknown parameters a, b, ¢
should solve the system of equations,
a+2b+c=4x2.5100
a? +ab+2b% +bc+ c? =6 x 7.7226 (4.25)
a® +a?b+ ab® + 203 + b?c + bc® + ¢3 = 8 x 29.4936.
The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
yield that the moment estimates are (a,b,c) = (0.9804,2.0303,4.9991) and
the corresponding uncertainty distribution is
0, if z <0.9804
(z —0.9804)/2.0998, if 0.9804 < = < 2.0303
(x 4+ 0.9385)/5.9376, if 2.0303 < x < 4.9991
1, if x > 4.9991.

B(z) = (4.26)

4.6 Multiple Domain Experts

Assume there are m domain experts and each produces an uncertainty distri-
bution. Then we may get m uncertainty distributions ®1 (), ®o(x), - - -, Py ().
It was suggested by Liu [129] that the m uncertainty distributions should be
aggregated to an uncertainty distribution

O(z) = w1P1(x) + wePs(z) + -+ - + Wy, Py () (4.27)
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where wq, wa, - - - , Wy, are convex combination coefficients (i.e., they are non-
negative numbers and wy + we + -+ + w, = 1) representing weights of the
domain experts. For example, we may set

wi:i, Vi=1,2,---  n. (4.28)
m
Since ®1(z), P2(x), - - -, Py, (x) are uncertainty distributions, they are increas-
ing functions taking values in [0, 1] and are not identical to either 0 or 1. Tt
is easy to verify that their convex combination ®(z) is also an increasing
function taking values in [0,1] and ®(x) £ 0, ®(z) #Z 1. Hence ®(z) is also
an uncertainty distribution by Peng-Iwamura theorem.

4.7 Delphi Method

Delphi method was originally developed in the 1950s by the RAND Corpo-
ration based on the assumption that group experience is more valid than
individual experience. This method asks the domain experts answer ques-
tionnaires in two or more rounds. After each round, a facilitator provides
an anonymous summary of the answers from the previous round as well as
the reasons that the domain experts provided for their opinions. Then the
domain experts are encouraged to revise their earlier answers in light of the
summary. It is believed that during this process the opinions of domain ex-
perts will converge to an appropriate answer. Wang, Gao and Guo [228§]
recast Delphi method as a process to determine uncertainty distributions.
The main steps are listed as follows:

Step 1. The m domain experts provide their expert’s experimental data,
(xijaaij)) .7:1’2’ 7niai:172a"' , M. (429)

Step 2. Use the i-th expert’s experimental data (z;1, 1), (2, a2),: -+,
(Tin,, Qin,) to generate the uncertainty distributions ®; of the i-
th domain experts, ¢ = 1,2,--- ,m, respectively.

Step 3. Compute ®(z) = w1Pi(x) + wePs(z) + -+ + WPy (r) where
w1, Wa, - , W, are convex combination coefficients representing
weights of the domain experts.

Step 4. If |a;; — O(x4;)| are less than a given level € > 0 for all 4 and j, then
go to Step 5. Otherwise, the i-th domain experts receive the sum-
mary (for example, the function ® obtained in the previous round
and the reasons of other experts), and then provide a set of revised
expert’s experimental data (x;1,a;1), (T2, i2), ++  (Tin,, Qin, ) for
i=1,2,--- ,m. Go to Step 2.

Step 5. The last function ® is the uncertainty distribution to be determined.
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4.8 Bibliographic Notes

The study of uncertain statistics was started by Liu [129] in 2010 in which a
questionnaire survey for collecting expert’s experimental data was designed.
It was shown among others by Chen and Ralescu [18] that the questionnaire
survey may successfully acquire the expert’s experimental data.

Parametric uncertain statistics assumes that the uncertainty distribution
to be determined has a known functional form but with unknown parame-
ters. In order to estimate the unknown parameters, Liu [129] suggested the
principle of least squares, and Wang and Peng [230] proposed the method of
moments.

Nonparametric uncertain statistics does not rely on the expert’s experi-
mental data belonging to any particular uncertainty distribution. In order to
determine the uncertainty distributions, Liu [129] introduced the linear in-
terpolation method (i.e., empirical uncertainty distribution), and Chen and
Ralescu [18] proposed a series of spline interpolation methods.

When multiple domain experts are available, Wang, Gao and Guo [228]
recast Delphi method as a process to determine uncertainty distributions.



Chapter 5

Uncertain Risk Analysis

The term 7isk has been used in different ways in literature. Here the risk
is defined as the “accidental loss” plus “uncertain measure of such loss”.
Uncertain risk analysis is a tool to quantify risk via uncertainty theory. One
main feature of this topic is to model events that almost never occur. This
chapter will introduce a definition of risk index and provide some useful
formulas for calculating risk index. This chapter will also discuss structural
risk analysis and investment risk analysis in uncertain environments.

5.1 Loss Function

A system usually contains some factors &1,&s,- - ,&, that may be under-
stood as lifetime, strength, demand, production rate, cost, profit, and re-
source. Generally speaking, some specified loss is dependent on those factors.
Although loss is a problem-dependent concept, usually such a loss may be
represented by a loss function.

Definition 5.1 Consider a system with factors &1,&2,- -+ ,&n. A function f
18 called a loss function if some specified loss occurs if and only if

f(£1a€25"' agn) > 0. (51)

Example 5.1: Consider a series system in which there are n elements whose
lifetimes are uncertain variables &1, &3, - - - , &,. Such a system works whenever
all elements work. Thus the system lifetime is

E=G NG NN (5.2)

If the loss is understood as the case that the system fails before the time T,
then we have a loss function

F€1,82, 3 &n) =T =& NG A+ N, (5:3)
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Input 1 2 3 Output

Figure 5.1: A Series System. Reprinted from Liu [129].

Hence the system fails if and only if f(&;,&s,---,&,) > 0.

Example 5.2: Consider a parallel system in which there are n elements
whose lifetimes are uncertain variables £1,&s,--+ ,&,. Such a system works
whenever at least one element works. Thus the system lifetime is

§=& V&V V. (5.4)

If the loss is understood as the case that the system fails before the time T,
then the loss function is

f€1,82, &) =T =& V&V Vi, (5:5)

Hence the system fails if and only if f(&1,&2, -+ ,&,) > 0.

Output

Input

QIS

Figure 5.2: A Parallel System. Reprinted from Liu [129].

Example 5.3: Consider a k-out-of-n system in which there are n elements
whose lifetimes are uncertain variables £1,&5,--- ,&,. Such a system works
whenever at least k of n elements work. Thus the system lifetime is

§ = k-max [gla §2a e 7671} (56)

If the loss is understood as the case that the system fails before the time T,
then the loss function is

f(§1a§25 T agn) =T — k-max [61762’ T 75"] (57)

Hence the system fails if and only if f(&1,&2,---,&,) > 0. Note that a series
system is an n-out-of-n system, and a parallel system is a 1-out-of-n system.

Example 5.4: Consider a standby system in which there are n redundant
elements whose lifetimes are &1, &a, -+ - ,&,. For this system, only one element
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is active, and one of the redundant elements begins to work only when the
active element fails. Thus the system lifetime is

E=6+&+ -+ 6. (5.8)

If the loss is understood as the case that the system fails before the time T,
then the loss function is

fl€1,82, &) =T — (&1 + &+ + ). (5.9)

Hence the system fails if and only if f(&1,&2, -+ ,&,) > 0.

-

Input O — Output

Figure 5.3: A Standby System

5.2 Risk Index

In practice, the factors £1,&s,- -+ , &, of a system are usually uncertain vari-
ables rather than known constants. Thus the risk index is defined as the
uncertain measure that some specified loss occurs.

Definition 5.2 (Liu [128]) Assume that a system contains uncertain factors
£1,&2,- -, &, and has a loss function f. Then the risk index is the uncertain
measure that the system is loss-positive, i.e.,

Risk = M{f(&1,&2,- -+ ,&,) > 0}. (5.10)
Theorem 5.1 (Liu [128], Risk Index Theorem) Assume a system contains
independent uncertain variables &1, &3, - -+ , &, with reqular uncertainty distri-
butions @1, Pg, - -+, D,,, respectively. If the loss function f(&1,&a, - ,&n) is
strictly increasing with respect to &1,&2, -+ ,&n and strictly decreasing with
respect t0 Emt1,Em+2,+, En, then the risk index is just the root o of the
equation
@A —a), - @t (1-a), @ (), -, @ 1 (o) = 0. (5.11)

Proof: It follows from Definition 5.2 and Theorem 2.21 immediately.

Remark 5.1: Since f(®7 (1 —a),---, P, (1—a), @;ﬂ_l(a), c,® (@) s
a strictly decreasing function with respect to «, its root a may be estimated

by the bisection method.
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Remark 5.2: Keep in mind that sometimes the equation (5.11) may not
have a root. In this case, if

f@T A —a) - e (1 - a), @ (a), - @ (a) <O (5.12)
for all o, then we set the root a = 0; and if

f@T A —a) e (1 - a), @ (a), - @ () > 0 (5.13)

for all o, then we set the root a = 1.

5.3 Series System

Consider a series system in which there are n elements whose lifetimes are

independent uncertain variables &1, &s, - - - , &, with uncertainty distributions
Dy, Py, -+, D, respectively. If the loss is understood as the case that the
system fails before the time 7', then the loss function is
[, &) =T & NG A NG, (5.14)
and the risk index is
Risk = M{f (&1, &2, ,&) > 0} (5.15)
Since f is a strictly decreasing function with respect to &1, &2, -+ , &, the risk
index theorem says that the risk index is just the root a of the equation
T Ha) AP () A AD () =T (5.16)

It is easy to verify that
Risk = ®1(T)V &o(T) V ---V &, (T). (5.17)

5.4 Parallel System

Consider a parallel system in which there are n elements whose lifetimes are

independent uncertain variables &1, &s, - - - , &, with uncertainty distributions
Dy, Py, -+, D, respectively. If the loss is understood as the case that the
system fails before the time 7', then the loss function is

f(§15527“'7§7L):T_§1v§2v"'\/£n (518)
and the risk index is
Since f is a strictly decreasing function with respect to &1, &2, -+ , &y, the risk
index theorem says that the risk index is just the root a of the equation

O Ha) VO () V-V, () =T. (5.20)

It is easy to verify that
Risk = (I)l(T) AN (I)Q(T) VARERIVAN (I)n(T) (5.21)
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5.5 k-out-of-n System

Consider a k-out-of-n system in which there are n elements whose lifetimes are
independent uncertain variables &1, &s, - - - , &, with uncertainty distributions
D, Dy, -+, P, respectively. If the loss is understood as the case that the
system fails before the time T, then the loss function is

f(§17£2a t 7§n) =T — k-max [517£27 e 7£n] (5'22)

and the risk index is

Risk = M{f(&,&2, -+ ,&a) > O} (5.23)

Since f is a strictly decreasing function with respect to &1, &2, -+ , &n, the risk
index theorem says that the risk index is just the root « of the equation

k-max [0] (), @5 (a), -+, @, (a)] = T. (5.24)
It is easy to verify that
Risk = k-min [®1(T), ®o(T),--- , D, (T)]. (5.25)

Note that a series system is essentially an n-out-of-n system. In this case,
the risk index formula (5.25) becomes (5.17). In addition, a parallel system
is essentially a 1-out-of-n system. In this case, the risk index formula (5.25)
becomes (5.21).

5.6 Standby System

Consider a standby system in which there are n elements whose lifetimes are
independent uncertain variables &1, &s, - - - , &, with uncertainty distributions
Dy, Py, -+, D, respectively. If the loss is understood as the case that the
system fails before the time T, then the loss function is

f(§17§27"'?gn):T_(§1+§2+"'+£7l) (526)
and the risk index is
Risk = M{f(&1,82, - ,6n) > 0}. (5.27)

Since f is a strictly decreasing function with respect to &1, &2, -+ , &y, the risk
index theorem says that the risk index is just the root « of the equation

O )+ (o) + -+ D () =T. (5.28)
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5.7 Structural Risk Analysis

Consider a structural system in which the strengths and loads are assumed
to be uncertain variables. We will suppose that a structural system fails
whenever for each rod, the load variable exceeds its strength variable. If the
structural risk index is defined as the uncertain measure that the structural
system fails, then

i=1

Risk =M { Lnj(@ < m)} (5.29)

where &1,&s, -+, &, are strength variables, and 01,12, -+ ,n, are load vari-
ables of the n rods.

Example 5.5: (The Simplest Case) Assume there is only a single strength
variable ¢ and a single load variable n with continuous uncertainty distribu-
tions ® and W, respectively. In this case, the structural risk index is

Risk = M{¢ < n}.

It follows from the risk index theorem that the risk index is just the root «
of the equation
o Ha)=T1(1 - a). (5.30)

Especially, if the strength variable £ has a normal uncertainty distribution
N(es,o5) and the load variable n has a normal uncertainty distribution
N ey, 07), then the structural risk index is

Risk = (1 +exp (;M))_l . (5.31)

Example 5.6: (Constant Loads) Assume the uncertain strength variables

£1,&, -+, &, are independent and have continuous uncertainty distributions
Dy, Py, -+, D, respectively. In many cases, the load variables 7,72, -+ , 7y,
degenerate to crisp values cj,ca, -+, ¢, (for example, weight limits allowed

by the legislation), respectively. In this case, it follows from (5.29) and inde-
pendence that the structural risk index is

n

Risk = M{U(& < ci)} = \/ M{& < ¢}

=1

That is,
Risk = &4 ((21) V (1)2(62) VeV @n(cn) (532)

Example 5.7: (Independent Load Variables) Assume the uncertain strength
variables &1, &s, - - - , &, are independent and have continuous uncertainty dis-
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tributions ®1, ®o, - -, ®,,, respectively. Also assume the uncertain load vari-
ables 11,12, -+ ,n, are independent and have continuous uncertainty distri-
butions ¥y, ¥q,--- , ¥, respectively. In this case, it follows from (5.29) and

independence that the structural risk index is

Risk = M{U(& < m)} = \/ M{& < mi}-

=1 i=1

That is,
Risk=a1VasV---Va, (5.33)

where «a; are the roots of the equations

o) =011 - a) (5.34)

fori=1,2,--- ,n, respectively.
However, generally speaking, the load variables 1,72, -+ , 1, are neither
constants nor independent. For examples, the load variables ny,m2, - , 1,
may be functions of independent uncertain variables 7,79, -, 7y. In this

case, the formula (5.33) is no longer valid. Thus we have to deal with those
structural systems case by case.

Example 5.8: (Series System) Consider a structural system shown in Fig-
ure 5.4 that consists of n rods in series and an object. Assume that the
strength variables of the n rods are uncertain variables &1,&s, -+, &, with
uncertainty distributions ®q, ®5,--- |, ®,, respectively. We also assume that
the gravity of the object is an uncertain variable 1 with uncertainty distri-
bution ¥. For each ¢ (1 < ¢ < n), the load variable of the rod i is just the
gravity n of the object. Thus the structural system fails whenever the load
variable 7 exceeds at least one of the strength variables &1,&5, -+ ,&,. Hence
the structural risk index is

n

RiskzM{U(§i<n)} =M{&G A& N NE <}

i=1

Define the loss function as

f(§15527"' agnan):n_gl/\éé/\/\gn
Then
Risk :M{f(§1a§25"' agmﬂ) > O}

Since the loss function f is strictly increasing with respect to n and strictly
decreasing with respect to £1,&s, -+ ,&,, it follows from the risk index theo-
rem that the risk index is just the root a of the equation

U1 —a)- 07 a)AD (@) A AD (o) = 0. (5.35)
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Or equivalently, let «; be the roots of the equations

U1 —a) = &, Ha) (5.36)
fori=1,2,---,n, respectively. Then the structural risk index is
Risk=a1VasV---Va,. (5.37)

[

Figure 5.4: A Structural System with n Rods and an Object

Example 5.9: Consider a structural system shown in Figure 5.5 that consists
of 2 rods and an object. Assume that the strength variables of the left and
right rods are uncertain variables & and & with uncertainty distributions
®; and P9, respectively. We also assume that the gravity of the object is an
uncertain variable n with uncertainty distribution ¥. In this case, the load
variables of left and right rods are respectively equal to

778in 0y 78in 01
sin(6y +63)"  sin(6; +62)°

Thus the structural system fails whenever for any one rod, the load variable
exceeds its strength variable. Hence the structural risk index is

—— 7 8in Oy 7 sin 61
Risk =M { (51 < Sn( + 92)) - (52 < S0+ 02)>}
& n &2 7
M { <sin 02 < sin(91 + (92) Y sin 6, < sin(91 + 92)

&1 &2 7
M { sin 6y 4 sin 6; < sin(6y + 02)
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Define the loss function as

7 1 &2

= — A .
Sin(01 + 02) sin 92 sin 01

f(§17£2777)

Then

Risk = M{f(£13625 7]) > 0}
Since the loss function f is strictly increasing with respect to 1 and strictly
decreasing with respect to &1, &2, it follows from the risk index theorem that
the risk index is just the root « of the equation

vii-a)  @ila)  25'0)

=0. 5.38
sin(6, + 602) sin 0y sin 6y ( )
Or equivalently, let a1 be the root of the equation
U1 — ot
" (—a) 2 (@) (5.39)
sin(6y + 02) sin 0y
and let as be the root of the equation
11— ot
1) % (@) (5.40)
sin(6q + 02) sin 0
Then the structural risk index is
Risk = a1 V as. (5.41)

L[LLLIPT T

0105

Figure 5.5: A Structural System with 2 Rods and an Object

5.8 Investment Risk Analysis

Assume that an investor has n projects whose returns are uncertain variables
&1,&9,- -+ ,&,. If the loss is understood as the case that total return &; + & +
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-+« + &, is below a predetermined value ¢ (e.g., the interest rate), then the
investment risk index is

Risk =M{& + &+ -+ &, < c}. (5.42)
If &,&, -+, &, are independent uncertain variables with uncertainty distri-
butions ®q, ®,, --- , P, respectively, then the investment risk index is just

the root « of the equation

O Ha) + 05 () + -+ B, o) =c (5.43)

5.9 Value-at-Risk

As a substitute of risk index (5.10), a concept of value-at-risk is given by the
following definition.

Definition 5.3 (Peng [183]) Assume that a system contains uncertain fac-
tors £1,&2, -, &, and has a loss function f. Then the value-at-risk is defined
as

VaR(a) = sup{z | M{f(&1,&, -+ ,&) >z} > a}. (5.44)

Note that VaR(«) represents the maximum possible loss when « percent of
the right tail distribution is ignored. In other words, the loss f(&1,&2, - ,&5)
will exceed VaR(«) with uncertain measure . See Figure 5.6. If ®(x) is the
uncertainty distribution of f(&1,8&a, - ,&,), then

VaR(a) =sup{z|®(z) <1—a}. (5.45)
If its inverse uncertainty distribution ®~!(«) exists, then

VaR(a) = @7 1(1 - a). (5.46)

0 Vaﬁ(a)

Figure 5.6: Value-at-Risk
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Theorem 5.2 (Peng [183]) The value-at-risk VaR(«) is a monotone de-
creasing function with respect to «.

Proof: Let a; and as be two numbers with 0 < a; < as < 1. Then for any
number r < VaR(ag), we have

M{f(ftha"' 7571) ZT} > g > Q.

Thus, by the definition of value-at-risk, we obtain VaR(a;) < r < VaR(ag).
That is, VaR(«) is a monotone decreasing function with respect to «.

Theorem 5.3 (Peng [183]) Assume a system contains independent uncer-

tain variables £1,&, - - - , &, with regular uncertainty distributions ®1, ®o, - - -,

®,,, respectively. If the loss function f(&1,&2,--- ,&n) is strictly increasing

with respect to &1,&2, - -+ , & and strictly decreasing with respect to &1, Em+2,
' agn; then

VaR(a) = f(®7 (1 - a),- @ (1 - a), @, L (), @, (a).  (5.47)

Proof: It follows from the operational law of uncertain variables that the
loss f(&1,&2,- -+ ,&,) has an inverse uncertainty distribution

B (a) = F(@7 (@), -+, B, (0), By (L= ), - B, (1 — ).

The theorem follows from (5.46) immediately.

5.10 Expected Loss

Liu and Ralescu [151] proposed a concept of expected loss that is the expected
value of the loss f(&1,&2, -+ ,&,) given f(&1,&,--+,&,) > 0. A formal defi-
nition is given below.

Definition 5.4 (Liu and Ralescu [151]) Assume that a system contains un-
certain factors £1,&a,- -+, &, and has a loss function f. Then the expected loss

is defined as
400

If ®(x) is the uncertainty distribution of the loss f(&1,&2,- -+, &), then
we immediately have

+oo
L= /0 (1 —®(z))dz. (5.49)

If its inverse uncertainty distribution ®~!(«a) exists, then the expected loss
is

1
= ~a + Q. .
b [ ey’ o0
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Theorem 5.4 (Liu and Ralescu [154]) Assume a system contains indepen-
dent uncertain variables £1,&s, - -+ , &, with reqular uncertainty distributions
Oy, Dy, -, D, respectively. If the loss function f(&1,8,--+ ,&n) is strictly
increasing with respect to &1,&a,- -+ ,&m and strictly decreasing with respect
to Emt1,Emra, -, En, then the expected loss is

L=34 FHOT (@), @50 (a), Bk, (1 —a), -+, @5 1(1 - a))da. (5.51)

Proof: It follows from the operational law of uncertain variables that the
loss f(&1,&2, -+ ,&,) has an inverse uncertainty distribution

7o) = f(27 (@), 05 (@), 20 (1 - a) - 2N (1 - a)).

The theorem follows from (5.50) immediately.

5.11 Hazard Distribution

Suppose that £ is the lifetime of some element. Here we assume it is an
uncertain variable with a prior uncertainty distribution ®. At some time ¢,
it is observed that the element is working. What is the residual lifetime of
the element? The following definition answers this question.

Definition 5.5 (Liu [128]) Let £ be a nonnegative uncertain variable repre-
senting lifetime of some element. If & has a prior uncertainty distribution @,
then the hazard distribution at time t is

0, if ®(x) < O(t)
Bst) - 1?’(@% NO.5, if ®(t) < B(z) < (1+ B(t))/2 (5.52)
O () — D(¢) )
BET A

that is just the conditional uncertainty distribution of £ given & > t.

The hazard distribution is essentially the posterior uncertainty distribu-
tion just after time ¢ given that it is working at time ¢.

Exercise 5.1: Let ¢ be a linear uncertain variable L(a,b), and ¢ a real
number with a < ¢t < b. Show that the hazard distribution at time ¢ is
0, ife <t
r—a
D(zft) =9 bt
r—1
b—t

A0S, ift<az<(b+1)/2

AL, if (b+1)/2 < a.
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Theorem 5.5 (Liu [128], Conditional Risk Index Theorem) Assume that a
system contains uncertain factors &1,&a, -+, &y, and has a loss function f.
Suppose £1,&,- -+ , &, are independent uncertain variables with uncertainty
distributions @1, Po, - -, @, respectively, and f(&1,&a,- -+ , &) is strictly in-
creasing with respect to &1,&a, -+ ,&m and strictly decreasing with respect to
Ema1,&maa, - En. If it is observed that all elements are working at some
time t, then the risk index is just the root o of the equation

@t —alt),-- @ (1~ aft), 2L (alt), -+, @ (alt)) =0 (5.53)

where ®;(x|t) are hazard distributions determined by

0, if @i(x) < Bi(t)
By(alt) — % A0S, i @i(t) < Rila) S A+ i(0)/2 55y
‘w, if (1+®i(t)/2 < ()

fori=1,2,--- n.

Proof: It follows from Definition 5.5 that each hazard distribution of ele-
ment is determined by (5.54). Thus the conditional risk index is obtained by
Theorem 5.1 immediately.

5.12 Bibliographic Notes

Uncertain risk analysis was proposed by Liu [128] in 2010 in which a risk
index was defined and a risk index theorem was proved. This tool was also
successfully applied among others to structural risk analysis and investment
risk analysis.

As a substitute of risk index, Peng [183] suggested a concept of value-
at-risk that is the maximum possible loss when the right tail distribution is
ignored. In addition, Liu and Ralescu [151, 154] investigated the concept of
expected loss that takes into account not only the chance of the loss but also
its severity.



Chapter 6

Uncertain Reliability
Analysis

Uncertain reliability analysis is a tool to deal with system reliability via
uncertainty theory. This chapter will introduce a definition of reliability
index and provide some useful formulas for calculating reliability index.

6.1 Structure Function

Many real systems may be simplified to a Boolean system in which each
element (including the system itself) has two states: working and failure.
Let Boolean variables x; denote the states of elements i for i = 1,2,--- ,n,
and

1, if element 7 works

i = 6.1
* { 0, if element 7 fails. (6.1)

We also suppose the Boolean variable X indicates the state of the system,
ie.,

(6.2)

X = 1, if the system works
~ ] 0, if the system fails.

Usually, the state of the system is completely determined by the states of its
elements via the so-called structure function.

Definition 6.1 Assume that X is a Boolean system containing elements

XT1,To, s xn. A Boolean function f is called a structure function of X
if

X =1 if and only if f(x1,29, -+ ,x,) = 1. (6.3)
It is obvious that X = 0 if and only if f(z1,z2, -+ ,2,) = 0 whenever f is

indeed the structure function of the system.

© Springer-Verlag Berlin Heidelberg 2015 151
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Example 6.1: For a series system, the structure function is a mapping from
{0,1}" to {0,1}, i.e.,

flay,@e, - jxp) =21 Ao Ao Ay, (6.4)

Input 1 2 3 Output

Figure 6.1: A Series System. Reprinted from Liu [129].

Example 6.2: For a parallel system, the structure function is a mapping
from {0,1}" to {0, 1}, i.e.,

flxr, e, - jzp) =21 Vaa V- Va,. (6.5)
1
L= |
Input 2 Output
3
L2 |

Figure 6.2: A Parallel System. Reprinted from Liu [129].

Example 6.3: For a k-out-of-n system that works whenever at least k of the
n elements work, the structure function is a mapping from {0,1}" to {0, 1},
ie.,
1, ifey+axe+---+x, >k
f($1,$27"' ;xn): . (66)
0, ifey+z0+4---+z, <k.
Especially, when k£ = 1, it is a parallel system; when & = n, it is a series
system.

6.2 Reliability Index

The element in a Boolean system is usually represented by a Boolean uncer-
tain variable, i.e.,

(6.7)

1 with uncertain measure a
0 with uncertain measure 1 — a.

In this case, we will say £ is an uncertain element with reliability a. Reliability
index is defined as the uncertain measure that the system is working.
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Definition 6.2 (Liu [128]) Assume a Boolean system has uncertain ele-
ments &1,&2,-+ , & and a structure function f. Then the reliability index
18 the uncertain measure that the system is working, i.e.,

Reliability = M{f(€1, &2, ,&,) = 1}. (6.8)

Theorem 6.1 (Liu [128], Reliability Index Theorem) Assume that a system
contains uncertain elements &1,&a, -+, &y, and has a structure function f. If
&1,&a, -, &y are independent uncertain elements with reliabilities aq,as, - - -,
an, respectively, then the reliability index is

sup min v;(x;),
f(@1,0, mn)=1 151500

Reliability = ©9)
1— s min v;(z;)
f(z1,m0, 2 )=0 1S1<T0 Ll
i sup min v;(z;) > 0.5
f(z1,m0, on)=1 151500 LA

where x; take values either 0 or 1, and v; are defined by

a; ifx; =1
vi(zi) = } f ' (6.10)
1—a;, ifx; =0
fori=1,2,--- ,n, respectively.
Proof: Since &1,&, -, &, are independent Boolean uncertain variables and

f is a Boolean function, the equation (6.9) follows from Definition 6.2 and
Theorem 2.23 immediately.

6.3 Series System

Consider a series system having independent uncertain elements &1, &2, -+ , &,
with reliabilities a1, as, - - - , ay, respectively. Note that the structure function
is

flx1,22, - ,xn) =1 AT A ATy (6.11)

It follows from the reliability index theorem that the reliability index is
Reliability = M{& A& A - A& =1} =air Aaa A+ A ay. (6.12)

6.4 Parallel System

Consider a parallel system having independent uncertain elements &1,&s, - - -,
&, with reliabilities aq, as, - - - , ay, respectively. Note that the structure func-
tion is

flxr, e, jzp) =21 Vaa V- Va,. (6.13)
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It follows from the reliability index theorem that the reliability index is

Reliability = M{& V& V-V, =1 =a1Vas V- Vay. (6.14)

6.5 k-out-of-n System

Consider a k-out-of-n system having independent uncertain elements &7, &o,
-+ &, with reliabilities a1, a9, - - , an, respectively. Note that the structure
function has a Boolean form,

1, fzi+ae+---+x, >k

. (6.15)
0, ifxy+as0+---+x, <k.

f(xlvx%"' ;'Tn) = {

It follows from the reliability index theorem that the reliability index is the
kth largest value of a1, as, - ,an,, i.e.,

Reliability = k-max[ay,az, - , ay). (6.16)

Note that a series system is essentially an n-out-of-n system. In this case,
the reliability index formula (6.16) becomes (6.12). In addition, a parallel
system is essentially a 1-out-of-n system. In this case, the reliability index
formula (6.16) becomes (6.14).

6.6 General System

It is almost impossible to find an analytic formula of reliability risk for general
systems. In this case, we have to employ numerical method.

Input —— 3 — Output

Figure 6.3: A Bridge System. Reprinted from Liu [129].

Consider a bridge system shown in Figure 6.3 that consists of 5 indepen-
dent uncertain elements whose states are denoted by &1, &2, £3,&4, £5. Assume
each path works if and only if all elements on which are working and the
system works if and only if there is a path of working elements. Then the
structure function of the bridge system is

flx1,@o, 23,24, 25) = (x1 Axg) V (z2 Axs) V (T1 Azs Axs) V (T2 A s A xy).
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The Boolean System Calculator, a function in the Matlab Uncertainty Tool-
box (http://orsc.edu.cn/liu/resources.htm), may yield the reliability index.
Assume the 5 independent uncertain elements have reliabilities

0.91, 0.92, 0.93, 0.94, 0.95

in uncertain measure. A run of Boolean System Calculator shows that the
reliability index is

Reliabz’lity = M{f(fl,gg, te 7§5) = 1} =0.92

in uncertain measure.

6.7 Bibliographic Notes

Uncertain reliability analysis was proposed by Liu [128] in 2010 in which a
reliability index was defined and a reliability index theorem was proved.



Chapter 7

Uncertain Propositional
Logic

Propositional logic, originated from the work of Aristotle (384-322 BC), is a
branch of logic that studies the properties of complex propositions composed
of simpler propositions and logical connectives. Note that the propositions
considered in propositional logic are not arbitrary statements but are the
ones that are either true or false and not both.

Uncertain propositional logic is a generalization of propositional logic in
which every proposition is abstracted into a Boolean uncertain variable and
the truth value is defined as the uncertain measure that the proposition is
true. This chapter will deal with uncertain propositional logic, including
uncertain proposition, truth value definition, and truth value theorem. This
chapter will also introduce uncertain predicate logic.

7.1 Uncertain Proposition

Definition 7.1 (Li and Liu [100]) An uncertain proposition is a statement
whose truth value is quantified by an uncertain measure.

That is, if we use X to express an uncertain proposition and use « to express
its truth value in uncertain measure, then the uncertain proposition X is
essentially a Boolean uncertain variable

1 with uncertain measure «
= (7.1)

0 with uncertain measure 1 — «

where X = 1 means X is true and X = 0 means X is false.

Example 7.1: “Tom is tall with truth value 0.7” is an uncertain proposition,
where “Tom is tall” is a statement, and its truth value is 0.7 in uncertain
measure.

© Springer-Verlag Berlin Heidelberg 2015 157
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Example 7.2: “John is young with truth value 0.8” is an uncertain propo-
sition, where “John is young” is a statement, and its truth value is 0.8 in
uncertain measure.

Example 7.3: “Beijing is a big city with truth value 0.9” is an uncertain
proposition, where “Beijing is a big city” is a statement, and its truth value
is 0.9 in uncertain measure.

Connective Symbols

In addition to the proposition symbols X and Y, we also need the negation
symbol —, conjunction symbol A, disjunction symbol V, conditional symbol
—, and biconditional symbol <. Note that

=X means “not X7; (7.2)

X AY means “X and Y7; (7.3)

X VY means “X or Y7, (7.4)

X =Y =(-X)VY means “if X then Y, (7.5)

XY =X-=>Y)A(Y = X) means “X if and only if Y. (7.6)
Boolean Function of Uncertain Propositions

Assume X, Xo, -+, X, are uncertain propositions. Then their Boolean func-

tion
Z:f<X17X27"' )Xn) (77)

is a Boolean uncertain variable. Thus Z is also an uncertain proposition
provided that it makes sense. Usually, such a Boolean function is a finite
sequence of uncertain propositions and connective symbols. For example,

Z:_\Xl, Z:Xl/\(_\Xz), 7 =X1 = Xo (78)

are all uncertain propositions.

Independence of Uncertain Propositions

Uncertain propositions are called independent if they are independent uncer-
tain variables. Assume X1, X5, -, X, are independent uncertain proposi-
tions. Then

[1(X1), fo(Xz) -+, fu(Xn) (7.9)
are also independent uncertain propositions for any Boolean functions f1, fa,
-, fn. For example, if X1, X5, -+, X5 are independent uncertain proposi-

tions, then = X1, X5 V X3, X4 — X5 are also independent.
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7.2 Truth Value

Truth value is a key concept in uncertain propositional logic, and is defined
as the uncertain measure that the uncertain proposition is true.

Definition 7.2 (Li and Liu [100]) Let X be an uncertain proposition. Then
the truth value of X is defined as the uncertain measure that X is true, i.e.,

T(X) = M{X =1}. (7.10)

Example 7.4: Let X be an uncertain proposition with truth value a. Then

TEX)=M{X=0}=1-q. (7.11)

Example 7.5: Let X and Y be two independent uncertain propositions with
truth values o and f3, respectively. Then

TXAY)=M{XAY =1}=M{X=1)NnT¥ =1D}=ans, (7.12)

TXVY)=M{XVvY=1}=M{X=1©HUu¥ =1}=aVvs (7.13)

TX-=>Y)=T(-XVY)=(1-a)Vg. (7.14)

Theorem 7.1 (Law of Excluded Middle) Let X be an uncertain proposition.
Then X V =X 1is a tautology, i.e.,

T(XV-X)=1. (7.15)

Proof: It follows from the definition of truth value and the property of
uncertain measure that

TXV-X)=M{XV-X=1}=M{X=1)HUX=0)}=M{T}=1.
The theorem is proved.

Theorem 7.2 (Law of Contradiction) Let X be an uncertain proposition.
Then X A =X is a contradiction, i.e.,

T(X A-X)=0. (7.16)

Proof: It follows from the definition of truth value and the property of
uncertain measure that

T(XA-X)=M{XA-X =1} =M{(X =1)N (X =0)} = M{0} = 0.

The theorem is proved.
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Theorem 7.3 (Law of Truth Conservation) Let X be an uncertain proposi-
tion. Then we have
T(X)+T(—X)=1. (7.17)

Proof: It follows from the duality axiom of uncertain measure that
TEX)=M{-X=1}=M{X=0}=1-M{X =1} =1-T(X).
The theorem is proved.

Theorem 7.4 Let X be an uncertain proposition. Then X — X is a tau-
tology, i.e.,
T(X - X)=1 (7.18)

Proof: It follows from the definition of conditional symbol and the law of
excluded middle that

TX—->X)=T-XVX)=1.
The theorem is proved.
Theorem 7.5 Let X be an uncertain proposition. Then we have
TX —--X)=1-T(X). (7.19)

Proof: It follows from the definition of conditional symbol and the law of
truth conservation that

TX - -X)=T(-XV-X)=T(-X)=1-T(X).
The theorem is proved.

Theorem 7.6 (De Morgan’s Law) For any uncertain propositions X andY,
we have

T(H(XAY))=T((-X)V (Y)), (7.20)
T(—(XVY))=T((-X)A(—Y)). (7.21)
Proof: It follows from the basic properties of uncertain measure that
TH(XAY)=M{XAY =0} =M{(X=0)U(Y =0)}
=M{(=X)V (7Y) =1} = T((=X) v (7))
which proves the first equality. A similar way may verify the second equality.
Theorem 7.7 (Law of Contraposition) For any uncertain propositions X

and Y, we have
TX->Y)=T-Y — —-X). (7.22)

Proof: It follows from the definition of conditional symbol and basic prop-
erties of uncertain measure that
TX-=>Y)=M{(-X)vY=1}=M{(X=0)U(Y =1)}
=M{Y V(-X)=1}=T(-Y — -X).

The theorem is proved.
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7.3 Chen-Ralescu Theorem

An important contribution to uncertain propositional logic is the Chen-
Ralescu theorem that provides a numerical method for calculating the truth
values of uncertain propositions.

Theorem 7.8 (Chen-Ralescu Theorem [14]) Assume that X1, Xa, -+, X,
are independent uncertain propositions with truth values aq,asg, -+, ay, TE-
spectively. Then for a Boolean function f, the uncertain proposition

7= f(X1,Xo, , Xy). (7.23)

has a truth value

sup min v;(x;),
flzy,wa, - z,)=115150

if sup min v;(x;) < 0.5

T(Z) _ f(@1,@0, n)=1 15150 (7 24)

1-— sup min v;(x;), '
f(@1,m2, 2n)=0 1<i<n

if sup min v;(x;) > 0.5
f(rl,xz,“-,xn):llﬁiﬁn e

where x; take values either 0 or 1, and v; are defined by
Qi ’Lf xXr; = 1
i(Ti) = . 7.25
vi(wi) {1—0@-, ifx; =0 ( )
fori=1,2,---,n, respectively.

Proof: Since Z =1 if and only if f(X;,Xs, -, X,) = 1, we immediately
have
T(Z) = M{f(leXQa e aXn) = 1}

Thus the equation (7.24) follows from Theorem 2.23 immediately.

Exercise 7.1: Let Xi, Xo,---,X,, be independent uncertain propositions
with truth values ay, as, -, a,, respectively. Then
Z=X1ANXoN---NX, (7.26)

is an uncertain proposition. Show that the truth value of Z is

T(Z)=ai1 Nag A+ N ay. (7.27)
Exercise 7.2: Let X, Xo,---, X, be independent uncertain propositions
with truth values ag,asg, -, an,, respectively. Then

Z=X1VXyV---VX, (7.28)
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is an uncertain proposition. Show that the truth value of Z is

T(Z)=a1VagV- -V a,. (7.29)
Example 7.6: Let X; and X5 be independent uncertain propositions with
truth values a; and as, respectively. Then

7 =X < Xo (7.30)
is an uncertain proposition. It is clear that Z = f(X;, Xs) if we define
f(,1)=1, f(1,00=0, f(0,1)=0, f(0,0)=1.

At first, we have

sup  min v;(x;) = max{ag Aag, (1 —a1) A (1 —ag)},
f($1,$2):1 1<i<2

sup  min v;(x;) = max{(1l —a1) Aag, a1 A (1 —ag)}.
f(wy,m9)=0 1<1<2

When a7 > 0.5 and as > 0.5, we have

sup - min v;(z;) = ay Aaz 2 0.5.
flay,m0)=115i52

It follows from Chen-Ralescu theorem that

T(Z)=1— sup min yi(z;))=1—(1—0a1)V(l—a2) =01 Aas.
f(z1,22)=0 1<iz2

When a7 > 0.5 and as < 0.5, we have

sup  min v(z;) = (1 —a1) Vag <0.5.
fla,me)=115i52 o

It follows from Chen-Ralescu theorem that

T(Z)= sup min v(z;)=(1—o)Vas.
f(z1,22)=1 1<i<2

When a; < 0.5 and as > 0.5, we have

sup  min v(z;) = a1 V(1 —az) <0.5.
Flzy,ag)=1 15952 o

It follows from Chen-Ralescu theorem that

T(Z)= sup min y(z;) =a1 V(1 —as).
( Flar,am)=1 1512
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When a; < 0.5 and as < 0.5, we have

sup  min y(x;) = (1 —a1) A (1 —ag) > 0.5.
F(z1,m0)=1 15752

It follows from Chen-Ralescu theorem that

T(Z)=1~- sup min vi(z;) =1—a; Vas = (1 —a1) A1l — as).
f(z1,22)=0 1<i<2

Thus we have

a1 A as, if gy > 0.5 and a9 > 0.5
1—a1)Vas, if ;7 > 0.5 and as < 0.5

rzy=] (ToVer ifer2 : (7.31)
a1 V(1 — ag), if 1 < 0.5 and ag > 0.5

(I—a1)AN(1—a3), ifa; <0.5and ay < 0.5.

7.4 Boolean System Calculator

Boolean System Calculator is a software that may compute the truth value
of uncertain formula. This software may be downloaded from the website at
http://orsc.edu.cn/liu/resources.htm. For example, assume &1, &s, &3, 84, &5
are independent uncertain propositions with truth values 0.1, 0.3, 0.5, 0.7, 0.9,
respectively. Consider an uncertain formula,

X =& NEE)V(EANE)V(ENE)V (EaNEs). (7.32)

It is clear that the corresponding Boolean function of X has the form

1, ifz1+a29=2
1, ifzg+az3=2

fz1, 20,23, 24,25) = 1, ifas+as=2
1, ifzs+o5=2
0, otherwise.

A run of Boolean System Calculator shows that the truth value of X is 0.7
in uncertain measure.

7.5 Uncertain Predicate Logic

Consider the following propositions: “Beijing is a big city”, and “Tianjin is a
big city”. Uncertain propositional logic treats them as unrelated propositions.
However, uncertain predicate logic represents them by a predicate proposition
X (a). If a represents Beijing, then

X (a) = “Beijing is a big city”. (7.33)
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If a represents Tianjin, then
X (a) = “Tianjin is a big city”. (7.34)

Definition 7.3 (Zhang and Li [267]) Uncertain predicate proposition is a
sequence of uncertain propositions indexed by one or more parameters.

In order to deal with uncertain predicate propositions, we need a universal
quantifier V and an existential quantifier 3. If X (a) is an uncertain predicate
proposition defined by (7.33) and (7.34), then

(Va)X (a) = “Both Beijing and Tianjin are big cities”, (7.35)
(Ja)X (a) = “At least one of Beijing and Tianjin is a big city”.  (7.36)

Theorem 7.9 (Zhang and Li [267], Law of Excluded Middle) Let X (a) be
an uncertain predicate proposition. Then

T((Va)X(a) V (3a)-X(a)) = 1. (7.37)

Proof: Since =(Va)X (a) = (Ja)—X (a), it follows from the definition of truth
value and the property of uncertain measure that

T((Va)X(a) V (a)=X(a)) = M{((Va)X(a) =1) U ((Va)X(a) =0)} = 1.
The theorem is proved.

Theorem 7.10 (Zhang and Li [267], Law of Contradiction) Let X (a) be an
uncertain predicate proposition. Then

T((Ya)X (a) A (Ja)-X (a)) = 0. (7.38)

Proof: Since ~(Va)X (a) = (Ja)—X (a), it follows from the definition of truth
value and the property of uncertain measure that

T((Va)X (a) A (Fa)-X(a)) = M{((Va)X (a) = 1) N ((Va) X (a) = 0)} = 0.
The theorem is proved.

Theorem 7.11 (Zhang and Li [267], Law of Truth Conservation) Let X (a)
be an uncertain predicate proposition. Then

T((Va)X(a)) + T((Fa)-X(a)) = 1. (7.39)

Proof: Since —(Va)X (a) = (3a)—X (a), it follows from the definition of truth
value and the property of uncertain measure that

T((Fa)-X(a)) =1 —-M{(Va)X(a) =1} =1 -T((Va)X (a)).

The theorem is proved.
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Theorem 7.12 (Zhang and Li [267]) Let X(a) be an uncertain predicate
proposition. Then for any given b, we have

T((Ya)X (a) — X (b)) = 1. (7.40)

Proof: The argument breaks into two cases. Case 1: If X(b) = 0, then
(Va)X(a) = 0 and =(Va)X (a) = 1. Thus

(Va)X (a) — X (b) = ~(Va)X (a) V X (b) = 1.
Case II: If X (b) = 1, then we immediately have

(Va)X (a) — X (b) = ~(Va) X (a) V X (b) = 1.
Thus we always have (7.40). The theorem is proved.

Theorem 7.13 (Zhang and Li [267]) Let X(a) be an uncertain predicate
proposition. Then for any given b, we have

T(X(b) — (3a)X(a)) = 1. (7.41)

Proof: The argument breaks into two cases. Case 1: If X(b) = 0, then
-X(b) =1 and

X(b) = (Va)X(a) ==X (b) V (Ja)X(a) = 1.
Case ITI: If X (b) = 1, then (Ja)X(a) =1 and

X(b) = (Ja)X(a) ==X (b) V (Ja)X(a) = 1.
Thus we always have (7.41). The theorem is proved.

Theorem 7.14 (Zhang and Li [267]) Let X (a) be an uncertain predicate
proposition. Then

T((Ya)X (a) = (Ja)X(a)) = 1. (7.42)

Proof: The argument breaks into two cases. Case 1: If (Va)X (a) = 0, then
—(Va)X (a) =1 and

(Va)X(a) = (Fa)X(a) = ~(Va) X (a) V (Fa) X (a) = 1.
Case II: If (Va)X (a) = 1, then (Fa)X (a) =1 and
(Va)X(a) = (Fa)X(a) = ~(Va) X (a) V (Fa) X (a) = 1.

Thus we always have (7.42). The theorem is proved.
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Theorem 7.15 (Zhang and Li [267]) Let X(a) be an uncertain predicate
proposition such that {X (a)|a € A} is a class of independent uncertain propo-
sitions. Then

T((Va)X(a)) = inf T(X(a)), (7.43)
T((Fa)X (a)) = ilelgT(X(a)). (7.44)

Proof: For each uncertain predicate proposition X (a), by the meaning of
universal quantifier, we obtain

T((Va)X (a)) = M{(Va)X(a) =1} =M { () (X(a) = 1)} :

acA

Since {X (a)|a € A} is a class of independent uncertain propositions, we get

T((Ya)X(a)) = inf M{X(a) =1} = inf T(X(a)).

The first equation is verified. Similarly, by the meaning of existential quan-
tifier, we obtain

1W%MMD=MwMX@=H:W%LMMM=U}

acA

Since {X (a)|a € A} is a class of independent uncertain propositions, we get

T((3a)X(a)) = sup M{X(a) =1} = (SLEET(X(Q))'

The second equation is proved.

Theorem 7.16 (Zhang and Li [267]) Let X (a,b) be an uncertain predicate
proposition such that {X (a,b)|la € A,b € B} is a class of independent uncer-
tain propositions. Then

T((Va)(3b)X (a,b)) = ;Ielg glelg T(X(a,b)), (7.45)
T((Ja)(¥b) X (a,b)) = :1612 biél}fg T(X(a,b)). (7.46)

Proof: Since {X(a,b)|la € A,b € B} is a class of independent uncertain
propositions, both {(3b)X(a,b)la € A} and {(Vb)X(a,b)|a € A} are two
classes of independent uncertain propositions. It follows from Theorem 7.15
that

T((Ya)(3b)X (a,b)) = inf T((3b)X(a,b)) = inf sup T(X(a,b)),

T(30) (¥9) X (a 1)) = sup T((¥)X (a,1)) = sup inf T(X(a.1)).

The theorem is proved.
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7.6 Bibliographic Notes

Uncertain propositional logic was designed by Li and Liu [100] in which ev-
ery proposition is abstracted into a Boolean uncertain variable and the truth
value is defined as the uncertain measure that the proposition is true. An im-
portant contribution is Chen-Ralescu theorem [14] that provides a numerical
method for calculating the truth value of uncertain propositions.

Another topic is the uncertain predicate logic developed by Zhang and Li
[267] in which an uncertain predicate proposition is defined as a sequence of
uncertain propositions indexed by one or more parameters.



Chapter 8

Uncertain Entailment

Uncertain entailment is a methodology for calculating the truth value of an
uncertain formula via the maximum uncertainty principle when the truth
values of other uncertain formulas are given. In some sense, uncertain propo-
sitional logic and uncertain entailment are mutually inverse, the former at-
tempts to compose a complex proposition from simpler ones, while the latter
attempts to decompose a complex proposition into simpler ones.

This chapter will present an uncertain entailment model. In addition,
uncertain modus ponens, uncertain modus tollens and uncertain hypothetical
syllogism are deduced from the uncertain entailment model.

8.1 Uncertain Entailment Model

Assume X, X5, -+, X, are independent uncertain propositions with wun-
known truth values aq, as, - , ay,, respectively. Also assume that

Vi = [fi(X1, Xp, -+, Xp) (8.1)
are uncertain propositions with known truth values ¢;, j = 1,2,--- ,m, re-

spectively. Now let
Z = f(X1, X9, , Xp) (8.2)

be an additional uncertain proposition. What is the truth value of Z? This
is just the uncertain entailment problem. In order to solve it, let us consider
what values aq, as, - , o, may take. The first constraint is

0<a; <1, i=1,2,---,n. (8.3)
The second type of constraints is represented by

T(Y;) = ¢ (8.4)
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where T'(Y;) are determined by aq,aq,- -, ay via
sup min vi(z;),
fj(xlax%'” ,xn)=l 1<izn
if sup min v;(x;) < 0.5
fi(@1,me, o, )=1 15150
1-— sup min v;(x;),
fi(@1,@0, w,)=0 15150
if sup min v;(x;) > 0.5
£ (@1,20, - Tn)=1 1<i<n

for j=1,2,---,m and

(679 lf.fClil
i(Ti) = . 8.6
vi(:) {1—ai, ifz; =0 (86)

for ¢ = 1,2,--- ,n. Please note that the additional uncertain proposition
Z = f(X1,Xs,---,X,) has a truth value

sup min v;(x;),
Flz1,ma, an)=1 1550
if sup min v;(x;) < 0.5
f(z1,m0, o, )=1 15150
1- sup min v;(x;),
f(@1,m2, n)=0 1<i<n
if sup min v;(z;) > 0.5.
f(z1,m0, yon)=1 15950

Since the truth values ay, as, - - , o, are not uniquely determined, the truth
value T'(Z) is not unique too. In this case, we have to use the maximum
uncertainty principle to determine the truth value T'(Z). That is, T(Z)
should be assigned the value as close to 0.5 as possible. In other words,
we should minimize the value |T'(Z) — 0.5] via choosing appreciate values of

Q1,Q, -+, ap. The uncertain entailment model is thus written by Liu [126]
as follows,
min |T(Z) — 0.5
subject to:
! . (8.8)
OSOQSI, 1:1723"'777'

TY;)=¢;, j=12,---,m
where T(Z),T(Y;),j = 1,2,--- ,m are functions of unknown truth values

A1, 02, ,Qp.

Example 8.1: Let A and B be independent uncertain propositions. It is
known that
T(AVB)=a, T(AAB)=hb. (8.9)
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What is the truth value of A — B? Denote the truth values of A and B by
ay and as, respectively, and write

Yy=AVDB, Yo=AANB, Z=A-—B.

It is clear that

T(Y1) =a1 Vay =a,

T(Yg) =1 ANag = b,

T(Z) = (1 - 051) V Q9.
In this case, the uncertain entailment model (8.8) becomes
min [(1 — o) Vag — 0.5]
subject to:

0 S (651 S 1

OSO{QS].

ayr Vo =a

(8.10)

al/\OéQZb.

When a > b, there are only two feasible solutions (aj,as) = (a,b) and
(a1, a0) = (b,a). If a + b < 1, the optimal solution produces

T(Z)=1-a])Vas;=1—gq;
if a + b = 1, the optimal solution produces
T(Z)=(1—-aj)Vas =aorb
if a +b > 1, the optimal solution produces
T(Z)=(1—-a])Vas=h.

When a < b, there is no feasible solution and the truth values are ill-assigned.
In summary, from T(AV B) = a and T(A A B) = b we entail

l—a, ifa>banda+b<1
aorb, ifa>banda+b=1
b, ffa>banda+b>1

illness, if a < b.

T(A — B) = (8.11)

8.2 Uncertain Modus Ponens

Uncertain modus ponens was presented by Liu [126]. Let A and B be inde-
pendent uncertain propositions. Assume A and A — B have truth values a
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and b, respectively. What is the truth value of B? Denote the truth values
of A and B by a; and «s, respectively, and write

Yi=A, Yo=A—B, Z=B.
It is clear that
T(Yl) = 1 = a,
T(YQ) = (1 — O[l) V ag = b,
T(Z) = Q9.

In this case, the uncertain entailment model (8.8) becomes
min |ag — 0.5]
subject to:

0 S aq S 1

0 S Q9 S 1

a1 = a
(1—a;)Vas=h.

(8.12)

When a + b > 1, there is a unique feasible solution and then the optimal
solution is
oy =a, o =0b.
Thus T(B) = a3 = b. When a + b = 1, the feasible set is {a} x [0,b] and the
optimal solution is
aj =a, a5;=0.5Ab.

Thus T'(B) = a3 = 0.5 Ab. When a+ b < 1, there is no feasible solution and
the truth values are ill-assigned. In summary, from

T(A)=a, T(A— B)=b (8.13)

we entail
b, ifa+b>1
T(B)=< 05Ab, ifa+b=1 (8.14)
illness, ifa+b< 1.

This result coincides with the classical modus ponens that if both A and
A — B are true, then B is true.

8.3 Uncertain Modus Tollens

Uncertain modus tollens was presented by Liu [126]. Let A and B be inde-
pendent uncertain propositions. Assume A — B and B have truth values a
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and b, respectively. What is the truth value of A7 Denote the truth values
of A and B by a; and «s, respectively, and write

Yi=A—> B, Y.=B, Z=A.

It is clear that
TY1)=(1—a1)Va =a,

T(}/Q) = Qg = ba
T(Z) = Q7.
In this case, the uncertain entailment model (8.8) becomes

min |a; — 0.5]

subject to:
0<a; <1
0<as <1

(1-—a)Vaz=a

(8.15)

OéQZb.

When a > b, there is a unique feasible solution and then the optimal solution
is

* *
aj=1—a, a5=0.

Thus T(A) = af =1 — a. When a = b, the feasible set is [1 — a, 1] x {b} and
the optimal solution is

af=(1-a)VvV05, af=h.

Thus T(A) = af = (1 —a) vV 0.5. When a < b, there is no feasible solution
and the truth values are ill-assigned. In summary, from

T(A— B)=a, T(B)=b (8.16)
we entail
1-—a, ifa>"b
T(A)=< (1—a)Vv0.5, ifa=b (8.17)
illness, if a < b.

This result coincides with the classical modus tollens that if A — B is true
and B is false, then A is false.
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8.4 Uncertain Hypothetical Syllogism

Uncertain hypothetical syllogism was presented by Liu [126]. Let A, B, C be
independent uncertain propositions. Assume A — B and B — C have truth
values a and b, respectively. What is the truth value of A — C? Denote the
truth values of A, B, C' by a1, as, as, respectively, and write

Y1:A—>B, YQZB—>C, Z=A—C.

It is clear that
TY1)=(1-w)Vaz=a,
T(Ys) = (

T(Z) = (1 - 041) V as.

170[2)\/0[316,

In this case, the uncertain entailment model (8.8) becomes

min [(1 — ;) V ag — 0.5]
subject to:
0<a; <1
0<as <1 (8.18)
0<a3<1
I1-—a1)Vas=a
(1—ag)Vas=h.

Write the optimal solution by (af, @}, a3). When a A b > 0.5, we have
T(A—-C)=(1—-a])Vas=aAlb.

When a+b>1 and a A b < 0.5, we have
T(A—=C)=(1-0a])Vaj=0.5.

When a + b < 1, there is no feasible solution and the truth values are ill-
assigned. In summary, from

T(A—-B)=a, T(B—=C)=b (8.19)
we entail
anb, ifa>0.5andb>0.5
T(A—C)= 0.5, ifa+b>landandb<0.5 (8.20)

illness, ifa+0b<1.

This result coincides with the classical hypothetical syllogism that if both
A — B and B — C are true, then A — C' is true.
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8.5 Bibliographic Notes

Uncertain entailment was proposed by Liu [126] for determining the truth
value of an uncertain proposition via the maximum uncertainty principle
when the truth values of other uncertain propositions are given. From the
uncertain entailment model, Liu [126] also deduced uncertain modus ponens,
uncertain modus tollens, and uncertain hypothetical syllogism.



Chapter 9

Uncertain Set

Uncertain set was first proposed by Liu [127] in 2010 for modeling unsharp
concepts. This chapter will introduce the concepts of uncertain set, mem-
bership function, independence, expected value, variance, entropy, and dis-
tance. This chapter will also introduce the operational law for uncertain sets
via membership functions or inverse membership functions, and uncertain
statistics for determining membership functions.

9.1 Uncertain Set

Roughly speaking, an uncertain set is a set-valued function on an uncertainty
space, and attempts to model “unsharp concepts” that are essentially sets
but their boundaries are not sharply described (because of the ambiguity of
human language). Some typical examples include “young”, “tall”, “warm”,
and “most”. A formal definition is given as follows.

Definition 9.1 (Liu [127]) An uncertain set is a function & from an uncer-
tainty space (I', L, M) to a collection of sets of real numbers such that both
{B C &} and {£ C B} are events for any Borel set B.

Remark 9.1: Tt is clear that uncertain set (Liu [127]) is very different from
random set (Robbins [198] and Matheron [167]) and fuzzy set (Zadeh [260]).
The essential difference among them is that different measures are used, i.e.,
random set uses probability measure, fuzzy set uses possibility measure and
uncertain set uses uncertain measure.

Remark 9.2: What is the difference between uncertain variable and un-
certain set? Both of them belong to the same broad category of uncertain
concepts. However, they are differentiated by their mathematical definitions:
the former refers to one value, while the latter to a collection of values. Es-
sentially, the difference between uncertain variable and uncertain set focuses
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on the property of exclusivity. If the concept has exclusivity, then it is an
uncertain variable. Otherwise, it is an uncertain set. Consider the statement
“John is a young man”. If we are interested in John’s real age, then “young”
is an uncertain variable because it is an exclusive concept (John’s age can-
not be more than one value). For example, if John is 20 years old, then it
is impossible that John is 25 years old. In other words, “John is 20 years
old” does exclude the possibility that “John is 25 years old”. By contrast,
if we are interested in what ages can be regarded “young”, then “young” is
an uncertain set because the concept now has no exclusivity. For example,
both 20-year-old and 25-year-old men can be considered “young”. In other
words, “a 20-year-old man is young” does not exclude the possibility that “a
25-year-old man is young”.

Example 9.1: Take an uncertainty space (I', £, M) to be {~1,72,7v3} with
power set £. Then the set-valued function

(1,3, fvy=m
6(7) = [27 4]7 ify=m (91)
[3’5]7 iy =13

is an uncertain set on (T', £, M). See Figure 9.1.

71 72 73
Figure 9.1: An Uncertain Set

Example 9.2: Take an uncertainty space (I', £, M) to be R with Borel
algebra £. Then the set-valued function

Ev)=[ny+1], VyeTl (9.2)

is an uncertain set on (I", £, M).

Theorem 9.1 Let & be an uncertain set and let B be a Borel set. Then the
set

{Bg & ={yel|B¢M)} (9-3)

is an event.
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Proof: Since ¢ is an uncertain set and B is a Borel set, the set {B C £} is an
event. Thus {B ¢ £} is an event by using the relation {B ¢ £} = {B C £}°.

Theorem 9.2 Let & be an uncertain set and let B be a Borel set. Then the
set

{¢Z By ={vel|&n) ¢ B} (9-4)

s an event.

Proof: Since ¢ is an uncertain set and B is a Borel set, the set {£ C B} is an
event. Thus {¢ ¢ B} is an event by using the relation {§ ¢ B} = {{ C B}°.
Union, Intersection and Complement

Definition 9.2 Let £ and n be two uncertain sets on the uncertainty space
(T, L, M). Then (i) the union £ Un of the uncertain sets & and 1 is

Eun)() =& un(v), Vyel; (9.5)
(ii) the intersection € N0 of the uncertain sets & and 1 is
Enn)(v) =& nNnlv), Vyel; (9.6)
(iii) the complement £° of the uncertain set & is
§(v) =€) vrel. (9.7)

Example 9.3: Take an uncertainty space (', £, M) to be {y1,7v2,73}. Let &
and 7 be two uncertain sets,

[1,2], ify=m (2,3), ify=m
E(v) =19 [L3], ify=7 n) =< (2,4, ify=m%
[1,4], if yv=1s3, (2,5), ify=ns.

Then their union is

1,3), ify=m
Eun(y) =9 [L4), ify=r
[1,5), ify =13,
their intersection is
0, ify=m
Enn)(y) =9 23], ify=m

2
(274}7 lf’}/:’}/g,
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and their complements are

(=00, 1)U (2,+00), ify=m
§(1) =4 (=00, 1)U (3,+00), ify="2
(=00, 1)U (4,400), if v =13,
(—00,2]U[3,400), ify=m
n°(y) = (=002 U[4,+00), ify =12
(—00,2] U [5,400), if v =1s.

Theorem 9.3 Let £ be an uncertain set and let & be the set of real numbers.
Then
EUR=N, {NR=E. (9.8)

Proof: For each v € T, it follows from the definition of uncertain set that
the union is

EUR)(y) = &) UR =R
Thus we have £ UR = R. In addition, the intersection is
ENR)(v) = &) NR =£().
Thus we have ENR = &.
Theorem 9.4 Let £ be an uncertain set and let ) be the empty set. Then
Eub=¢ Enb=0. (9.9)

Proof: For each v € T, it follows from the definition of uncertain set that
the union is

EUD)(7) =& Ud=E0M)-
Thus we have £ U = £. In addition, the intersection is
(END)(y) =E(ND=0.
Thus we have £ENQ = 0.
Theorem 9.5 (Idempotent Law) Let & be an uncertain set. Then we have
EUE=¢ EnE=¢ (9.10)

Proof: For each v € T, it follows from the definition of uncertain set that
the union is

(U () =& Ugly) =£0).
Thus we have £ U ¢ = €. In addition, the intersection is

€N&() =€) Ny =&0)-
Thus we have £ N & = €.
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Theorem 9.6 (Double-Negation Law) Let € be an uncertain set. Then we
have

(€)= ¢. (9.11)
Proof: For each v € T, it follows from the definition of complement that
(€)1 = (€ (1)) = (§(0)) = &)
Thus we have (£°)¢ = &.

Theorem 9.7 (Law of FExcluded Middle and Law of Contradiction) Let & be
an uncertain set and let £¢ be its complement. Then

EUEE =R, £ngc=0. (9.12)

Proof: For each v € T, it follows from the definition of uncertain set that
the union is

(EUEN() =€ UE(y) =€) VE(R) =R
Thus we have £ U £° = R. In addition, the intersection is

ENENM) =£(NE() =& NEM) = 0.
Thus we have £ N &6 = ().

Theorem 9.8 (Commutative Law) Let & and n be uncertain sets. Then we
have

§Uun=nUg, ENn=nnNE (9-13)
Proof: For each v € T, it follows from the definition of uncertain set that
(EUn() =& Un(y) =n(y) UER) = MU ().
Thus we have { Un =nUE. In addition, it follows that
Enn)() = &0 Nne) =n() NER) = NE)().
Thus we have { Ny =nNE.
Theorem 9.9 (Associative Law) Let £, n, T be uncertain sets. Then we have
EUnUur=EguUumuUr), (ENnNnT=En(HNT). (9.14)
Proof: For each v € T', it follows from the definition of uncertain set that
(EunuUn)() =€ unM))UT(Q)
=EMMU(y)Ur(y) = EUHnHUT))(Y)
Thus we have ({Un) Ur =& U (nUT). In addition, it follows that
(Enm)n7)(y) = Q) Nn(y)N7()
=& Nt Nr(y) =ENmNT)(H)-
Thus we have ((Nn)NT =N (nNT).
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Theorem 9.10 (Distributive Law) Let £,m,7 be uncertain sets. Then we
have

EUmNT)=(EUnnEur), &nmur)=(EnnuUEnn). (9.15)

Proof: For each v € T', it follows from the definition of uncertain set that

EUumnm)(y) =&MU ) NT())
= (€M un()) N EHUTH))
((EUn)N(EuUT))(v).

Thus we have EU (nN7) = (EUn) N (£UT). In addition, it follows that
€ENmum)(y) =& Nmy) V()

)
= (M) Nn() U EH) NT(y))
=(ENnuEnT)(v).

Thus we have EN (nUT) = (ENn)U(ENT).

Theorem 9.11 (Absorbtion Law) Let § and n be uncertain sets. Then we
have

EuEnn) =¢ §n(Eun =& (9.16)
Proof: For each v € T, it follows from the definition of uncertain set that
EUENM)() =&MU (€M) Nn()) =EM0)-
Thus we have & U (€ N5) = £. In addition, since
ENEUM)() =0 NEM Un()) =EM0),
we get €N (EUn) =&
Theorem 9.12 (De Morgan’s Law) Let ¢ and n be uncertain sets. Then
Eun)®=¢&nn (ENn)° =& uUn. (9.17)
Proof: For each v € T, it follows from the definition of complement that
(EUn) () = (€M Un() =M Nn() = Nn°)().
Thus we have (£ Un)¢ = £ N 7. In addition, since
€ Nm)(v) = () Nn() =) Un() = (€ Un)(v),

we get (M) =& Une.
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Function of Uncertain Sets

Definition 9.3 Let &1,&o, - , &, be uncertain sets on the uncertainty space
(T, L, M), and let f be a measurable function. Then & = f(&1,&a, -+ ,&p) is
an uncertain set defined by

(V) = f(&(), &), ,6n(r), VyeT. (9.18)

Example 9.4: Let £ be an uncertain set on the uncertainty space (I, £, M)
and let A be a crisp set. Then £ + A is also an uncertain set determined by

E+A)()=E()+A, Vyel. (9.19)

Example 9.5: Take an uncertainty space (', £, M) to be {y1,7v2,73}. Let &
and 7 be two uncertain sets,

[1,2], ify=m (2,3), ify=m
E()=4q [L3], ify=7% )= (2,4), ify=m7
[1,4], if yv=1s3, (2,5), ify=ns.

and their product is

(2,6), ify=m
Exn() =4 (2,12), ify=7%
(2720)7 lf’y:’}@

9.2 Membership Function

Definition 9.4 (Liu [133]) An uncertain set & is said to have a membership
function p if for any Borel set B, we have

M{B c &} = inf u(2), (9.20)
M{Ec B =1—- seu};c (). (9.21)

The above equations will be called measure inversion formulas.
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p() p(z)
2Eiﬁmx) ......
ing o) ——— |
o —p— ¢ o ¢

Figure 9.2: M{B C ¢} = in}fg p(z) and M{& C B} = 1— sup u(z). Reprinted
TE reBe°
from Liu [133].

Remark 9.3: When an uncertain set £ does have a membership function g,
it follows from the first measure inversion formula that

w(z) = M{z € £} (9.22)

Remark 9.4: The value of p(x) represents the membership degree that
belongs to the uncertain set . If u(xz) = 1, then x completely belongs to &;
if u(z) =0, then x does not belong to & at all. Thus the larger the value of
p(zx) is, the more true x belongs to &.

Remark 9.5: If an element z belongs to an uncertain set with membership
degree «, then = does not belong to the uncertain set with membership degree
1 — . This fact follows from the duality property of uncertain measure. In
other words, if the uncertain set has a membership function pu, then for any
real number z, we have M{z € £} =1 - M{z € £} =1 — p(z). That is,

Mz ¢ &} = 1 - u(a). (0.23)

Exercise 9.1: The set ¢ of real numbers is a special uncertain set £(y) = R.
Show that such an uncertain set has a membership function

wr)=1, VeeR (9.24)
that is just the characteristic function of .

Exercise 9.2: The empty set () is a special uncertain set £(y) = . Show
that such an uncertain set has a membership function

wlx)=0, VexeR (9.25)

that is just the characteristic function of ().
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Exercise 9.3: A crisp set A of real numbers is a special uncertain set
&(y) = A. Show that such an uncertain set has a membership function

(@) 1, ifxeA ( )

u(r) = 9.26
0, ifzg A

that is just the characteristic function of A.

Exercise 9.4: Take an uncertainty space (I'; £, M) to be the interval [0, 1]
with Borel algebra and Lebesgue measure. (i) Show that the uncertain set

§)=h—-1,1-1] (9.27)
has a membership function
o) :{ 1—|z|, ifxe[-1,1] 9.38)
0, otherwise.

(ii) What is the membership function of £(y) = (y — 1, 1 —~)? (iii) What
do those two uncertain sets make you think about?

Exercise 9.5: It is not true that every uncertain set has a membership
function. Show that the uncertain set

[2, 4] with uncertain measure 0.6
&= (9.29)

[1,3] with uncertain measure 0.4
has no membership function.
Definition 9.5 An uncertain set & is called triangular if it has a membership

function
x—a

5 , ifa<z<b
p(x) = ¢ (9.30)
r—c .
,ifb<z<c
b—c

denoted by (a,b,c) where a,b,c are real numbers with a < b < c.

Definition 9.6 An uncertain set & is called trapezoidal if it has a member-

ship function
x—a

5 ;o ifa<xz<b

—a

p(x) = 1, fb<z<c (9.31)
%_;l, ifc<z<d

denoted by (a,b, c,d) where a,b,c,d are real numbers with a < b < ¢ < d.
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abc ab éd

Figure 9.3: Triangular and Trapezoidal Membership Functions. Reprinted
from Liu [133].

What is “young”?

Sometimes we say “those students are young”. What ages can be considered
“young”? In this case, “young” may be regarded as an uncertain set whose
membership function is

0, if 2 <15
(r—15)/5, if15 <z <20
w(x) = 1, if20<x <35 (9.32)
(45— 2)/10, if 35 <z < 45
0, if & > 45.

Note that we do not say “young” if the age is below 15.

p(z)

15yr 20yt 35y1 45y1

Figure 9.4: Membership Function of “young”

What is “tall”?

Sometimes we say “those sportsmen are tall”. What heights (centimeters)
can be considered “tall”? In this case, “tall” may be regarded as an uncertain
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set whose membership function is

0, if z < 180
(x —180)/5, if 180 < x < 185
w(z) = 1, if 185 < x < 195 (9.33)
(200 — 2)/5, if 195 < 2 < 200
0, if z > 200.

Note that we do not say “tall” if the height is over 200cm.

()

180cm 185c¢m 195cm  200cm

Figure 9.5: Membership Function of “tall”

What is “warm”?

Sometimes we say “those days are warm”. What temperatures can be con-
sidered “warm”? In this case, “warm” may be regarded as an uncertain set
whose membership function is

0, ifx <15
(x—15)/3, if15<x <18
() = 1, if 18 <o < 24 (9.34)
(28 — x)/4, if24 <z <28
0, if 28 < 2.

What is “most”?

Sometimes we say “most students are boys”. What percentages can be con-
sidered “most”? In this case, “most” may be regarded as an uncertain set
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15°C 18°C 21°C 28°C

Figure 9.6: Membership Function of “warm”

whose membership function is

0, if0<z<07
20(z — 0.7), if0.7<xz<0.75
u(z) = 1, if 0.75 < 2 < 0.85 (9.35)
20(0.9 — z), if 0.85 <z < 0.9
0, f09<z<1.
()
0% 75% 85% 90%

Figure 9.7: Membership Function of “most”

What uncertain sets have membership functions?

It is known that some uncertain sets do not have membership functions.
What uncertain sets have membership functions?

Case I: If an uncertain set £ degenerates to a crisp set A, then £ has a
membership function that is just the characteristic function of A.

Case II: Let £ be an uncertain set taking values in a nested class of sets.
That is, for any given 1 and v € I', at least one of the following alternatives
holds,

(1) &) C&(r2), (9.36)
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(1) &(72) C&(m)- (9.37)

Then the uncertain set £ has a membership function.

Sufficient and Necessary Condition

Theorem 9.13 (Liu [130]) A real-valued function w is a membership func-
tion if and only if
0<p(r) <1 (9.38)

Proof: If p is a membership function of some uncertain set &, then p(x) =
M{z € £} and 0 < p(z) < 1. Conversely, suppose p is a function such that
0 < p(z) < 1. Take an uncertainty space (I', £, M) to be the interval [0, 1]
with Borel algebra and Lebesgue measure. Then the uncertain set

§(y) = {z e R|p(z) = 7} (9.39)

has the membership function p. See Figure 9.8.

— £(v) —J

Figure 9.8: Take (T', £, M) to be [0, 1] with Borel algebra and Lebesgue mea-
sure. Then &(y) = {z € R| u(x) > v} has the membership function u. Keep
in mind that £ is not the unique uncertain set whose membership function is

7

Membership Function of Nonempty Uncertain Set

An uncertain set £ is said to be nonempty if £(y) # @ for almost all v € T.
That is,

M{£ =0} =0. (9.40)
Note that nonempty uncertain set does not necessarily have a membership

function. However, when it does have, the following theorem gives a sufficient
and necessary condition of membership function.

Theorem 9.14 Let £ be an uncertain set whose membership function p ex-
ists. Then & is nonempty if and only if

sup pu(x) = 1. (9.41)
zER
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Proof: Since the membership function p exists, it follows from the measure
inversion formula that

M{E=0} =1— sup pu(z) =1 — sup p(z).
z€Pe zeR

Thus ¢ is a nonempty uncertain set if and only if (9.41) holds.

Inverse Membership Function

Definition 9.7 (Liu [133]) Let & be an uncertain set with membership func-
tion p. Then the set-valued function

p o) ={zeR|pux)>a}, Vacl01] (9.42)

is called the inverse membership function of &. Sometimes, for each given a,
the set u=1(a) is also called the a-cut of .

()

0 L—/»‘1(04)—J

Figure 9.9: Inverse Membership Function p~!(«). Reprinted from Liu [133].

Remark 9.6: It is clear that inverse membership function always exists.
Please also note that = !(a) may take value of the empty set (.

Example 9.6: The triangular uncertain set £ = (a,b,c) has an inverse
membership function

p @) =[(1 —a)a+ ab,ab+ (1 — a)d. (9.43)
Example 9.7: The trapezoidal uncertain set £ = (a,b, ¢, d) has an inverse
membership function

o) =[(1 = a)a+ ab,ac+ (1 — a)d]. (9.44)

Theorem 9.15 Let & be an uncertain set with inverse membership function
p~ (). Then the membership function of € is determined by

p(z) =sup{a€0,1] |z €pn(a)}. (9.45)
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Proof: It is easy to verify that u~! is the inverse membership function of .

Thus p is the membership function of £.

Theorem 9.16 (Liu [133], Sufficient and Necessary Condition) A function
p=t(a) is an inverse membership function if and only if it is a monotone
decreasing set-valued function with respect to « € [0,1]. That is,

pHa) cuTHB), ifa>p. (9.46)

Proof: Suppose 1~ !(a) is an inverse membership function of some uncertain
set. For any = € u~!(a), we have u(x) > a. Since a > 3, we have pu(z) > 3
and then z € p=1(B). Hence p~1(a) C p=1(B). Conversely, suppose p~ ()
is a monotone decreasing set-valued function. Then

p(z) =sup{ae0,1] |z € pn"(a)}

is a membership function of some uncertain set. It is easy to verify that
p~Y(a) is the inverse membership function of the uncertain set. The theorem
is proved.

Uncertain set does not necessarily take values of its a-cuts!

Please keep in mind that uncertain set does not necessarily take values of its
a-cuts. In fact, an a-cut is included in the uncertain set with uncertain mea-
sure a. Conversely, the uncertain set is included in its a-cut with uncertain
measure 1 — «. More precisely, we have the following theorem.

Theorem 9.17 (Liu [133]) Let & be an uncertain set with inverse member-
ship function u=*(a)). Then for each a € [0,1], we have

M{p~H (@) C &} > a, (9.47)
MECpu ()} >1—o. (9.48)

Proof: For each z € u~!(a), we have u(x) > a. It follows from the measure
inversion formula that

M{p~Ha)Cc &= inf plr)>a

zep~1(a)

For each z ¢ u~!(a), we have u(x) < a. It follows from the measure inversion
formula that

My Ha)y=1— sup p(z)>1-a.
zgp=1 ()
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Regular Membership Function

Definition 9.8 (Liu [133]) A membership function u is said to be regular
if there exists a point xg such that p(xg) = 1 and p(zx) is unimodal about
the mode xo. That is, u(x) is increasing on (—oo,xo] and decreasing on
[zg, +00).

If ;1 is a regular membership function, then ;~1(a) is an interval for each
«. In this case, the function

(@) = inf =t (a) (9.49)
is called the left inverse membership function, and the function
py () = sup p~ (@) (9-50)

is called the right inverse membership function. It is clear that the left inverse
membership function ,ufl(a) is increasing, and the right inverse membership
function p, () is decreasing with respect to a.

Conversely, suppose an uncertain set £ has a left inverse membership
function u; '(@) and right inverse membership function p;'(a). Then the
membership function p is determined by
0, ifx<p'(0)

a, if pN0) <z <p; (1) and gy Ha) =

ple) =1 1, if (1) <@ <pgt(1) (9.51)
8, if (1) <@ < iy }(0) and prL(8) = @

0, ifz> pu 1(0).

Note that the values of @ and 3 may not be unique. In this case, we will take
the maximum values.

9.3 Independence

Definition 9.9 (Liu [136]) The uncertain sets £1,&a, -+ ,&, are said to be
independent if for any Borel sets B1, Bo,--- , B, we have

M{ﬂ(é‘i‘ C Bi)} = AM{¢ c B} (9.52)

i=1
and

M{U(G‘ c Bi)} = \/ M{¢ c B} (9.53)

=1 i=1

where & are arbitrarily chosen from {&, &5}, i =1,2,--+ ,n, respectively.
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Remark 9.7: Note that (9.52) represents 2™ equations. For example, when
n = 2, the four equations are

M{(&1 € B1)N (&2 C Ba)} = M{& C Bi} AM{& C Ba},
M{(£f € B1) N (& C Ba)} = M{f C Bi} AM{& C Ba},
M{(& € B1)N (& C B2)} = M{& C Bi} AM{ES C B},
M{(ES C By) M (€5 C Ba)} = M{ES © By} AMAES C Bo).

Also note that (9.53) represents other 2™ equations. For example, when
n = 2, the four equations are

M{(§&1 € B1) U (& C B2)} = M{& € B} v M{& C B},
M{(§F € B1) U (&2 C Ba)} = M{&F C B}V M{& C B},

M{(& € B1) U (&5 C B2)} = M{& € B} vV M{ES C B},

M{(&5 € B1) U (&5 C Ba)} = M{&] C B} vV M{&5 C B}
Theorem 9.18 Let &1,&2, -+, &, be uncertain sets, and let & be arbitrar-
ily chosen uncertain sets from {&,&5}, i = 1,2,--- ,n, respectively. Then
&1,82,- -+, &, are independent if and only if £7,&5, -+ , & are independent.

Proof: Let £ be arbitrarily chosen uncertain sets from {£f, &}, i =
1,2,--- ,n, respectively. Then &7,&5,---,&; and £7%,£5%, -+ ,&* represent

n

the same 2™ combinations. This fact implies that (9.52) and (9.53) are equiv-

alent to
M {

M{U(&;‘* c Bi)} = \/M{g" c B} (9.55)

=1 i=1

(&7 C B)) } — /n\ M{e™ C B;}, (9.54)

i=1

@

Hence &;1,&s, -+ , &, are independent if and only if £}, &5, -+ , & are indepen-
dent.

Exercise 9.6: Show that the following four statements are equivalent: (i)
&1 and & are independent; (ii) £§ and & are independent; (iii) & and &5 are
independent; and (iv) £§ and &5 are independent.

Theorem 9.19 The uncertain sets &1,&a, -+ , &, are independent if and only
if for any Borel sets By, Ba,--- , By, we have

M{_ﬂ(s: ¢ Bn} = AM{€ ¢ B} (9.56)

i=1
and
M{U(&: a B»} = \/ M{¢g ¢ B} (9-57)
i=1 i=1
where & are arbitrarily chosen from {&, &5}, i =1,2,--+ ,n, respectively.
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Proof: Since {¢} ¢ B;}*={¢( € B;} fori=1,2,---
duality of uncertain measure that

wl Py el -1aef e e

AM{g ¢ By =1-\/ W& C B},
=1

=1

C:

|

1

<.
Il

<=

o
Il
-

i=1

ceml o)

Mg ¢B}—1—/\M{£ C Bi}.

,n, it follows from the

} (9.58)

(9.59)

(9.60)

(9.61)

It follows from (9.58), (9.59), (9.60) and (9.61) that (9.56) and (9.57) are

valid if and only if

M{ﬂ(& C By) }—AM{&chi},
{U(& C By) }:\/M{éz‘cBi}.
=1 i=1

(9.62)

(9.63)

The above two equations are also equivalent to the independence of the un-

certain sets &1,&9,- - ,&,. The theorem is thus proved.

Theorem 9.20 The uncertain sets £1,&, - -+
if for any Borel sets By, Ba,--- , By, we have

M{ﬂ(Bi Cif)} =

i=1

A\ M{B: c &}

i=1
and

\/M{Bi &)

i=1

M{U(Bz Cff)} =

i=1

where £ are arbitrarily chosen from {&;,&5}, i=1,2,---,

Proof: Since {B; C &} = {¢{/° C Bf} for i =1,2,---

have B
{ﬂ (Bi C &)

=1
A

M{B; Cc & }—/\M{f*‘cB‘}

i=1

*CCBC}

,&n are independent if and only

(9.64)

(9.65)

n, respectively.

,n, we immediately

(9.66)

(9.67)
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M{O(&CEZ‘)}—M{O(S‘CCBE)}, (9.68)

i=1

\/ M{B; Cc &} = \/ M{ge C BEY. (9.69)

= i=1

It follows from (9.66), (9.67), (9.68) and (9.69) that (9.64) and (9.65) are
valid if and only if

rM$cm%AMw%B% (9.70)

M {
i=1 i=1
M {

U&CE%VW$CE} (9.71)

i=1
The above two equations are also equivalent to the independence of the un-
certain sets &1, &9, ,&,. The theorem is thus proved.

Theorem 9.21 The uncertain sets &1,&a, -+ , &, are independent if and only
if for any Borel sets By, Ba,--- , By, we have

M{ﬂ(Biﬁzif)}:/\M{BmZé?‘} (9.72)
1=1 i=1
and
M{U(Biﬁsz)}:\/M{BmZéZ‘} (9.73)
=1 i=1
where & are arbitrarily chosen from {&;,&5}, i =1,2,- -+, n, respectively.

Proof: Since {B; ¢ &} ={B; C &/} fori=1,2,--- ,n, it follows from the
duality of uncertain measure that

{é3¢5 }:1— {QBC#E } (9.74)

n

AM{B; ¢ &y =1-\/M{B; C &}, (9.75)

=1 i=1

M{OBgzg }:1— {ﬁBcg } (9.76)

VM{B g &=1- AM{B;Cc&} (9.77)

i=1 i=1
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It follows from (9.74), (9.75), (9.76) and (9.77) that (9.72) and (9.73) are
valid if and only if

8
|

The above two equations are also equivalent to the independence of the un-
certain sets &1,&a, -+ ,&,. The theorem is thus proved.

1D:

me%AMWﬁGL (9.78)

s

wﬂ6%=VMWﬂG} (9.79)

1 =

9.4 Set Operational Law

This section will discuss the union, intersection and complement of indepen-
dent uncertain sets via membership functions.

Union of Uncertain Sets

Theorem 9.22 (Liu [133]) Let & and n be independent uncertain sets with
membership functions p and v, respectively. Then their union £ Un has a
membership function

AMz) = p(x) V(). (9.80)

Proof: In order to prove y V v is a membership function of £ U n, we must
verify the two measure inversion formulas. Let B be any Borel set, and write

B = inf u(z) V().
Then B C p~1(B8) Ur~1(B). By the independence of ¢ and 7, we have

M{B c (Eun)} >M{(u " (B)Ur 1 (B) C (EUn)}
>M{(p=H(B) N HB) Cn)}
=M{p~'(8) C & AM{r~=(B) C n}
>BAB=p.
Thus
M{BcC(Un)}> ;rel,fg w(z) Vu(x). (9.81)

On the other hand, for any x € B, we have

M{BC (Eun}t <Mz e ((Un)}=M(ze)U(zen}
=M{z € &} vM{x € n} = p(z) Vv(z).
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Thus
M{B C (€Un)} < inf u(e) v r(a) (9.52)

It follows from (9.81) and (9.82) that

M{B C (€Un)} = inf u(x) V () (9.83)

The first measure inversion formula is verified. Next we prove the second
measure inversion formula. By the independence of £ and 7, we have

M{(¢un) € B} =M{(( € B)n(nC B)} = M{{ C B} AM{n C B}

(- o) (- )

=1-— sup u(z)Vv(x).
reB¢

That is,
M{(Un) C B} =1— sup pu(x) V(). (9.84)
reBe
The second measure inversion formula is verified. Therefore, the union £ Un

is proved to have the membership function p V v by the measure inversion
formulas (9.83) and (9.84).

Figure 9.10: Membership Function of Union of Uncertain Sets. Reprinted
from Liu [133].

Intersection of Uncertain Sets

Theorem 9.23 (Liu [133]) Let & and n be independent uncertain sets with
membership functions p and v, respectively. Then their intersection ENn has
a membership function

AMz) = p(x) Av(z). (9.85)
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Proof: In order to prove pu A v is a membership function of £ N7, we must
verify the two measure inversion formulas. Let B be any Borel set. By the
independence of £ and 7, we have

M{BcC(Enn)}t =M{(Bc&n(Bcn)}=MBCAMBCn}

= inf p(@) A inf v(z) = nf u(z) Av(z).

That is,
M{B C (€N )} = inf p(x) A w(a) (9.86)

The first measure inversion formula is verified. In order to prove the second
measure inversion formula, we write

B = sup p(z) Av(z).
reB¢

Then for any given number € > 0, we have =1 (8 +¢e)Nv~(B+¢) C B. By
the independence of ¢ and 7, we obtain

M{(Enn) c B} =M{(ENn) C (™ (B+e)Nv (B +e))}
>M{(Ecput(B+e))n(ncrH(B+e))}
=M B+ AaM{ncri(B+e)}
>(1-B-e)AN(1-B—-e)=1-F—=¢.

Letting € — 0, we get

M{nn)cB}>1— seugc w(x) Av(x). (9.87)

On the other hand, for any x € B¢, we have

M{Enn) c By <M{z g (Enn)} =Mz ¢&U(x&n)}
—M{o ¢ € VM{e ¢} = (1 (@) V (1 - ()
=1—p(x) Av(z).

Thus

M{(nn)cB}<1-— seugcﬂ(x) Av(z). (9.88)

It follows from (9.87) and (9.88) that

M{(nNn)CcB}=1-— seugc w(x) A (x). (9.89)

The second measure inversion formula is verified. Therefore, the intersection
&Nn is proved to have the membership function pAvr by the measure inversion
formulas (9.86) and (9.89).
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Figure 9.11: Membership Function of Intersection of Uncertain Sets.
Reprinted from Liu [133].

Complement of Uncertain Set

Theorem 9.24 (Liu [133]) Let £ be an uncertain set with membership func-
tion . Then its complement £¢ has a membership function

Az) =1— p(x). (9.90)

Proof: In order to prove 1 — p is a membership function of £°¢, we must
verify the two measure inversion formulas. Let B be a Borel set. It follows
from the definition of membership function that

MBcC=M{{CB}=1- sup p(x)=inf (1 - pu(z)),
ze(Be)e r€EB

M{E" € BY = M{B° C ¢} = inf (@) =1~ sup (1 - p(x))

Thus £° has a membership function 1 — p.

Az)

Figure 9.12: Membership Function of Complement of Uncertain Set.
Reprinted from Liu [133].
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9.5 Arithmetic Operational Law

This section will present an arithmetic operational law of independent uncer-
tain sets via inverse membership functions, including addition, subtraction,
multiplication and division.

Theorem 9.25 (Liu [135]) Let &1,&2, -+ , &, be independent uncertain sets

with inverse membership functions ufl,ugl, <o L, respectively. If f is a
measurable function, then the uncertain set
§=f(&1. &, &) (9.91)
has an inverse membership function,
A He) = flur () pp (@), iy (@), (9.92)

Proof: For simplicity, we only prove the case n = 2. Let B be any Borel
set, and write

B = inf A(x).

zEB

Then B € A~Y(B). Since \=1(8) = f(u;*(B), 1y ' (B)), by the independence
of & and &, we have

M{B C &} > M{A(B) €& =M{f(u ' (B), 15" (B)) C &}
> M{(p ' (B) € &) N (s (B) C &)}
=M{u ' (8) C &} AM{uz ' (B) C &2}
>BAB=4.
Thus
M{BcC¢} > inf Az). (9.93)

On the other hand, for any given number ¢ > 0, we have B ¢ \~1(8 + ¢).
Since A (8 +¢) = f(ui (B +€), 3 (B +¢)), we obtain

M{BZE>MECAT(B+e)} =MEC f(pr (B+e)us (B+e)}
>M{(& Cprt(B+e)N (& Cupt(B+e))}
=M{& Cpi B+ AM{& Cpy ' (B+e)}
>(1-B-e)A(l-B-c)=1-f-¢

and then
MBcC=1-M{BZE <f+e.

Letting € — 0, we get

M{BcC¢(<p= rllelg/\(x) (9.94)
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It follows from (9.93) and (9.94) that
M{BcC¢}= iI€1]f3 A(z). (9.95)

The first measure inversion formula is verified. In order to prove the second
measure inversion formula, we write

B = sup A(x).

reB°

Then for any given number £ > 0, we have A™1(8+¢) C B. Please note that
A (B +e) = f(ur (B +e), uy ' (B +¢)). By the independence of & and &,
we obtain

M{¢ C B} > M{g C AT (B+e) =M{EC f(ur (B+e) s (B+e))}
>M{(& Cur'(B+e)N (& Cpyt(B+e))}
=M{& Cu B+ AM{&E C iy (B+e)}
>(1-B-e)AN(1-B—-¢e)=1-p—c¢.
Letting ¢ — 0, we get

M{¢ C B} >1— sup Ax). (9.96)
r€EB*°

On the other hand, for any given number ¢ > 0, we have A™1(8 — ¢) ¢ B.
Since A (8 — ) = f(ui (B =€), 3 ' (B — €)), we obtain

M{E ¢ BY > M{A 1 (B—¢) C & =M{f(u " (B—2), 3" (B—¢)) C &}
> M{(u " (B—¢) C&)N (3" (B—¢) C &)}
=M{p ' (B—e) CEIAM{py (B —¢) C &)
>B-e)N(B-e)=B~—c¢

and then
M{ECBt=1-M{¢¢ZB}<1—-F+e.

Letting € — 0, we get

M{ECB}<1-p8=1- sup A(z). (9.97)
reB*®

It follows from (9.96) and (9.97) that

M{¢ C B} =1— sup Ax). (9.98)
rEB*°
The second measure inversion formula is verified. Therefore, £ is proved to

have the membership function A by the measure inversion formulas (9.95)
and (9.98).
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Example 9.8: Let £ = (a1,a9,a3) and n = (b1, be, b3) be two independent
triangular uncertain sets. At first, £ has an inverse membership function,

p @) = [(1 — @)ay + aas, aas + (1 — a)as], (9.99)
and 7 has an inverse membership function,
v a) = [(1 = )by + aby, aby + (1 — a)bs]. (9.100)

It follows from the operational law that the sum £ + 1 has an inverse mem-
bership function,

)\_1(04) = [(1 —a)(ar +b1) —i—a(ag +b3),aas+b2)+(1—a)(as +b3)}. (9.101)
In other words, the sum £ + 7 is also a triangular uncertain set, and

§+mn=(a1+by,az + b, a3 + b3). (9.102)

Example 9.9: Let & = (aj,a2,a3) and n = (b1,be,b3) be two indepen-
dent triangular uncertain sets. It follows from the operational law that the
difference £ — n has an inverse membership function,

A Ha) = [(1—a)(ar —bs) +alaz —by),a(az —bo) +(1—a)(az —by)]. (9.103)
In other words, the difference & — 7 is also a triangular uncertain set, and

§—n= (a1 —bg,az — b, a3 — b). (9.104)

Example 9.10: Let & = (aj,a2,a3) be a triangular uncertain set, and k
a real number. When k& > 0, the product k- £ has an inverse membership
function,

A @) = [(1 - a)(kay) + akas), a(kaz) + (1 — a)(kas)]. (9.105)

That is, the product k - £ is a triangular uncertain set (kay, kas, kag). When
k < 0, the product k - £ has an inverse membership function,

A Ha) = [(1 = a)(kas) + a(kas), a(kas) + (1 — a)(kay)]. (9.106)

That is, the product k - £ is a triangular uncertain set (kas, kas, kai). In
summary, we have

(kay, kasg, kas), ifk>0
kot = (9.107)

(kag, kag, kal), if £ <O0.

Exercise 9.7: Let £ = (a1, a2,a3,a4) and n = (b1, ba, b3, by) be two indepen-

dent trapezoidal uncertain sets, and k a real number. Show that
§+77=(a1+b17a2+b2,a3+b3,a4+b4), (9.108)
§—n= (a1 —ba,az — bz, a3 — bz, as — b1), (9.109)

{ (kaq, kag, kag, kay), if k>0

k€=
(ka4,kza3,ka2,ka1), if £ <O.

(9.110)
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Monotone Function of Regular Uncertain Sets

In practice, it is usually required to deal with monotone functions of regular
uncertain sets. In this case, we have the following shortcut.

Theorem 9.26 (Liu [133]) Let &1,&a,- - ,&, be independent uncertain sets

with regular membership functions py, pa, -+ , fin, respectively. If the func-
tion f(x1,x2, - ,xy) 18 strictly increasing with respect to x1,xa, - , Ty and
strictly decreasing with respect to X411, Tmi2,: - , Tn, then the uncertain set
§=f(&1,82,+ ,&n) (9.111)
has a reqular membership function, and
>‘l_1(a) = f(ul_ll(a)v T 7/147_”%(0‘)7 /Lr_nlJrl,r(a)v T ,/‘:Lrl(a))v (9112)
)‘;1(0‘) = f(ﬂfrl(a)v e vﬂ“;m}"(a)’ :U':n{&-l,l(a)v T 7/1'7211 (a))’ (9'113)
where /\l_l7 ul_ll, uz_ll, e ,ur_ﬂl are left inverse membership functions, and A1,
,ul_f,l, Pap s+ s Uk are Tight inverse membership functions of €,&1,62,+++ , &y,
respectively.
Proof: Note that u; ' (), us *(a), -+, uy; ' (a) are intervals for each . Since
fx1, 29, ,x,) is strictly increasing with respect to 1,2, -, &, and
strictly decreasing with respect to 41, Tm+2,- - ,Zn, the value

)‘71(&) = f(:u‘l_l(a)a e 7#1711(0‘)7/%:;#1(0‘)7 e a/‘rjl(a))

is also an interval. Thus £ has a regular membership function, and its left and
right inverse membership functions are determined by (9.112) and (9.113),
respectively.

Exercise 9.8: Let £ and 7 be independent uncertain sets with left inverse
membership functions ,ufl and v, 1 and right inverse membership functions
ptand v;71, respectively. Show that the sum & +n has left and right inverse
membership functions,

A (@) = 7 (@) + v (o), (9.114)
A @) = 1y (@) + v (). (9.115)

Exercise 9.9: Let £ and 7 be independent uncertain sets with left inverse

membership functions ,ufl and v, 1 and right inverse membership functions
p ! and v respectively. Show that the difference &€ — 7 has left and right

inverse membership functions,

A @) = i (@) - v (@), (9.116)
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A @) = 1 (@) = v (@), (9.117)

Exercise 9.10: Let ¢ and 7 be independent and positive uncertain sets with
left inverse membership functions ,ufl and Vfl and right inverse membership
functions p, ! and v, !, respectively. Show that

S
_ 9.118
s (9.118)
has left and right inverse membership functions,
Q) = — = , .
l i (e) + i ()

-1

Ala) = — M@ (9.120)

(@) + v (a)

9.6 Expected Value

Recall that an uncertain set ¢ is nonempty if £(y) # 0 for almost all v €
I'. This section will introduce a concept of expected value for nonempty
uncertain set.

Definition 9.10 (Liu [127]) Let £ be a nonempty uncertain set. Then the
expected value of € is defined by

E[§] = o M{¢ = z}de — ’ M{¢ < x}dx (9.121)

0 —o0

provided that at least one of the two integrals is finite.

Please note that = x represents “¢ is imaginarily included in [z, +00)”,
and £ < x represents “¢ is imaginarily included in (—oo,z]”. What are the
appropriate values of M{{ = x} and M{{ < x}7 Unfortunately, this problem
is not as simple as you think.

Figure 9.13: {£¢ >z} C {{ =z} C {{ £ =}
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Intuitively, for M{{ = x}, it is too conservative if we take the value
M{¢ > =z}, and it is too adventurous if we take the value 1 —M{¢ < x}. Thus
we assign M{¢ = x} the middle value between M{¢ > z} and 1 — M{¢{ < x}.
That is,

M{¢ = o) = % (M€ > 2} +1— M€ < 2}). (9.122)

Similarly, we also define

M{E < 2} = % (M{E < 2} +1— Mf¢ > a}). (9.123)

Example 9.11: In order to illustrate the expected value operator, let us
consider an uncertain set,

[1,2] with uncertain measure 0.6
€ =< [2,3] with uncertain measure 0.3

[3, 4] with uncertain measure 0.2.

It follows from the definition of M{¢ > z} and M{¢ < =} that

1, ifz<i
07, ifl<z<?2
M{E=z}=1¢ 03, if2<z<3
01, if3<az<4

0, ifxz>4,

M{€ <z} =0, V&<O0.

1 2 3 4
E[¢] = / 1dz +/ 0.7dz —|—/ 0.3dz +/ 0.1dz = 2.1.
0 1 2 3

How to Obtain Expected Value from Membership Function?

Thus

Let £ be an uncertain set with membership function p. In order to calculate
its expected value via (9.121), we must determine the values of M{¢ > =}
and M{¢ < z} from the membership function u.

Theorem 9.27 Let & be an uncertain set with membership function p. Then
for any real number x, we have

(e =) = 5 (swpu) +1 - supu() ) (9.124)
Wqﬁizﬁi(gpu@)+1zgydw>- (9.125)
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Proof: Since the uncertain set £ has a membership function u, the second
measure inversion formula tells us that

M{& >z} =1—suppu(y),

y<z

M <} = 1 - sup (y).

y>z

Thus (9.124) follows from (9.122) immediately. We may also prove (9.125)
similarly.

Theorem 9.28 (Liu [129]) Let & be an uncertain set with regular member-
ship function p. Then

+oo zo
E[¢] =z + %/ w(x)dr — 1/ w(x)dx (9.126)

where xg is a point such that p(zy) = 1.

Proof: Since p is increasing on (—oo, x| and decreasing on [zg, +00), it
follows from Theorem 9.27 that for almost all x, we have

1—p(x)/2, ifx<axg

M{¢ =z} = { @)z o> (9.127)

and )/
w(x)/2, if x <xg
M{¢ 2} = (9.128)
1—p(x)/2, ifx>xg
for any real number z. If 2y > 0, then

—+o0

B = [ ez o /_ M{€ < a}da

[ (Y [y [ s,

1 +o0o 1 zo
=20+ 7/ w(x)dr — = / p(z)de.
2 /.. 2

If g < 0, then

—+o0

Blel = [ M&zxww—[ M{¢ < z}dx

:/;Oo“(;)dx—/_iu(;")dx—/:(l—ugj))dx

1 +oo 1 zo
=x0+ 7/ p(z)de — f/ p(z)de.
2/, 2

0 — 00
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The theorem is thus proved.

Remark 9.8: If the membership function of the uncertain set £ is not
assumed to be regular, then

+oo Zo
E[¢] = z0 + 1/ sup fi(y)dz — %/ sup 1i(y)dz. (9.129)

2 y>z —oo y<z

Exercise 9.11: Show that the triangular uncertain set £ = (a,b,c) has an
expected value
a+2b+c

;' (9.130)

El¢] =

Exercise 9.12: Show that the trapezoidal uncertain set £ = (a,b, ¢, d) has
an expected value
a+b+c+d

0 (9.131)

E[§] =

Theorem 9.29 (Liu [185]) Let & be a nonempty uncertain set with member-
ship function w. Then

E[¢) = % /0 (inf 5~ (@) + sup ™' (a)) dex (9.132)

where inf u=!(a) and sup p=1(a) are the infimum and supremum of the a-cut,
respectively.

Proof: Since £ is a nonempty uncertain set and has a finite expected value,
we may assume that there exists a point zy such that u(xg) = 1 (perhaps
after a small perturbation). It is clear that the two integrals

+oo 1
/ sup u(y)de and / (sup () — zg)dax
x 0

0o y2w

make an identical acreage. Thus

“+o0 1 1
/ sup u(y)de = / (sup ™ (@) — xg)da = / sup p~(a)da — .
o 0 0

y>x

Similarly, we may prove

xo 1 1
/ sup u(y)de = / (zg — inf = ())da = 2o — / inf ! (a)dov.
0 0

—oo y<zT
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It follows from (9.129) that

+oo
E[¢] = 20 + f/ sup p(y)de — !

g
5 / sup p(y)da

y>x 2 ) y<z

1 1
=z + 1 (/ sup = (a)da — x0> 1 (xo — / infﬂl(a)da>
2 \ o 2 0

=5 [ it @)+ spp @) e

The theorem is thus verified.

Theorem 9.30 (Liu [135]) Let &1,&2, -+ , &, be independent uncertain sets

with regular membership functions py, psa, - , iy, Tespectively. If the func-
tion f(x1,x9,- - ,xy,) is strictly increasing with respect to x1,Ta, - , Tm and
strictly decreasing with respect to 41, Tm+2, - , Tn, then the uncertain set
§=f(&,&, &) (9.133)
has an expected value
Lt
Bel =5 [ (@) + 57 () da (9.134)
0
where p; (o) and (o) are determined by
M;I(O‘) = f(u;ll(a)v T 7”;1%(0‘)7 :u:n1+1,r(a)ﬂ T ”u;Tl (a))7 (9'135)
:u“;l(o‘) = f(:ul_rl (OL), e a/u’;n}”(a% u;bil,l(a)v e mu’;ll (Oé)) (9136)

Proof: It follows from Theorems 9.26 and 9.29 immediately.

Exercise 9.13: Let £ and 1 be independent and nonnegative uncertain sets
with regular membership functions p and v, respectively. Show that

Elén] = %/O (1 (@ (@) + (@) (@) da. (9.137)

Exercise 9.14: Let £ and 7 be independent and positive uncertain sets with
regular membership functions p and v, respectively. Show that

s[f] =3 (o i) oo

Exercise 9.15: Let ¢ and 7 be independent and positive uncertain sets with
regular membership functions p and v, respectively. Show that

E Lﬁn] - ;/01 (ufl(Z;Iigl(a) " ur‘l(gir(il)_l(a)) dov (9439)
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Linearity of Expected Value Operator

Theorem 9.31 (Liu [135]) Let & and n be independent uncertain sets with
finite expected values. Then for any real numbers a and b, we have

Ela& + bn] = aE[¢] + bE[n). (9.140)

Proof: Denote the membership functions of £ and n by u and v, respectively.
Then

1
Bl = 5 | (nf 7 (@) + sup i~ (@) do
Eln] = %/0 (inf v~ (a) + supr~'(a)) da.

STEP 1: We first prove E[a&] = aF[{]. The product af has an inverse
membership function,
A Ha) = ap™Ha).

It follows from Theorem 9.29 that

%/0 (inf A™" () + sup A" (@) dov

Elag]

%/0 (inf =" () + sup p~ ' (@) dev = aEI¢].

STEP 2: We then prove E[{ + n] = E[¢] + E[n]. The sum £ + n has an
inverse membership function,

A ) = pHa) + v Ha).

It follows from Theorem 9.29 that
1 !
El¢+n = 5 / (inf A™' () + sup A (@) dev
0

1

:5/0 (inf ! (@) + sup ™' (a)) dex

1t -1 -1
+§/O (inf ™" () +supv~(a)) da

= El¢] + E[n).
STEP 3: Finally, for any real numbers a and b, it follows from Steps 1

and 2 that
Ela& + bn] = Elaf] + E[bn] = aE[¢] + bE[n].

The theorem is proved.
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9.7 Variance

The variance of uncertain set provides a degree of the spread of the member-
ship function around its expected value.

Definition 9.11 (Liu [130]) Let £ be an uncertain set with finite expected
value e. Then the variance of & is defined by

Vel = E[(¢ —e)?]. (9.141)

This definition says that the variance is just the expected value of (£ —e)?.

Since (£ — €)? is a nonnegative uncertain set, we also have

“+o0
46 M{(¢ —e)® = z}da. (9.142)
0

Please note that (¢ —e)? = x represents “(¢ — e)? is imaginarily included in
[, 4+00)”. What is the appropriate value of M{(¢ — e)? = z}? Intuitively,
it is too conservative if we take the value M{(¢ — e)? > z}, and it is too
adventurous if we take the value 1 — M{(¢ — €)? < z}. Thus we assign
M{(¢ —e)? = z} the middle value between them. That is,

MI(E—e)? = o) = L (M€ —e)? 2 o) +1 - M{(E—e)? <2}). (9.14)

Theorem 9.32 If £ is an uncertain set with finite expected value, a and b

are real numbers, then
Via& +b] = a*V[¢]. (9.144)

Proof: If £ has an expected value e, then a&+b has an expected value ae+b.
It follows from the definition of variance that

Viaé +b) = E [(a€ + b— ae — b)*] = a®E[(§ — €)*] = a®V[¢].

Theorem 9.33 Let & be an uncertain set with expected value e. Then V[§] =
0 if and only if € = {e} almost surely.

Proof: We first assume V[¢] = 0. It follows from the equation (9.142) that

+oo
M{(¢—e)? = 2}dz =0
0
which implies M{(¢ — €)? = 2} = 0 for any x > 0. Hence M{¢ = {e}} = 1.
Conversely, assume M{¢ = {e}} = 1. Then we have M{(¢ —e)? > x} = 0 for
any x > 0. Thus
“+oo
Vg = M{(¢ —e)* = z}dx = 0.
0

The theorem is proved.



SECTION 9.8 - ENTROPY 211

How to Obtain Variance from Membership Function?

Let ¢ be an uncertain set with membership function p. In order to calculate
its variance by (9.142), we must determine the value of M{(£ —e)? = z} from
the membership function p.

Theorem 9.34 Let £ be an uncertain set with membership function p. Then
for any real numbers e and x, we have

M{(€—e)? = 2} = < sup  p(y) +1— sup u(y)> . (9.145)

2 (y—e)?>x (y—e)2<zx

Proof: Since £ is an uncertain set with membership function pu, it follows
from the measure inversion formula that for any real numbers e and =, we
have

M{(—e)’>a}=1— sup u(y),

(y—e)?<z

M{(—e)?<z}=1— sup pu(y).

(y—e)?>x

The equation (9.145) is thus proved by (9.143).

Theorem 9.35 Let £ be an uncertain set with membership function p and
finite expected value e. Then

y—e)?>a (y—e)?<z

1 [t
VIE]l = 5/ (( sup p(y)+1— sup ,u(y)) dz. (9.146)
0
Proof: This theorem follows from (9.142) and (9.145) immediately.

9.8 Entropy

This section provides a definition of entropy to characterize the uncertainty
of uncertain sets.

Definition 9.12 (Liu [130]) Suppose that & is an uncertain set with mem-
bership function p. Then its entropy is defined by

+oo
Hd = [ S(uw)is (9.147)

— 00

where S(t) = —tlnt — (1 —¢) In(1 —¢).

Remark 9.9: Note that the entropy (9.147) has the same form with de Luca
and Termini’s entropy for fuzzy set [32].
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Remark 9.10: If £ is a discrete uncertain set taking values in {1, 2, -+ },
then the entropy becomes

HIg) =Y S(u(ws). (9.148)

Example 9.12: A crisp set A of real numbers is a special uncertain set
&(y) = A. Then its membership function is

(2) = 1, ifzeA
PEI=N 0, ifzga

and entropy is

Hg = / ™ S ua) e = / ™ 0z = 0.

— 00 —00

Exercise 9.16: Let & = (a, b, ¢) be a triangular uncertain set. Show that its

entropy is
c—a
H[¢ = 7 (9.149)

Exercise 9.17: Let £ = (a, b, ¢, d) be a trapezoidal uncertain set. Show that

its entropy is
_b-—a+d-c

Hig) .

(9.150)

Theorem 9.36 Let £ be an uncertain set. Then H[¢] > 0 and equality holds
if & is essentially a crisp set.

Proof: The nonnegativity is clear. In addition, when an uncertain set tends
to a crisp set, its entropy tends to the minimum value 0.

Theorem 9.37 Let £ be an uncertain set on the interval [a,b]. Then
H[(<(b—a)ln2 (9.151)
and equality holds if & has a membership function p(z) = 0.5 on [a,b)].

Proof: The theorem follows from the fact that the function S(t) reaches its
maximum value In2 at ¢t = 0.5.

Theorem 9.38 Let & be an uncertain set, and let ¢ be its complement. Then

H[¢] = H[E]. (9.152)
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Proof: Write the membership function of ¢ by . Then its complement &¢
has a membership function 1 — p(z). It follows from the definition of entropy
that

+o0 +oo
)= [ S0 p@)de= [ Slute)ds = g

— 00 — 00

The theorem is proved.

Theorem 9.39 (Yao [249]) Let £ be an uncertain set with regular member-
ship function p. Then

1
_ _ a
H¢] :/ (1 (@) = 17 H(0)) n = —d (9.153)
0
Proof: It is clear that S(a) = —alna — (1 — a)In(l — «) is a derivable
function whose derivative is
a
(o) = —1 .
S’ () no—

Let o be a point such that u(xg) = 1. Then we have

+oo

m&jfmﬂ(nm—/mﬂ(»®+é S(p(a))da

0

ﬂ(ﬂr +o0 u(r)
/ / dadx—|—/ / a)dadz.

It follows from Fubini theorem that

/ / dxdoz—|—/ / a)dzda
Hy (a To

=/<m—ul<»9<Ma+/<rww—mwSmMa
0 0
= [ @) =i ) (@)

da.

1
_ _ «
— [ @~ ) g
0
The theorem is verified.

Positive Linearity of Entropy

Theorem 9.40 (Yao [249]) Let & and n be independent uncertain sets. Then
for any real numbers a and b, we have

Hlag + bn] = |a|H[E] + [b|H[n]. (9.154)
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Proof: Without loss of generality, assume the uncertain sets ¢ and n have
regular membership functions p and v, respectively.

STEP 1: We prove H[al] = |a|H[{]. If a > 0, then the left and right
inverse membership functions of a& are

A @) = ap (@), A@) = ap (o).

It follows from Theorem 9.39 that

da = aHIE] = |a| H[E].

lot] = [ (o (0) = () n

If a = 0, then we immediately have H[a&] = 0 = |a|H[{]. If a < 0, then we
have

AN @) = apy Ha), AN (@) = ap ()

and

da = (—a)H[¢] = |alH[E].

loe] = [ (' (@) = o o)) In

Thus we always have H[a&] = |a|H[¢].

STEP 2: We prove H[{ + n] = H[{] + H[n]. Note that the left and right
inverse membership functions of £ + n are

AN a) = o)+ N a), AN @) = (@) + v ().

It follows from Theorem 9.39 that

= H[¢] + Hn].

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1
and 2 that

Hla& + bn] = H[a&] + H|bn] = |a|H[] + [b|H][n].
The theorem is proved.

Exercise 9.18: Let & be an uncertain set, and let A be a crisp set. Show
that
H[¢+ Al = H[¢]. (9.155)

That is, the entropy is invariant under arbitrary translations.
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9.9 Distance

Definition 9.13 (Liu [130]) The distance between uncertain sets & and n is
defined as

d(&,m) = E[|§ —nl]. (9.156)

That is, the distance between & and 7 is just the expected value of |£ —1)|.
Since |€ — 7| is a nonnegative uncertain set, we have

+o0
d(&,n) = ; M{|€ —n| = z}da. (9.157)

Please note that | — n| = x represents “|¢ — 7| is imaginarily included in
[x,400)”. What is the appropriate value of M{|{ —n| > z}? Intuitively, it is
too conservative if we take the value M{|¢ —n| > x}, and it is too adventurous
if we take the value 1 — M{|¢ — n| < «}. Thus we assign M{|{ —n| = x} the
middle value between them. That is,

ME—nl =z} = % M{|E=n| > a}+1-M{|l¢ —n| <z}).  (9.158)

Theorem 9.41 Let & and n be uncertain sets. Then for any real number x,
we have

ME—n| =z} = L <sup AMy)+1— sup A(y)) (9.159)

2 \Jylze lyl<e
where X\ is the membership function of € — 7.

Proof: Since £ —7 is an uncertain set with membership function A, it follows
from the measure inversion formula that for any real number x, we have

M{|§ =nl >z} =1— sup pu(y),

ly| <z

M{|§ —=nl <z} =1~ sup pu(y).
ly|>z

The equation (9.159) is thus proved by (9.158).

Theorem 9.42 Let £ and n be uncertain sets. Then the distance between &
and 1 1is

“+o0
d&,n) = 1/0 (sup AMy)+1— sup A(y)) dz (9.160)

2 ly|>x ly| <z
where X\ is the membership function of € — 1.

Proof: The theorem follows from (9.157) and (9.159) immediately.
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9.10 Conditional Membership Function

What is the conditional membership function of an uncertain set & after it
has been learned that some event A has occurred? This section will answer
this question. At first, it follows from the definition of conditional uncertain
measure that

M{(Bc{N(EC A} M{(Bc&N(EC A}

(e C AT o if N{E C A] <05
M{BCelay={, MBLONECA}  MBLONEC A} _
M{¢ C A} ’ M{¢ C A} ’
0.5, otherwise,
MiEcBnEcA} MECBNECA .
M{¢ C A} ’ M{¢ C A} '
M{ECBlA}={ | M{EZBNEC A}  MELBNECA} _ .
M{¢ C A} ’ M{¢ C A} '
0.5, otherwise.

Definition 9.14 Let £ be an uncertain set, and let A be an event with
M{A} > 0. Then the conditional uncertain set & given A is said to have
a membership function p(x|A) if for any Borel set B, we have

M{B cC ¢{|A} = iIelfBN($|A)7 (9.161)
M{¢ C B|A} =1 — sup p(z|A). (9.162)
reB*®

9.11 Uncertain Statistics

In order to determine the membership function of uncertain set, Liu [130]
designed a questionnaire survey for collecting expert’s experimental data,
and introduced the empirical membership function (i.e., linear interpolation
method) and the principle of least squares.

Expert’s Experimental Data

Expert’s experimental data were suggested by Liu [130] to represent expert’s
knowledge about the membership function to be determined. The first step
is to ask the domain expert to choose a possible point x that the uncertain
set & may contain, and then quiz him

“How likely does x belong to £7” (9.163)
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Assume the expert’s belief degree is « in uncertain measure. Note that the
expert’s belief degree of x not belonging to £ must be 1 —« due to the duality
of uncertain measure. An expert’s experimental data (x, ) is thus acquired
from the domain expert. Repeating the above process, the following expert’s
experimental data are obtained by the questionnaire,

(x1,00), (X2,02), <=+, (Tn,an). (9.164)

Empirical Membership Function

How do we determine the membership function for an uncertain set? The first
method is the linear interpolation method developed by Liu [130]. Assume
that we have obtained a set of expert’s experimental data

(z1,01), (T2,22), =+, (T, ). (9.165)

Without loss of generality, we also assume 7 < zo < --- < x,. Based
on those expert’s experimental data, an empirical membership function is
determined as follows,

ai+<ai+l_ai)($_‘ri)7 lf$z§$§$@+171§2<n
p(x) = Tit1 — &

0, otherwise.

T

Figure 9.14: Empirical Membership Function p(z)

Principle of Least Squares

Principle of least squares was first employed to determine membership func-
tion by Liu [130]. Assume that a membership function to be determined has
a known functional form p(z|f) with an unknown parameter 6. In order to
estimate the parameter 6, we may employ the principle of least squares that
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minimizes the sum of the squares of the distance of the expert’s experimental
data to the membership function. If the expert’s experimental data

(z1,00), (z2,02), -+, (Tn, ) (9.166)

are ()blalrled7 1hen we ha\/e
nin E }1 9 — . 916[
9 ( (xl ) Z) ( )

The optimal solution 0 of (9.167) is called the least squares estimate of 6,

~

and then the least squares membership function is p(z|0).

Example 9.13: Assume that a membership function has a trapezoidal form
(a,b,c,d). We also assume the following expert’s experimental data,

(1,0.15), (2,0.45), (3,0.90), (6,0.85), (7,0.60), (8,0.20). (9.168)

The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
yield that the least squares membership function has a trapezoidal form
(0.6667,3.3333,5.6154, 8.6923).

What is “about 100km”?

Let us pay attention to the concept of “about 100km”. When we are inter-
ested in what distances can be considered “about 100km”, it is reasonable to
regard such a concept as an uncertain set. In order to determine the mem-
bership function of “about 100km”, a questionnaire survey was made for
collecting expert’s experimental data. The consultation process is as follows:

Q1: May I ask you what distances belong to “about 100km”? What do you
think is the minimum distance?

A1l: 80km. (an expert’s experimental data (80,0) is acquired)

Q2: What do you think is the maximum distance?

A2: 120km. (an expert’s experimental data (120,0) is acquired)

Q3: What distance do you think belongs to “about 100km”?

A3: 95km.

Q4: What is the belief degree that 95km belongs to “about 100km”?
Ad4: 1. (an expert’s experimental data (95,1) is acquired)

Q5: Is there another distance that belongs to “about 100km”?
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A5: 105km.

Q6: What is the belief degree that 105km belongs to “about 100km”?
A6: 1. (an expert’s experimental data (105,1) is acquired)

QT7: Is there another distance that belongs to “about 100km”?

A7: 90km.

Q8: What is the belief degree that 90km belongs to “about 100km”?
A8: 0.5. (an expert’s experimental data (90,0.5) is acquired)

Q9: Is there another distance that belongs to “about 100km”?

A9: 110km.

Q10: What is the belief degree that 110km belongs to “about 100km”?
A10: 0.5. (an expert’s experimental data (110,0.5) is acquired)

Q11: Is there another distance that belongs to “about 100km”?

A11: No idea.

Until now six expert’s experimental data (80, 0), (90,0.5), (95,1), (105, 1),
(110,0.5), (120,0) are acquired from the domain expert. Based on those
expert’s experimental data, an empirical membership function of “about
100km” is produced and shown by Figure 9.15.

()

o 520 A0SY
(90,0.5) (110,0.5)

0 (80,0) (120,0)

Figure 9.15: Empirical Membership Function of “about 100km”
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9.12 Bibliographic Notes

In order to model unsharp concepts like “young”, “tall” and “most”, the
concept of uncertain set was proposed by Liu [127] in 2010, and the concepts
of membership function and inverse membership function were presented by
Liu [133] in 2012. Following that, Liu [136] defined the independence of un-
certain sets, and provided an operational law through membership functions
in 2013.

The expected value of uncertain set was defined by Liu [127]. Then Liu
[129] gave a formula for caluculating the expected value by membership func-
tion, and Liu [133] provided a formula by inverse membership function. Based
on expected value operator, Liu [130] presented the concept of variance and
distance between uncertain sets.

The first concept of entropy was presented by Liu [130] for measuring the
uncertainty of uncertain set. As extensions of entropy, Wang and Ha [229]
suggested a quadratic entropy, and Yao [249] proposed a cross entropy for
comparing a membership function against a reference membership function.

In order to determine membership functions, a questionnaire survey for
collecting expert’s experimental data was designed by Liu [130]. Based on ex-
pert’s experimental data, Liu [130] also suggested linear interpolation method
and principle of least squares to determine membership functions. When
multiple domain experts are available, Delphi method was introduced to un-
certain statistics by Wang and Wang [231].



Chapter 10

Uncertain Logic

Uncertain logic is a methodology for calculating the truth values of uncertain
propositions via uncertain set theory. This chapter will introduce individual
feature data, uncertain quantifier, uncertain subject, uncertain predicate,
uncertain proposition, and truth value. Uncertain logic may provide a flexible
means for extracting linguistic summary from a collection of raw data.

10.1 Individual Feature Data

At first, we should have a universe A of individuals we are talking about.
Without loss of generality, we may assume that A consists of n individuals

and is represented by
A={ay,a2, - ,a,}. (10.1)

In order to deal with the universe A, we should have feature data of all
individuals a1, a9, - ,a,. When we talk about “those days are warm”, we
should know the individual feature data of all days, for example,

A= {22, 23,25, 28, 30, 32, 36} (10.2)

whose elements are temperatures in centigrades. When we talk about “those
students are young”, we should know the individual feature data of all stu-
dents, for example,

A ={21, 22, 22, 23, 24, 25, 26, 27, 28, 30, 32, 35, 36, 38, 40}  (10.3)

whose elements are ages in years. When we talk about “those sportsmen
are tall”, we should know the individual feature data of all sportsmen, for
example,

A— 175, 178, 178, 180, 183, 184, 186, 186 (10.4)
T ] 188, 190, 192, 192, 193, 194, 195, 196 '
whose elements are heights in centimeters.
© Springer-Verlag Berlin Heidelberg 2015 221
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Sometimes the individual feature data are represented by vectors rather
a scalar number. When we talk about “those young students are tall”, we
should know the individual feature data of all students, for example,

(24,185), (25,190), (26, 184), (26,170), (27,187), (27, 188)
A ={ (28,160), (30,190), (32,185), (33,176), (35,185), (36,188) & (10.5)
(38,164), (38,178), (39, 182), (40, 186), (42,165), (44, 170)

whose elements are ages and heights in years and centimeters, respectively.

10.2 Uncertain Quantifier

If we want to represent all individuals in the universe A, we use the universal
quantifier (V) and
Y = “for all”. (10.6)

If we want to represent some (at least one) individuals, we use the existential
quantifier (3) and
3 = “there exists at least one”. (10.7)

In addition to the two quantifiers, there are numerous imprecise quantifiers in
human language, for example, almost all, almost none, many, several, some,
most, a few, about half. This section will model them by the concept of
uncertain quantifier.

Definition 10.1 (Liu [130]) Uncertain quantifier is an uncertain set repre-
senting the number of individuals.

Example 10.1: The universal quantifier (V) on the universe A is a special
uncertain quantifier,

V={n} (10.8)
whose membership function is
1, ifx=
Az) = ne=n (10.9)
0, otherwise.

Example 10.2: The existential quantifier (3) on the universe A is a special
uncertain quantifier,
3={1,2,---,n} (10.10)

whose membership function is

0, ifxz=0
Az) = ) (10.11)
1, otherwise.
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Example 10.3: The quantifier “there does not exist one” on the universe A
is a special uncertain quantifier

Q= {0} (10.12)
whose membership function is
1, ifz=0
Az) = =t (10.13)
0, otherwise.

Example 10.4: The quantifier “there exist exactly m” on the universe A is
a special uncertain quantifier

Q={m} (10.14)
whose membership function is
1, ifx=
A(z) = = (10.15)
0, otherwise.

Example 10.5: The quantifier “there exist at least m” on the universe A is
a special uncertain quantifier

Q={m,m+1,---,n} (10.16)

whose membership function is

AMa) = 1, ifm<zxz<n (10.17)
7Y 0, ifo<z<m. '

Example 10.6: The quantifier “there exist at most m” on the universe A is
a special uncertain quantifier

9={0,1,2,--- ,m} (10.18)
whose membership function is

Az) = 1, fo<ax<m (10.19)
¥ = 0, ifm<a<n. '

Example 10.7: The uncertain quantifier Q of “almost all” on the universe
A may have a membership function

0, fo<z<n-5
AMz)=4¢ (x—n+5)/3, ifn-5<zr<n-2 (10.20)
1, ifn—-2<ax<n.
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n—>5 n;Z n

Figure 10.1: Membership Function of Quantifier “almost all”

Example 10.8: The uncertain quantifier Q of “almost none” on the universe
A may have a membership function

1, fo<ae <2
Mz)=q (5-2)/3, if2<a<5 (10.21)
0, ifbh <z <n.

Figure 10.2: Membership Function of Quantifier “almost none”

Example 10.9: The uncertain quantifier Q of “about 10” on the universe A
may have a membership function

0, Hfo<e <7
(x—=7)/2, if7<xz<9
Az) = 1, if9<a<1l (10.22)
(13—12)/2, if1l1 <z <13
0, if13 <o <n.

Example 10.10: In many cases, it is more convenient for us to use a per-
centage than an absolute quantity. For example, we may use the uncertain
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7 9 10 11 13

Figure 10.3: Membership Function of Quantifier “about 107

quantifier Q of “about 70%”. In this case, a possible membership function of
Qis

0, if0<z<0.6
20(z — 0.6), if 0.6 <z < 0.65
Az) = 1, if 0.65 < x < 0.75 (10.23)
20(0.8 —z), if0.75 <z <0.8
0, if0.8<z<1.

60% 65%  75% 80%

Figure 10.4: Membership Function of Quantifier “about 70%”

Definition 10.2 An uncertain quantifier is said to be unimodal if its mem-
bership function is unimodal.

Example 10.11: The uncertain quantifiers “almost all”, “almost none”,
“about 10” and “about 70%” are unimodal.

Definition 10.3 An uncertain quantifier is said to be monotone if its mem-
bership function is monotone. Especially, an uncertain quantifier is said to be
increasing if its membership function is increasing; and an uncertain quanti-
fier is said to be decreasing if its membership function is decreasing.
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The uncertain quantifiers “almost all” and “almost none” are monotone,
but “about 10” and “about 70%” are not monotone. Note that both increas-
ing uncertain quantifiers and decreasing uncertain quantifiers are monotone.
In addition, any monotone uncertain quantifiers are unimodal.

Negated Quantifier

What is the negation of an uncertain quantifier? The following definition
gives a formal answer.

Definition 10.4 Let Q be an uncertain quantifier. Then the negated quan-
tifier —Q is the complement of Q in the sense of uncertain set, i.e.,

-Q = Q°. (10.24)

Example 10.12: Let V = {n} be the universal quantifier. Then its negated
quantifier
V=1{0,1,2,--- ,n—1}. (10.25)

Example 10.13: Let 3 = {1,2,--- ,n} be the existential quantifier. Then
its negated quantifier is
-3={0}. (10.26)

Theorem 10.1 Let Q be an uncertain quantifier whose membership function
is . Then the negated quantifier =Q has a membership function

-Alx) =1 = Ma). (10.27)

Proof: This theorem follows from the operational law of uncertain set im-
mediately.

Example 10.14: Let Q be the uncertain quantifier “almost all” defined by
(10.20). Then its negated quantifier =Q has a membership function

1, Hfo<z<n-5
“Az)=<¢ (n—2—-2)/3, ifn—-5<z<n-—2 (10.28)
0, ifn—2<x<n.

Example 10.15: Let Q be the uncertain quantifier “about 70%” defined by
(10.23). Then its negated quantifier =Q has a membership function

1, if0<z<06
20(0.65 — ), if 0.6 <z < 0.65
-Maz) = 0, if 0.65 < 2 < 0.75 (10.29)

20(z — 0.75), if 0.75 <z < 0.8
1, if0.8<z<1.
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—A(x)

n—5 n—2
Figure 10.5: Membership Function of Negated Quantifier of “almost all”

)\_(:c)

/
60% 65% 75% 80%

Figure 10.6: Membership Function of Negated Quantifier of “about 70%”

Theorem 10.2 Let Q be an uncertain quantifier. Then we have -—Q = Q.
Proof: This theorem follows from ——Q = =Q°¢ = (Q°)¢ = Q.

Theorem 10.3 If Q is a monotone uncertain quantifier, then —Q is also
monotone. Especially, if Q is increasing, then —Q is decreasing; if Q is de-
creasing, then —Q s increasing.

Proof: Assume ) is the membership function of Q. Then —Q has a member-
ship function 1 — A(z). The theorem follows from this fact immediately.
Dual Quantifier

Definition 10.5 Let Q be an uncertain quantifier. Then the dual quantifier
of Q is
Q*=VvV-Q. (10.30)

Remark 10.1: Note that Q and Q* are dependent uncertain sets such that
Q 4 Q* =V. Since the cardinality of the universe A is n, we also have

Q*=n-Q. (10.31)
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Example 10.16: Since V = {n}, we immediately have V* = {0} = —3. That
is
V¢ = 3. (10.32)

Example 10.17: Since =V = {0,1,2,--- ,n — 1}, we immediately have
(=¥)* ={1,2,--- ,n} = 3. That is,

(=v)* = 3. (10.33)
Example 10.18: Since 3={1,2,--- ,n}, we have 3* = {0,1,2,--- ,n—1} =

—V. That is,
I =V (10.34)

Example 10.19: Since =3 = {0}, we immediately have (—3)* = {n} = V.
That is,
(-3)* = V. (10.35)

Theorem 10.4 Let Q be an uncertain quantifier whose membership function
is . Then the dual quantifier Q* has a membership function

A (x) = A(n —x) (10.36)
where n is the cardinality of the universe A.

Proof: This theorem follows from the operational law of uncertain set im-
mediately.

Example 10.20: Let Q be the uncertain quantifier “almost all” defined by
(10.20). Then its dual quantifier Q* has a membership function

1, fo<ze <2
M(z) = (b—x)/3, f2<z<5H (10.37)
0, ifb<z<n.

Example 10.21: Let Q be the uncertain quantifier “about 70%” defined by
(10.23). Then its dual quantifier Q* has a membership function

0, if0<z<0.2
20(x —0.2), if0.2<z<0.25
N (z) = 1, if 0.25 <z < 0.35 (10.38)

20(0.4 — z), if0.35 <z <04
0, if04<z<1.
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A*(x) A(z)

5 n—=a
Figure 10.7: Membership Function of Dual Quantifier of “almost all”

A (z) r)\gx)_

I
20% 40% 60% 80%

Figure 10.8: Membership Function of Dual Quantifier of “about 70%”

Theorem 10.5 Let Q be an uncertain quantifier. Then we have Q** = Q.
Proof: The theorem follows from Q** =V - Q* =V — (V- Q) = Q.

Theorem 10.6 If Q is a unimodal uncertain quantifier, then Q* is also uni-
modal. Especially, if Q is a monotone, then Q* is monotone; if Q is increasing,
then Q* is decreasing; if Q is decreasing, then Q* is increasing.

Proof: Assume ) is the membership function of Q. Then Q* has a member-
ship function A(n — x). The theorem follows from this fact immediately.

10.3 Uncertain Subject

Sometimes, we are interested in a subset of the universe of individuals, for
example, “warm days”, “young students” and “tall sportsmen”. This section
will model them by the concept of uncertain subject.

Definition 10.6 (Liu [130]) Uncertain subject is an uncertain set containing
some specified individuals in the universe.

Example 10.22: “Warm days are here again” is a statement in which “warm
days” is an uncertain subject that is an uncertain set on the universe of “all
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days”, whose membership function may be defined by

0, if 2 < 15
(r—15)/3, if15 <z <18
v(z) = 1, if18<z <24 (10.39)
(28— 2)/4, if24 <z <28
0, if 28 < 7.

15°C 18°C 24°C 28°C
Figure 10.9: Membership Function of Subject “warm days”
Example 10.23: “Young students are tall” is a statement in which “young

students” is an uncertain subject that is an uncertain set on the universe of
“all students”, whose membership function may be defined by

0, if 2 < 15
(r —15)/5, if15 <z <20
v(z) = 1, if20< 2 <35 (10.40)
(45 — 2)/10, if 35 <z < 45
0, if & > 45,

Example 10.24: “Tall students are heavy” is a statement in which “tall
students” is an uncertain subject that is an uncertain set on the universe of
“all students”, whose membership function may be defined by

0, if 2 < 180
(z — 180)/5, if 180 < x < 185
v(z) = 1, if 185 < 2 < 195 (10.41)
(200 — z)/5, if 195 < 2 < 200
0, if z > 200.

Let S be an uncertain subject with membership function v on the universe
A = {a1,as, -+ ,a,} of individuals. Then S is an uncertain set of A such
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v(z)

15yr 20yr 35yr 45yr

Figure 10.10: Membership Function of Subject “young students”

v(z)

180cm 185cm 195cm  200cm
Figure 10.11: Membership Function of Subject “tall students”
that

M{a; € S} =v(a;), i=1,2,---,n. (10.42)

In many cases, we are interested in some individuals a’s with v(a) > w, where
w is a confidence level. Thus we have a subuniverse,

So={a€ Alv(a) > w} (10.43)

that will play a new universe of individuals we are talking about, and the
individuals out of S, will be ignored at the confidence level w.

Theorem 10.7 Let wy and wy be confidence levels with wy > wa, and let S,,,
and S, be subuniverses with confidence levels wi an wa, respectively. Then

Swy, C Sw,- (10.44)
That is, S, is a decreasing sequence of sets with respect to w.

Proof: If a € S, then v(a) > w1 > we. Thus a € S,,. It follows that
Sw; C Sw,. Note that S, and S, may be empty.
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10.4 Uncertain Predicate

There are numerous imprecise predicates in human language, for example,
warm, cold, hot, young, old, tall, small, and big. This section will model them
by the concept of uncertain predicate.

Definition 10.7 (Liu [130]) Uncertain predicate is an uncertain set repre-
senting a property that the individuals have in common.

Example 10.25: “Today is warm” is a statement in which “warm” is an
uncertain predicate that may be represented by a membership function

0, if 2 < 15
(r—15)/3, if15 <z <18
p(x) = 1, if18<xr <24 (10.45)
(28 —x)/4, if24<2 <28
0, if 28 < .

15°C 18°C 24°C  238°C

Figure 10.12: Membership Function of Predicate “warm”

Example 10.26: “John is young” is a statement in which “young” is an
uncertain predicate that may be represented by a membership function

0, if 2 <15
(r—15)/5, if15 <z <20
w(x) = 1, if20<x <35 (10.46)

(45— x)/10, if 35 <a <45
0, if © > 45.
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()

15yr 20yr 35yr 45yr

Figure 10.13: Membership Function of Predicate “young”

Example 10.27: “Tom is tall” is a statement in which “tall” is an uncertain
predicate that may be represented by a membership function

0, if 2 < 180
(z — 180)/5, if 180 < z < 185
plz) = 1, if 185 < 2 < 195 (10.47)
(200 — 2)/5, if 195 < z < 200
0, if 2 > 200.
p(z)
180cm 185cm 195cm  200cm

Figure 10.14: Membership Function of Predicate “tall”

Negated Predicate

Definition 10.8 Let P be an uncertain predicate. Then its negated predicate
=P is the complement of P in the sense of uncertain set, i.e.,

~P = P (10.48)

Theorem 10.8 Let P be an uncertain predicate with membership function
. Then its negated predicate ~P has a membership function

—p(x) =1 — p(x). (10.49)
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Proof: The theorem follows from the definition of negated predicate and the
operational law of uncertain set immediately.

Example 10.28: Let P be the uncertain predicate “warm” defined by
(10.45). Then its negated predicate =P has a membership function

1, ifx <15
(18 —x)/3, if15<x <18
—u(z) = 0, if18<x <24 (10.50)
(x—24)/4, if24 <z <28
1, if 28 < x.

/ \
15°C 18°C 24°C  28°C

Figure 10.15: Membership Function of Negated Predicate of “warm”

Example 10.29: Let P be the negated predicate “young” defined by (10.46).
Then its negated predicate =P has a membership function

1, if # < 15
(20— 2)/5, if15 <z <20
—plz) = 0, if 20 < z < 35 (10.51)
(z —35)/10, if35<ax <45
1, if z > 45.

Example 10.30: Let P be the uncertain predicate “tall” defined by (10.47).
Then its negated predicate =P has a membership function

1, if # < 180
(185 — z)/5, if 180 <z < 185
—p(z) = 0, if 185 < 2 < 195 (10.52)

(z —195)/5, if 195 <z < 200
1, if z > 200.
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/
15yr 20yr 35yr 45yr

)

Figure 10.16: Membership Function of Negated Predicate of “young

/
180cm 185cm 195cm  200cm

Figure 10.17: Membership Function of Negated Predicate of “tall”

Theorem 10.9 Let P be an uncertain predicate. Then we have -——P = P.

Proof: The theorem follows from ——P = —~P¢ = (P¢)¢ = P.

10.5 Uncertain Proposition

Definition 10.9 (Liu [130]) Assume that Q is an uncertain quantifier, S is
an uncertain subject, and P is an uncertain predicate. Then the triplet

(Q,8,P) =“Q of S are P” (10.53)

is called an uncertain proposition.

Remark 10.2: Let A be the universe of individuals. Then (Q, A, P) is a
special uncertain proposition because A itself is a special uncertain subject.

Remark 10.3: Let V be the universal quantifier. Then (V, A, P) is an
uncertain proposition representing “all of A are P”.

Remark 10.4: Let 3 be the existential quantifier. Then (3, A, P) is an
uncertain proposition representing “at least one of A is P”.
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Example 10.31: “Almost all students are young” is an uncertain proposi-
tion in which the uncertain quantifier Q is “almost all”, the uncertain subject
S is “students” (the universe itself) and the uncertain predicate P is “young”.

Example 10.32: “Most young students are tall” is an uncertain proposition
in which the uncertain quantifier Q is “most”, the uncertain subject S is
“young students” and the uncertain predicate P is “tall”.

Theorem 10.10 (Liu [130], Logical Equivalence Theorem) Let (Q, S, P) be
an uncertain proposition. Then

(Q*,S,P)=(9,5,—-P) (10.54)
where Q* is the dual quantifier of Q and =P is the negated predicate of P.

Proof: Note that (Q*,S, P) represents “Q* of S are P”. In fact, the state-
ment “Q* of S are P” implies “Q** of S are not P”. Since Q** = Q, we obtain
(9,S5,—P). Conversely, the statement “Q of S are not P” implies “Q* of S
are P”, ie., (Q*, 5, P). Thus (10.54) is verified.

Example 10.33: When Q* = =V, we have Q = 3. If S = A, then (10.54)
becomes the classical equivalence

(-V,A,P) = (3,A,-P). (10.55)

Example 10.34: When Q* = —3, we have Q = V. If S = A, then (10.54)
becomes the classical equivalence

(—3,A,P) = (V, A,~P). (10.56)

10.6 Truth Value

Let (9, .S, P) be an uncertain proposition. The truth value of (Q, S, P) should
be the uncertain measure that “Q of S are P”. That is,

T(Q, S, P) =M{Q of S are P}. (10.57)

However, it is impossible for us to deduce the value of M{Q of S are P} from
the information of Q, S and P within the framework of uncertain set theory.
Thus we need an additional formula to compose Q, S and P.

Definition 10.10 (Liu [130]) Let (Q,S,P) be an uncertain proposition in
which Q is a unimodal uncertain quantifier with membership function X\, S
18 an uncertain subject with membership function v, and P is an uncertain
predicate with membership function p. Then the truth value of (Q, S, P) with
respect to the universe A is

T(Q,S,P)= sup |wA sup inf p(a) A sup inf —pu(a) (10.58)
0<w<1 KeK,, acK KeKy, a€K
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where
K, = {K C S, |MK)) >}, (10.59)
K ={K C Sy | A(|Su| — |K|) > w}, (10.60)
So={a€ Alv(a) >w}. (10.61)

Remark 10.5: Keep in mind that the truth value formula (10.58) is vacuous
if the individual feature data of the universe A are not available.

Remark 10.6: The symbol | K| represents the cardinality of the set K. For
example, |@] = 0 and [{2,5,6}| = 3.

Remark 10.7: Note that —p is the membership function of the negated
predicate of P, and
—u(a) =1 — p(a). (10.62)

Remark 10.8: When the subset K of individuals becomes an empty set 0,

we will define

inf p(a) = inf —p(a) = 1. (10.63)
a€h a€h

Remark 10.9: If Q is an uncertain percentage rather than an absolute
quantity, then K, and K}, are defined by

K, = {K CSul|A <||Sli||) > w} , (10.64)

K;{Kcswp( gi')zw}. (10.65)

Remark 10.10: If the uncertain subject S degenerates to the universe A,
then the truth value of (Q, A, P) is

T(Q,A,P)= sup (w/\ sup inf u(a) A sup inf —\,u(a)> (10.66)

0<w<1 KeK, a€K KeKy, aEK

where
Ko ={K C A|X|K]) = w}, (10.67)
Ko ={K C A[A(A] - |K]) = w} . (10.68)

Exercise 10.1: If the uncertain quantifier Q =V and the uncertain subject
S = A, then for any w > 0, we have

K, = {4}, K& ={0}. (10.69)
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Show that
T(V,A,P) = irelfAu(a). (10.70)

Exercise 10.2: If the uncertain quantifier Q = 3 and the uncertain subject
S = A, then for any w > 0, we have

K, = {any nonempty subsets of A}, (10.71)
K}, = {any proper subsets of A}. (10.72)

Note that K, contains A but K, does not. Show that
T(3,A,P) = sggu(a). (10.73)

Exercise 10.3: If the uncertain quantifier Q = —V and the uncertain subject
S = A, then for any w > 0, we have

K., = {any proper subsets of A}, (10.74)
K} = {any nonempty subsets of A}. (10.75)

Show that
T(-V,A,P)=1-— irelg p(a). (10.76)

Exercise 10.4: If the uncertain quantifier Q = =3 and the uncertain subject
S = A, then for any w > 0, we have

K, = {0}, K ={A). (10.77)
Show that
T(—-3,A,P)=1—sup u(a). (10.78)
acA

Theorem 10.11 (Liu [130], Truth Value Theorem) Let (Q,S, P) be an un-
certain proposition in which Q is a unimodal uncertain quantifier with mem-
bership function A, S is an uncertain subject with membership function v,

and P is an uncertain predicate with membership function p. Then the truth
value of (Q, 5, P) is

T(Q,S,P)= sup (wA A(ky,) ANA"(KL)) (10.79)
0<w<1
where
k, = min{z | A(z) > w}, (10.80)
A(ky) = the k,,-th largest value of {u(a;)|a; € Su}, (10.81)
kr = |S,] — max{x | A(z) > w}, (10.82)
A* (k) = the kX -th largest value of {1 — u(a;)|a; € S, }. (10.83)
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Proof: Since the supremum is achieved at the subset with minimum cardi-
nality, we have

sup inf u(a) = sup inf u(a) = Ak,),
Sup. Jnf u(a) e Jnf u(a) = Alkw)
sup inf —pu(a) = sup inf —p(a) = A*(KY).
KcKy o€k (a) KCSa,|K|=k;, @€K (a) (ko)

The theorem is thus verified. Please note that A(0) = A*(0) = 1.

Remark 10.11: If Q is an uncertain percentage, then k,, and k are defined

by
k., = min {x A (ISxI) > w} : (10.84)

k: = |Su| — max{x A <|wa> > w} . (10.85)

Remark 10.12: If the uncertain subject S degenerates to the universe of
individuals A = {ay,az,--- ,ay,}, then the truth value of (Q, A, P) is

T(Q,A,P)= sup (wAA(ky)ANA*(KD)) (10.86)
0<w<1
where
k, = min{z | A(z) > w}, (10.87)

A(k,) = the k,-th largest value of p(ay), u(ag), -, p(ay), (10.88)
kX =n — max{z|A(z) > w}, (10.89)

A*(k.) = the k}-th largest value of 1 — p(aq),---,1 — p(an).  (10.90)

Exercise 10.5: If the uncertain quantifier Q = {m, m+1,--- ,n} (i.e., “there
exist at least m”) with m > 1, then we have k,, = m and &} = 0. Show that

T(Q, A, P) = the mth largest value of u(ai),u(az), -, u(ay).  (10.91)

Exercise 10.6: If the uncertain quantifier Q = {0,1,2,...,m} (i.e., “there
exist at most m”) with m < n, then we have k, = 0 and k), = n —m. Show
that

T(Q, A, P) = the (n — m)th largest value of 1—p(ay), 1—u(az), -, 1—u(ay).
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10.7 Algorithm

In order to calculate T'(Q, S, P) based on the truth value formula (10.58), a
truth value algorithm is given as follows:

Step 1. Set w =1 and € = 0.01 (a predetermined precision).

Step 2. Calculate S, = {a € A|v(a) > w} and k = min{z | \(z) > w} as
well as k* = |S,,| — max{z | A\(z) > w}.

Step 3. If A(k) ANA*(k*) < w, then w <~ w —¢ and go to Step 2. Otherwise,
output the truth value w and stop.

Remark 10.13: If Q is an uncertain percentage, then k,, and & in the truth
value algorithm are replaced with (10.84) and (10.85), respectively.

Example 10.35: Assume that the daily temperatures of some week from
Monday to Sunday are

22, 23, 25, 28, 30, 32, 36 (10.92)
in centigrades, respectively. Consider an uncertain proposition
(Q, A, P) = “two or three days are warm”. (10.93)

Note that the uncertain quantifier is Q = {2,3}. We also suppose the uncer-
tain predicate P = “warm” has a membership function

0, if x <15
(z—15)/3, if15 <z <18
u(z) = 1, if 18 <z <24 (10.94)
(28 —x)/4, if24 <x<28
0, if 28 < .

It is clear that Monday and Tuesday are warm with truth value 1, and
Wednesday is warm with truth value 0.75. But Thursday to Sunday are
not “warm” at all (in fact, they are “hot”). Intuitively, the uncertain propo-
sition “two or three days are warm” should be completely true. The truth
value algorithm (http://orsc.edu.cn/liu/resources.htm) yields that the truth
value is

T'(“two or three days are warm”) = 1. (10.95)

This is an intuitively expected result. In addition, we also have

T(“two days are warm”) = 0.25, (10.96)

T'(“three days are warm”) = 0.75. (10.97)
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Example 10.36: Assume that in a class there are 15 students whose ages
are

21, 22, 22, 23, 24, 25, 26, 27, 28, 30, 32, 35, 36, 38, 40 (10.98)

in years. Consider an uncertain proposition
(Q, A, P) = “almost all students are young”. (10.99)

Suppose the uncertain quantifier Q = “almost all” has a membership function

0, if0<z<10
AMz) =14 (x—10)/3, if10<z <13 (10.100)
1, if13 < z < 15,

and the uncertain predicate P = “young” has a membership function

0, ifex <15
(x—15)/5, if15 <z <20
() = 1, if 20 < 2 < 35 (10.101)
(45— 2)/10, if 35 <z < 45
0, if x > 45.

The truth value algorithm (http://orsc.edu.cn/liu/resources.htm) yields that
the uncertain proposition has a truth value

T'(“almost all students are young”) = 0.9. (10.102)
Example 10.37: Assume that in a team there are 16 sportsmen whose

heights are
175, 178, 178, 180, 183, 184, 186, 186

188, 190, 192, 192, 193, 194, 195, 196 (10.103)
in centimeters. Consider an uncertain proposition
(Q, A, P) = “about 70% of sportsmen are tall”. (10.104)
Suppose the uncertain quantifier Q = “about 70%” has a membership func-
tion
0, if0<x<0.6
20(x — 0.6), if 0.6 <x <0.65
AMz) = 1, if 0.65 <z <0.75 (10.105)

20(0.8 — z), if0.75 <z < 0.8
0, if08<z<1
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and the uncertain predicate P = “tall” has a membership function

0, if z < 180
(z — 180)/5, if 180 < x < 185
u(z) = 1, if 185 < x < 195 (10.106)
(200 — 2)/5, if 195 < 2 < 200
0, if z > 200.

The truth value algorithm (http://orsc.edu.cn/liu/resources.htm) yields that
the uncertain proposition has a truth value

T (“about 70% of sportsmen are tall”) = 0.8. (10.107)
Example 10.38: Assume that in a class there are 18 students whose ages
and heights are
(24, 185), (25,190), (26,184), (26,170), (27,187), (27, 188)
(28,160), (30,190), (32,185), (33,176), (35,185), (36, 188) (10.108)
(38,164), (38,178), (39,182), (40,186), (42,165), (44,170)
in years and centimeters. Consider an uncertain proposition

(Q, S, P) = “most young students are tall”. (10.109)

Suppose the uncertain quantifier (percentage) Q = “most” has a membership
function

0, if0<z<0.7
20(x — 0.7), if0.7 <z <0.75
Az) = 1, if 0.75 < 2 < 0.85 (10.110)
20(0.9 — ), if0.85 <z <0.9
0, if0.9<z<1.

Note that each individual is described by a feature data (y, z), where y rep-
resents ages and z represents heights. In this case, the uncertain subject
S = “young students” has a membership function

0, if y <15
(y—15)/5, if15 <y <20
viy) = 1, if20<y <35 (10.111)

(45 —y)/10, it 35 <y <45
0, ify > 45
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and the uncertain predicate P = “tall” has a membership function

0, if 2 < 180
(z—180)/5, if 180 < z < 185
u(z) = 1, if 185 < 2 < 195 (10.112)
(200 — 2)/5, if 195 < z < 200
0, if z > 200.

The truth value algorithm yields that the uncertain proposition has a truth
value
T'(“most young students are tall”) = 0.8. (10.113)

10.8 Linguistic Summarizer

Linguistic summary is a human language statement that is concise and easy-
to-understand by humans. For example, “most young students are tall” is
a linguistic summary of students’ ages and heights. Thus a linguistic sum-
mary is a special uncertain proposition whose uncertain quantifier, uncertain
subject and uncertain predicate are linguistic terms. Uncertain logic pro-
vides a flexible means that is capable of extracting linguistic summary from
a collection of raw data.

What inputs does the uncertain logic need? First, we should have some
raw data (i.e., the individual feature data),

A={ar,az,-- ,an}. (10.114)

Next, we should have some linguistic terms to represent quantifiers, for exam-
ple, “most” and “all”. Denote them by a collection of uncertain quantifiers,

Q=1{921,9, ,%n} (10.115)

Then, we should have some linguistic terms to represent subjects, for exam-
ple, “young students” and “old students”. Denote them by a collection of
uncertain subjects,

S ={51,52,-,Sn} (10.116)

Last, we should have some linguistic terms to represent predicates, for exam-
ple, “short” and “tall”. Denote them by a collection of uncertain predicates,

P={P, Py, , P} (10.117)

One problem of data mining is to choose an uncertain quantifier Q € Q, an
uncertain subject S € S and an uncertain predicate P € P such that the
truth value of the linguistic summary “Q of S are P” to be extracted is at
least 3, i.e.,

T(Q,S,P)>p (10.118)
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for the universe A = {a1,as9, - ,a,}, where 8 is a confidence level. In order
to solve this problem, Liu [130] proposed the following linguistic summarizer,

Find Q, S and P
subject to:
Qe
Ses
PeP
T(Q,5,P) > p.

(10.119)

Each solution (Q,
guistic summary

S, P) of the linguistic summarizer (10.119) produces a lin-
“Q of S are P”.

Example 10.39: Assume that in a class there are 18 students whose ages
and heights are

(24,185), (25,190), (26,184), (26,170), (27,187), (27, 188)
(28,160), (30, 190), (32,185), (33,176), (35,185), (36,188)  (10.120)
(38,164), (38,178), (39,182), (40, 186), (42, 165), (44, 170)

in years and centimeters. Suppose we have three linguistic terms “about
half”, “most” and “all” as uncertain quantifiers whose membership functions
are

0, if0<z<04
20(z — 0.4), if 0.4 <z <045
Matf () = 1, if 0.45 < z < 0.55 (10.121)
20(0.6 — z), if 0.55 <z < 0.6
0, if0.6<z<1,
0, ifo0<z<07
20(z —0.7), if 0.7 <z <0.75
Amost () = 1, if 0.75 < x < 0.85 (10.122)
2009 —z), if0.85<x<0.9
0, if09<z<1,
Aatt(z) = { (1) igg ; <1, (10.123)

respectively. Denote the collection of uncertain quantifiers by

Q = {“about half”, “most”,“all”}. (10.124)
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kM “

We also have three linguistic terms “young students”, “middle-aged students”
and “old students” as uncertain subjects whose membership functions are

0, ify <15
(y —15)/5, if 15 <y <20
Vyoung(y) = 1, if 20 <y <35 (10.125)
(45 —y)/10, if 35 <y <45
0, if y > 45,
0, it y <40
(y—40)/5, if40<y<45
Vmiddie(y) = 1, if 45 <y < 55 (10.126)
(60 — y)/5, if 55 <y < 60
0, if y > 60,
0, if y <55
(y —55)/5, if 55 <y <60
Vold(y) = 1, if 60 <y < 80 (10.127)
(85 —y)/5, if80 <y <85
1, if y > 85,

respectively. Denote the collection of uncertain subjects by
S = {“young students”, “middle-aged students”, “old students”}. (10.128)

Finally, we suppose that there are two linguistic terms “short” and “tall” as
uncertain predicates whose membership functions are

0, if 2 < 145
(z —145)/5, if 145 < z < 150
Lishort(2) = 1, if 150 < z < 155 (10.129)
(160 — z)/5, if 155 < z < 160
0, if 2 > 200,
0, if z < 180
(z—180)/5, if 180 < z < 185
firan(2) = 1, if 185 < z < 195 (10.130)
(200 — z)/5, if 195 < z < 200
0, if 2 > 200,

respectively. Denote the collection of uncertain predicates by

P = {“short”, “tall’}. (10.131)
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We would like to extract an uncertain quantifier Q € QQ, an uncertain subject
S € S and an uncertain predicate P € P such that the truth value of the
linguistic summary “Q of S are P” to be extracted is at least 0.8, i.e.,

T(Q,S,P)>0.8 (10.132)

where 0.8 is a predetermined confidence level. The linguistic summarizer
(10.119) yields

Q = “most”, S = “young students”, P = “tall”

and then extracts a linguistic summary “most young students are tall”.

10.9 Bibliographic Notes

Based on uncertain set theory, uncertain logic was designed by Liu [130]
in 2011 for dealing with human language by using the truth value formula
for uncertain propositions. As an application of uncertain logic, Liu [130]
also proposed a linguistic summarizer that provides a means for extracting
linguistic summary from a collection of raw data.



Chapter 11

Uncertain Inference

Uncertain inference is a process of deriving consequences from human knowl-
edge via uncertain set theory. This chapter will introduce a family of uncer-
tain inference rules, uncertain system, and uncertain control with application
to an inverted pendulum system.

11.1 Unecertain Inference Rule

Let X and Y be two concepts. It is assumed that we only have a single if-then
rule,

“if X'is € then Y is n” (11.1)

where £ and 7 are two uncertain sets. We first introduce the following infer-
ence rule.

Inference Rule 11.1 (Liu [127]) Let X and Y be two concepts. Assume a
rule “if X is an uncertain set & then Y is an uncertain set n”. From X is a
constant a we infer that Y is an uncertain set

N = 1nace (11.2)

which is the conditional uncertain set of n given a € £. The inference rule is
represented by
Rule: If X is £ then Y is n
From: X is a constant a (11.3)
Infer: Y is n* = n]qce

Theorem 11.1 Let & and n be independent uncertain sets with membership
functions p and v, respectively. If £ is a constant a, then the inference rule

© Springer-Verlag Berlin Heidelberg 2015 247
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11.1 yields that n* has a membership function

v(y) .
(a)’ if v(y) < p(a)/2
vi(y) = M7 ifv(y) > 1 — p(a)/2 (11.4)
1(a)
0.5, otherwise.

Proof: It follows from the inference rule 11.1 that n* has a membership
function

vi(y) = M{y € nla € &}
By using the definition of conditional uncertainty, we have
Myent . Myen}
— f ——= <05
Moeg " Mfaeg) S
M{yenlacé = 1_M{y¢n}7 g My Eny _ .
M{a € &} M{a € &}
0.5, otherwise.

The equation (11.4) follows from M{y € n} = v(y), M{y € n} =1 — v(y)
and M{a € £} = p(a) immediately. The theorem is proved.

0.5

0

Figure 11.1: Graphical Hlustration of Inference Rule. Reprinted from Liu
[129].

Inference Rule 11.2 (Gao, Gao and Ralescu [49]) Let X, Y and Z be three
concepts. Assume a rule “if X is an uncertain set & and Y is an uncertain set
n then Z s an uncertain set 7”7. From X is a constant a and Y is a constant
b we infer that Z is an uncertain set

T = T‘(ae&)ﬂ(b@n) (11.5)
which is the conditional uncertain set of T given a € & and b € n. The
inference rule is represented by

Rule: If X is £ and Y is ) then Z is 7
From: Xis @ and Y is b (11.6)
Infer: Z is 7* = T|(ace)n(ven)
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Theorem 11.2 Let &,n,7 be independent uncertain sets with membership
functions p, v, \, respectively. If £ is a constant a and n* is a constant b,
then the inference rule 11.2 yields that 7* has a membership function

A2) () < B Av(b)
() A o) fAE) <=5
XN(z)=q Az tu@rve)—1 _wa)Avd)  (11.7)
) a0 AR 5
0.5, otherwise.

Proof: It follows from the inference rule 11.2 that 7* has a membership
function
Nz =M{zeT|(ae&)N(ben)}.

By using the definition of conditional uncertainty, M{z € 7|(a € )N (b € n)}
is

M{z e} . M{z e}
Maconben) " MacHnpen) 07
O Mzgr) L M{zgr)

Y NM{aeonten) " Maeonben) ~ 7
0.5, otherwise.

The theorem follows from M{z € 7} = A(2), M{z & 7} = 1 — A(z) and
M{(a € &) N (ben)} = pla) Av(b) immediately.

Inference Rule 11.3 (Gao, Gao and Ralescu [{9]) Let X and Y be two
concepts. Assume two rules “if X is an uncertain set & then Y is an uncertain
setm” and “if X is an uncertain set & then Y is an uncertain set ny”. From
X is a constant a we infer that Y is an uncertain set

* M{a S 51} ! 771|a€§1 M{a S 52} i 772|(l€§2

"o M{a € 51} +M{a S 52} + M{a c 51} +M{a c 52} (118)

The inference rule is represented by

Rule 1: If X is & then Y is m;
Rule 2: If X is & then Y is 79
From: X is a constant a

Infer: Y is n* determined by (11.8)

(11.9)

Theorem 11.3 Let £1,&5,1m1,1n2 be independent uncertain sets with mem-
bership functions i, o, 1, Ve, respectively. If € is a constant a, then the
inference rule 11.3 yields

" (11.10)
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where 17 and n5 are uncertain sets whose membership functions are respec-
tively given by

v1(y) .
in(a)’ if v1(y) < pa(a)/2
vi(y) = Vl(y)‘Fﬂl(a)_l, F o) > 1 — n(a)/2 (11.11)
p(a)
0.5, otherwise,
2] i 1ay) < 2(a) 2
pi2(a)’
vi(y) =4 va(y) + pe(a) iy iFoay) > 1 — pa(a)2 (11.12)
p2(a)
0.5, otherwise.

Proof: It follows from the inference rule 11.3 that the uncertain set n* is
just

= Mia €&} mlace, | M{a € &} m2ace,
Mae&t+Mae&t M{ae&t+Mae &}

The theorem follows from M{a € &} = pi(a) and M{a € &} = pa(a)

immediately.

Inference Rule 11.4 Let X1,X5, -+, X, be concepts. Assume rules “if X;
18 &1 and - -+ and X, 18 i then Y ds n;” fori=1,2,--- k. From X1 is aq
and - -+ and X, s a,, we infer thatY is an uncertain set

k
77* _ Z Ci 'ni|(a1EEil)ﬂ(azefiz)ﬁ"'ﬁ(ame&‘m) (11.13)

— crtex+ - Fcg

where the coefficients are determined by
=M {(a1 € 5@1) n (a2 S &2) n---N (am S fzm)} (11.14)
fori=1,2,--- k. The inference rule is represented by

Rule 1: If X is £&17 and -+ - and X, is &1, then Y is
Rule 2: If X is £&97 and - -+ and X, is &3, then Y is 7

Rule k: Tf Xy is &1 and - -- and X, is &g then Y is 7 (11.15)
From: X; is a; and --- and X,,, is a,,,
Infer: Y is n* determined by (11.13)

Theorem 11.4 Assume &;1,&i2,+ ,&m, N are independent uncertain sets

with membership functions i1, fiz, -« s im, Vi, ¢ = 1,2, |k, respectively.
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If£5,&5, - -+ E:, are constants a1, az, -+ , am, Tespectively, then the inference
rule 11.4 yields
. Cit 1y
= 11.16

where 1} are uncertain sets whose membership functions are given by

vi(y _
il )7 if vi(y) <ci/2
&
* = vi(y)+c¢ —1 ) .
vi'(y) i(y) Ll ) > 12 (11.17)
(]
0.5, otherwise
and ¢; are constants determined by
¢ = 122n i (ap) (11.18)
fori=1,2,---  k, respectively.
Proof: For each i, since a1 € &1,a2 € &2, ,am € &im are independent
events, we immediately have
m
M Q(aj €&ij) o = lglgnmm{aj €&ij} = i pi(ar)
j=
fori=1,2,---, k. From those equations, we may prove the theorem by the

inference rule 11.4 immediately.

11.2 Uncertain System

Uncertain system, proposed by Liu [127], is a function from its inputs to
outputs based on the uncertain inference rule. Usually, an uncertain system
consists of 5 parts:

1. inputs that are crisp data to be fed into the uncertain system;
2. a rule-base that contains a set of if-then rules provided by the experts;

3. an uncertain inference rule that infers uncertain consequents from the
uncertain antecedents;

4. an expected value operator that converts the uncertain consequents to
crisp values;

5. outputs that are crisp data yielded from the expected value operator.
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Now let us consider an uncertain system in which there are m crisp inputs
1,09, , Qy, and n crisp outputs Sy, B2, -+, Bn. At first, we infer n un-
certain sets 07,15, - -+ , 7 from the m crisp inputs by the rule-base (i.e., a set
of if-then rules),

If &7 and &2 and- - - and &, then 777 and 712 and- - - and 71,

If €57 and &95 and- - - and &5, then 721 and 725 and- - - and 79, (11.19)
If €1 and &g and- - - and &gy, then ngy and nxe and- - - and 7,
and the uncertain inference rule
5 i Mgl egin)n(astia)n e (am E€im)
* 1 1J (1 €81 )N(a2€&i2) N -N(Am E&im
— 11.20
n.] ; Cl+62+"'+0k ( )
for j =1,2,--- ,n, where the coefficients are determined by
Cc; = M{(m S 511) n (OtQ € 512) N---N (Oém S fzm)} (1121)
fori=1,2,--- ,k. Thus by using the expected value operator, we obtain
B; = E[nj] (11.22)
for j = 1,2,--- ,n. Until now we have constructed a function from inputs
a1, Q9, -, Qpy to outputs By, Ba, -+ -, Bn. Write this function by f, i.e.,
(517527"' 75n):f(a1aa27"' 7am)' (1123)
Then we get an uncertain system f.
o — — 0 > B = En] =B
Inference Rule N N
Qg —> > 15 > B2 = En3] > 52
Rule Base ' . :
oy | [Rule Base] | ||} L
Figure 11.2: An Uncertain System. Reprinted from Liu [129].
Theorem 11.5 Assume&;1,&2, &, Ni1s Mizs -+ » Nin are independent un-
certain sets with membership functions (1, flig, -« 5 Mim, Vi1, Vi2s s Vin, 1 =
1,2,--- , k, respectively. Then the uncertain system from (a1, -+ ,am) to

(61aﬁ27 o aﬁn) 18

k
Ci'E[ij]

= 11.24

P ;cl+cQ+~~+ck (11.24)
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for j =1,2,---,n, where nj; are uncertain sets whose membership functions
are given by
Ui .
7”6(_31)’ if vij(y) < ci/2
(3
(y) =< v ¢ —1
vi;(y) % i vis(y) > 1 — )2 (11.25)
1
0.5, otherwise

and c; are constants determined by

c = lg%lgn,u”(al) (11.26)

fori=1,2,---k, j=1,2,---  n, respectively.

Proof: It follows from the inference rule 11.4 that the uncertain sets 7} are

k
-3
P cirte+---+c

for j =1,2,---,n. Since nf;,i = 1,2,--- ,k,j = 1,2,--- ,n are independent
uncertain sets, we get the theorem immediately by the linearity of expected
value operator.

Ck

Remark 11.1: The uncertain system allows the uncertain sets 7;; in the
rule-base (11.19) become constants b;;, i.e.,

- (11.27)
fori =1,2,---,kand j = 1,2,--- ,n. In this case, the uncertain system
(11.24) becomes
k
Z (11.28)
— +C2+ “t+ck

forj=1,2,---,n

Remark 11.2: The uncertain system allows the uncertain sets 7;; in the

rule-base (11.19) become functions h;; of inputs o, g, -« - , (v, i€,

Nij = hij(on, ag, -+ am) (11.29)
fori =1,2,--- )k and 5 = 1,2,--- ,n. In this case, the uncertain system
(11.24) becomes

3, :ici'hij(alaa%”' ) Q) (11.30)
T2 atatota

forj=1,2,---,n
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Uncertain Systems are Universal Approximator

Uncertain systems are capable of approximating any continuous function on
a compact set (i.e., bounded and closed set) to arbitrary accuracy. This is the
reason why uncertain systems may play a controller. The following theorem
shows this fact.

Theorem 11.6 (Peng and Chen [186]) For any given continuous function
g on a compact set D C R™ and any given € > 0, there exists an uncertain
system f such that

||f(0[170[2, e ,Oém) - g(al7a27' o 7am)|| <e (1131)
for any (a1, a0, , ) € D.

Proof: Without loss of generality, we assume that the function g is a real-
valued function with only two variables a; and as, and the compact set is
a unit rectangle D = [0,1] x [0,1]. Since g is continuous on D and then is
uniformly continuous, for any given number € > 0, there is a number § > 0
such that

(a1, a2) — g(ay,ah)| < e (11.32)

whenever ||(a1, az) — (o), ab)|| < §. Let k be an integer larger than 1/(1/29),
and write

1—1 1 5—1 j
Dij:{(ala&2)| : <a1§k,jk<a2§£} (11.33)

for 4,j = 1,2,--- ,k. Note that {D;;} is a sequence of disjoint rectangles
whose “diameter” is less than 6. Define uncertain sets

i1—1 1
_ P =1.2.... 11.34
€’L ( k ,k)a 1 y < 7ka ( 3)

J—17 .
C b =1.2..-- k. 11.
n; (kk) J=12-k (11.35)
Then we assume a rule-base with k£ x k if-then rules,
Rule ij: If & and n; then g(i/k,j/k), 4,5=1,2,--- k. (11.36)

According to the uncertain inference rule, the corresponding uncertain system
from D to R is

floa,a2) = g(i/k,j/k), if (an,02) € Dyj, 4,5 =1,2,--- k. (11.37)
It follows from (11.32) that for any (an,as) € D;; C D, we have
|f(an, a2) = gla, a2) = [g(i/k, j/k) — g(ar, az)| <e. (11.38)

The theorem is thus verified. Hence uncertain systems are universal approx-
imators!
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11.3 Uncertain Control

Uncertain controller, designed by Liu [127], is a special uncertain system that
maps the state variables of a process under control to the action variables.
Thus an uncertain controller consists of the same 5 parts of uncertain system:
inputs, a rule-base, an uncertain inference rule, an expected value operator,
and outputs. The distinguished point is that the inputs of uncertain controller
are the state variables of the process under control, and the outputs are the
action variables.

Figure 11.3 shows an uncertain control system consisting of an uncertain
controller and a process. Note that ¢ represents time, oy (t), aa(t), -+ , qm(t)
are not only the inputs of uncertain controller but also the outputs of process,

and £1(t), Ba(t), - - - , Bn(t) are not only the outputs of uncertain controller but
also the inputs of process.

Inputs of Controller Outputs of Controller
Process
Outputs of Process Inputs of Process
o (t) —> [Tnforence Rule | n7 ()= B (t)=En} ()] —{ B (¢)
i (t) > —>115 ()= B2(t)=E 3 ()] > B2(t)

o ()} —> o (O 8. ()=l (0] — 5 (1)

Figure 11.3: An Uncertain Control System. Reprinted from Liu [129].

11.4 Inverted Pendulum

Inverted pendulum system is a nonlinear unstable system that is widely used
as a benchmark for testing control algorithms. Many good techniques already
exist for balancing inverted pendulum. Among others, Gao [52] successfully
balanced an inverted pendulum by the uncertain controller with 5 x 5 if-then
rules.

The uncertain controller has two inputs (“angle” and “angular velocity”)
and one output (“force”). Three of them will be represented by uncertain
sets labeled by

“negative large” NL
“negative small” NS
“zero” 7Z
“positive small” PS
“positive large” PL
The membership functions of those uncertain sets are shown in Figures 11.5,
11.6 and 11.7.
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A(t)

F(t)—>

®
®

Figure 11.4: An Inverted Pendulum in which A(%) represents the angular po-
sition and F'(t) represents the force that moves the cart at time ¢. Reprinted
from Liu [129].

NL NS

N

PS PL

—-r/2 —7w/4 O w/4 w2 (rad)

Figure 11.5: Membership Functions of “Angle”

Intuitively, when the inverted pendulum has a large clockwise angle and
a large clockwise angular velocity, we should give it a large force to the right.
Thus we have an if-then rule,

If the angle is negative large
and the angular velocity is negative large,
then the force is positive large.

Similarly, when the inverted pendulum has a large counterclockwise angle
and a large counterclockwise angular velocity, we should give it a large force
to the left. Thus we have an if-then rule,

If the angle is positive large
and the angular velocity is positive large,
then the force is negative large.

Note that each input or output has 5 states and each state is represented by
an uncertain set. This implies that the rule-base contains 5 x 5 if-then rules.
In order to balance the inverted pendulum, the 25 if-then rules in Table 11.1
are accepted.
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NL NS Z PS PL

/4 —7w/8 0 /8 w/4 (rad/sec)

Figure 11.6: Membership Functions of “Angular Velocity”

NL NS Z PS PL

N
—-60 —-40 -20 0 20 40 60 (N)

Figure 11.7: Membership Functions of “Force”

A lot of simulation results show that the uncertain controller may balance

the inverted pendulum successfully.

11.5 Bibliographic Notes

The basic uncertain inference rule was initialized by Liu [127] in 2010 by
the tool of conditional uncertain set. After that, Gao, Gao and Ralescu [49]
extended the uncertain inference rule to the case with multiple antecedents

and multiple if-then rules.

Based on the uncertain inference rules, Liu [127] suggested the concept of
uncertain system, and then presented the tool of uncertain controller. As an
important contribution, Peng and Chen [186] proved that uncertain systems

Table 11.1: Rule Base with 5 x 5 If-Then Rules

velocity | \p I ns |z | Ps | PL
angle
NL PL |PL | PL | PS | Z
NS PL |PL| PS| Z | NS
Z PL | PS| Z | NS | NL
PS PS | Z | NS | NL | NL
PL Z | NS | NL | NL | NL
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are universal approximator and then demonstrated that the uncertain con-
troller is a reasonable tool. As a successful application, Gao [52] balanced an
inverted pendulum by using the uncertain controller.



Chapter 12

Uncertain Process

The study of uncertain process was started by Liu [123] in 2008 for modeling
the evolution of uncertain phenomena. This chapter will give the concept of
uncertain process, and introduce sample path, uncertainty distribution, in-
dependent increment, stationary increment, extreme value, first hitting time,
and time integral of uncertain process.

12.1 Uncertain Process

An uncertain process is essentially a sequence of uncertain variables indexed
by time. A formal definition is given below.

Definition 12.1 (Liu [125]) Let (T, L, M) be an uncertainty space and let T
be a totally ordered set (e.g. time). An uncertain process is a function X;(7)
from T x (T, £, M) to the set of real numbers such that {X; € B} is an event
for any Borel set B at each time t.

Remark 12.1: If X; is an uncertain process, then X; is an uncertain variable
at each time t.

Example 12.1: Let a and b be real numbers with a < b. Assume X; is a
linear uncertain variable, i.e.,

X; ~ L(at,bt) (12.1)
at each time ¢. Then X; is an uncertain process.

Example 12.2: Let a,b, ¢ be real numbers with a < b < ¢. Assume X, is a
zigzag uncertain variable, i.e.,

X ~ Z(at,bt,ct) (12.2)
at each time ¢t. Then X; is an uncertain process.
© Springer-Verlag Berlin Heidelberg 2015 259
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Example 12.3: Let ¢ and o be real numbers with ¢ > 0. Assume X; is a
normal uncertain variable, i.e.,

X ~ N (et, ot) (12.3)
at each time t. Then X; is an uncertain process.

Example 12.4: Let e and o be real numbers with o > 0. Assume X; is a
lognormal uncertain variable, i.e.,

X ~ LOGN (et,ot) (12.4)

at each time ¢. Then X; is an uncertain process.

Sample Path

Definition 12.2 (Liu [123]) Let X; be an uncertain process. Then for each
v €T, the function Xi(v) is called a sample path of X;.

Note that each sample path is a real-valued function of time ¢. In addition,
an uncertain process may also be regarded as a function from an uncertainty
space to a collection of sample paths.

R

Figure 12.1: A Sample Path of Uncertain Process. Reprinted from Liu [129].

Definition 12.3 An uncertain process X; is said to be sample-continuous if
almost all sample paths are continuous functions with respect to time t.

Uncertain Field

Uncertain field is a generalization of uncertain process when the index set T'
becomes a partially ordered set (e.g. time x space, or a surface).

Definition 12.4 (Liu [139]) Let (T, £, M) be an uncertainty space and let T
be a partially ordered set (e.g. time X space). An uncertain field is a function
X () from T x (I, L, M) to the set of real numbers such that {X; € B} is
an event for any Borel set B at each time t.
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12.2 Uncertainty Distribution

An uncertainty distribution of uncertain process is a sequence of uncertainty
distributions of uncertain variables indexed by time. Thus an uncertainty
distribution of uncertain process is a surface rather than a curve. A formal
definition is given below.

Definition 12.5 (Liu [139]) An uncertain process X, is said to have an
uncertainty distribution ®4(x) if at each time t, the uncertain variable X,
has the uncertainty distribution ®¢(x).

Example 12.5: The linear uncertain process X; ~ L(at, bt) has an uncer-
tainty distribution,

0, ifx <at
—at

O (z) = ﬁ if at < a < bt (12.5)
1,  ifz>bt.

Example 12.6: The zigzag uncertain process X; ~ Z(at,bt,ct) has an
uncertainty distribution,

0, if x <at
r — at
_ if at < x < bt
)= 2k (12.6)
T pret—2bt ’
ST itk <a<ct
2(c —b)t
1, if @ > ct.

Example 12.7: The normal uncertain process X; ~ N (et,ot) has an un-
certainty distribution,

o) = (1o (7)) w2

Example 12.8: The lognormal uncertain process X; ~ LOGN (et,ot) has
an uncertainty distribution,

b= (1o (BT g
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Theorem 12.1 (Liu [139], Sufficient and Necessary Condition) A function
Oy(z) : T xR = [0,1] is an uncertainty distribution of uncertain process if
and only if at each time t, it is a monotone increasing function with respect
to x except ®i(x) =0 and Dy(z) = 1.

Proof: If ®;(x) is an uncertainty distribution of some uncertain process
Xy, then at each time ¢, ®;(x) is the uncertainty distribution of uncertain
variable X;. It follows from Peng-Iwamura theorem that ®;(z) is a monotone
increasing function with respect to x and ®;(x) # 0, ®;(x) £ 1. Conversely,
if at each time ¢, ®¢(x) is a monotone increasing function except ®;(x) = 0
and ®@;(x) = 1, it follows from Peng-Iwamura theorem that there exists an
uncertain variable & whose uncertainty distribution is just ®;(z). Define

X, =&, VteT.

Then X; is an uncertain process and has the uncertainty distribution ®;(x).
The theorem is verified.

Theorem 12.2 Let X; be an uncertain process with uncertainty distribution
O, (), and let f(z) be a measurable function. Then f(X;) is also an uncertain
process. Furthermore, (i) if f(x) is a strictly increasing function, then f(X;)
has an uncertainty distribution

Uy(w) = De(f7 (2); (12.9)

and (ii) if f(x) is a strictly decreasing function and ®¢(x) is continuous with
respect to x, then f(X;) has an uncertainty distribution

Wy(z) = 1— 0,/ (@), (12.10)

Proof: At each time ¢, since X; is an uncertain variable, it follows from
Theorem 2.1 that f(X;) is also an uncertain variable. Thus f(X}) is an
uncertain process. The equations (12.9) and (12.10) may be verified by the
operational law of uncertain variables immediately.

Example 12.9: Let X; be an uncertain process with uncertainty distri-
bution ®;(z). Show that the uncertain process aX; + b has an uncertainty
distribution,

O, ((x —b)/a), fa>0

Lele) :{ 1= @((z —b)/a), ifa<0. (12.10)

Regular Uncertainty Distribution
Definition 12.6 (Liu [139]) An uncertainty distribution ®.(z) is said to be

regular if at each time t, it is a continuous and strictly increasing function
with respect to x at which 0 < ®(z) < 1, and
lim ®;(z) =0, lim Py (z)=1. (12.12)

T—r—00 T— 400
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It is clear that linear uncertainty distribution, zigzag uncertainty distribu-
tion, normal uncertainty distribution and lognormal uncertainty distribution
of uncertain process are all regular.

Note that we have stipulated that a crisp initial value Xy has a regu-
lar uncertainty distribution. That is, we allow the initial value of regular
uncertain process to be a constant whose uncertainty distribution is

17 if x 2 XO
o — 12.13
o(e) { 0, ifz< X, (12.13)

and say ®g(x) is a continuous and strictly increasing function with respect
to = at which 0 < ®¢(z) < 1 even though it is discontinuous at Xj.

Inverse Uncertainty Distribution

Definition 12.7 (Liu [139]) Let X; be an uncertain process with regular
uncertainty distribution ®(x). Then the inverse function ®; () is called
the inverse uncertainty distribution of X;.

Note that at each time ¢, the inverse uncertainty distribution ®;*(«) is
well defined on the open interval (0, 1). If needed, we may extend the domain
to [0, 1] via

@;1(0):11%@1(@), @;1(1):11?%@;1(@). (12.14)
o
e (@) a =09
a=0.8
/—/a:o.7
%a:()ﬁ
a=0.5
%’\\//QZ(M
\_\—/azo,g
a=0.2
a=0.1
t

Figure 12.2: Inverse Uncertainty Distribution of Uncertain Process

Example 12.10: The linear uncertain process X; ~ L(at, bt) has an inverse
uncertainty distribution,

®; Ha) = (1 — a)at + abt. (12.15)
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Example 12.11: The zigzag uncertain process X; ~ Z(at,bt,ct) has an
inverse uncertainty distribution,

(1 —2a)at + 2abt, ifa <0.5

2 (@) = { (2 —2a)bt + (2a — 1)ct, if a > 0.5. (12.16)

Example 12.12: The normal uncertain process X; ~ N (et,ot) has an
inverse uncertainty distribution,

Ut\/g o
In

O Ha)=et )
¢ (o) =et+ o I—a

(12.17)

Example 12.13: The lognormal uncertain process X; ~ LOGN (et, ot) has
an inverse uncertainty distribution,

In (12.18)

at\/§ «

o, () = t :
; (o) exp(e—f— - 1a>
Theorem 12.3 (Liu [139], Sufficient and Necessary Condition) A function
d, Ha) : T x (0,1) — R is an inverse uncertainty distribution of uncertain
process if and only if at each time t, it is a continuous and strictly increasing

Sfunction with respect to «.

Proof: Suppose ®;'(a) is an inverse uncertainty distribution of uncertain
process X;. Then at each time ¢, ®; !(a) is an inverse uncertainty distri-
bution of uncertain variable X;. It follows from Theorem 2.6 that ®;'(«)
is a continuous and strictly increasing function with respect to o € (0,1).
Conversely, if ®;*(a) is a continuous and strictly increasing function with
respect to a € (0, 1), it follows from Theorem 2.6 that there exists an uncer-
tain variable & whose inverse uncertainty distribution is just ®; *(«). Define

X, =¢&, VteT.

Then X; is an uncertain process and has the inverse uncertainty distribution
®; (). The theorem is proved.

Remark 12.2: Note that we stipulate that a crisp initial value X has an
inverse uncertainty distribution

Py (@) = X, (12.19)

and say @, 1(Oz) is a continuous and strictly increasing function with respect
to a € (0,1) even though it is not.
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12.3 Independence and Operational Law

Definition 12.8 (Liu [139]) Uncertain processes X4, Xot, -+ , Xnt are said

to be independent if for any positive integer k and any times ty,ts, -+, tg,
the uncertain vectors

Si:(XitNXitza"' aXitk)7 2:172a , (1220)
are independent, i.e., for any k-dimensional Borel sets By, Bs, -+, B,, we
have

i=1

Exercise 12.1: Let X4, Xos, -+, X, be independent uncertain processes,
and let t1,to,-- ,t, be any times. Show that

Xity, Xoty, -, Xt (12.22)

are independent uncertain variables.

Exercise 12.2: Let X; and Y; be independent uncertain processes. For any
times t1,ts, - ,t; and $1, 82, - - , S, show that

(Xt1aXt27"' 7th) and (Y5131/;27"' 7}/;m) (1223)
are independent uncertain vectors.

Theorem 12.4 (Liu [139]) Uncertain processes Xi¢, Xot, -+ , Xt are inde-
pendent if and only if for any positive integer k, any times ty,ts, -+ ,tg, and
any k-dimensional Borel sets By, Ba,- -+ , By, we have

M { 0(51' < Bz‘)} = \n/ M{g; € Bi} (12.24)

i=1
where & = (Xity, Xity, -+, Xit,,) fori=1,2,--- ,n.

Proof: It follows from Theorem 2.64 that &,,&,,--- ,&, are independent
uncertain vectors if and only if (12.24) holds. The theorem is thus verified.

Theorem 12.5 (Liu [139], Operational Law) Let X1t, Xot, -+ , Xpnt be inde-
pendent uncertain processes with reqular uncertainty distributions ®1;, Poy,

@y, respectively. If the function f(x1,x9,- -+ ,xy,) is strictly increasing
with respect to x1,xs, -+ , T, and strictly decreasing with respect to Ty41,
Tm42," "+ , Ty, then the uncertain process

Xo = f(Xae, Xog, o+, Xont) (12.25)

has an inverse uncertainty distribution

o (@) = (O (@), -+ Pry(@), @70 (1 — @), @5/ (1 — ). (12.26)
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Proof: At any time ¢, it is clear that Xi4, Xo¢, -+, X,,¢ are independent un-
certain variables with inverse uncertainty distributions ®;' (), ®5,*(a), - -,
@ !(a), respectively. The theorem follows from the operational law of un-
certain variables immediately.

12.4 Independent Increment Process

An independent increment process is an uncertain process that has indepen-
dent increments. A formal definition is given below.

Definition 12.9 (Liu [123]) An uncertain process X; is said to have inde-
pendent increments if

Xt()’ th - Xtov Xt2 - Xt17 Tty th - th71 (1227)

are independent uncertain variables where tq is the initial time and t1,ts, - - -, tg
are any times with tg <t; < --- < t.

That is, an independent increment process means that its increments are
independent uncertain variables whenever the time intervals do not overlap.
Please note that the increments are also independent of the initial state.

Theorem 12.6 Let X; be an independent increment process. Then for any
real numbers a and b, the uncertain process

Yi=aX;+0 (12.28)
18 also an independent increment process.
Proof: Since X; is an independent increment process, the uncertain variables
Ktoy Xty — Xpgy Xty — Xiyy oo, Xy — Xy
are independent. It follows from Y; = aX; + b and Theorem 2.8 that
Yig Vi, = Yigs Yoy = Vi, -+, Yo, = Vi,
are also independent. That is, Y; is an independent increment process.

Remark 12.3: Generally speaking, a nonlinear function of independent in-
crement process does not necessarily have independent increments. A typical
example is the square of independent increment process.

Theorem 12.7 (Liu [139]) Let X; be an independent increment process.
Then for any times s < t, the uncertain variables X, and Xy — X, are
independent.
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Proof: Since X; is an independent increment process, the initial value and
increments
XOa XS - XO) Xt - XS

are independent. It follows from X, = Xo + (X5 — Xo) that X, and X; — X
are independent uncertain variables.

Theorem 12.8 (Liu [139], Sufficient and Necessary Condition) A function
®; H(a) : Tx(0,1) — R is an inverse uncertainty distribution of independent
increment process if and only if (i) at each time t, ®; ' () is a continuous and
strictly increasing function; and (i) for any times s < t, ®; ' (a) — 7 (a)
is a monotone increasing function with respect to «.

Proof: Let X; be an independent increment process with inverse uncertainty
distribution ®; '(a). First, it follows from Theorem 12.3 that ®; '(a) is
a continuous and strictly increasing function with respect to «. Next, it
follows from Theorem 12.7 that X and X; — X, are independent uncertain
variables. Since X has an inverse uncertainty distribution ®;!(a) and X; =
Xs + (X — X,), for any o < 3, we immediately have

oH(B) — @ a) > @7H(B) — @ a).

That is,
d;71(B) — ®7HB) > B, (o) — B Ha).

Hence ®; ' (a) — ®; () is a monotone (not strictly) increasing function with
respect to a.

Conversely, let us prove that there exists an independent increment pro-
cess whose inverse uncertainty distribution is just ®; *(a). Without loss of
generality, we only consider the range of ¢t € [0,1]. Let n be a positive
integer. Since ®; !(a) is a continuous and strictly increasing function and
@, ' (o) — ®; () is a monotone increasing function with respect to «, there
exist independent uncertain variables &gpy,, &1p, - - -, Enn such that &, has an
inverse uncertainty distribution

Yo, (@) = 25 ' (@)
and &;,, have uncertainty distributions
Yin(x) = sup {a | <I>i_/;(a) — q)(_il_l)/n(a) = a:} ,

1=1,2,--- ,n, respectively. Define an uncertain process

a k
waﬁ ift=— (k:07177n)

n
= n
X; P

linear, otherwise.
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It may prove that X;* converges in distribution as n — oo. Furthermore, we
may verify that the limit is indeed an independent increment process and has
the inverse uncertainty distribution ®; (). The theorem is verified.

Remark 12.4: It follows from Theorem 12.8 that the uncertainty distri-
bution of independent increment process has a horn-like shape, i.e., for any
s < tand a < 3, we have

7 (B) — 7 (@) < @71 (B) — @ (). (12.29)

o, ()

Figure 12.3: Inverse Uncertainty Distribution of Independent Increment Pro-
cess: A Horn-like Family of Functions of ¢ indexed by «

Exercise 12.3: Show that there exists an independent increment process
with linear uncertainty distribution.

Exercise 12.4: Show that there exists an independent increment process
with zigzag uncertainty distribution.

Exercise 12.5: Show that there exists an independent increment process
with normal uncertainty distribution.

Exercise 12.6: Show that there does not exist an independent increment
process with lognormal uncertainty distribution.
12.5 Stationary Independent Increment Process

An uncertain process X; is said to have stationary increments if its increments
are identically distributed uncertain variables whenever the time intervals
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have the same length, i.e., for any given ¢t > 0, the increments X ,; — X, are
identically distributed uncertain variables for all s > 0.

Definition 12.10 (Liu [123]) An uncertain process is said to be a stationary
independent increment process if it has not only stationary increments but
also independent increments.

It is clear that a stationary independent increment process is a special
independent increment process.

Theorem 12.9 Let X; be a stationary independent increment process. Then
for any real numbers a and b, the uncertain process

Y, = aX; +b (12.30)
1s also a stationary independent increment process.

Proof: Since X, is an independent increment process, it follows from The-
orem 12.6 that Y; is also an independent increment process. On the other
hand, since X} is a stationary increment process, the increments X ¢ — X
are identically distributed uncertain variables for all s > 0. Thus

Y5+t =Y, = a<Xs+t - Xs)

are also identically distributed uncertain variables for all s > 0, and Y; is a
stationary increment process. Hence Y; is a stationary independent increment
process.

Theorem 12.10 (Chen [17]) Suppose X, is a stationary independent in-
crement process. Then Xy and (1 — t) Xy + tX1 are identically distributed
uncertain variables for any time t > 0.

Proof: We first prove the theorem when ¢ is a rational number. Assume ¢t =
q/p where p and ¢ are irreducible integers. Let ® be the common uncertainty
distribution of increments

Xisp = Koy Xofp = Xuyp, Xyp = Xoyp, o
Then
Xo = Xo = (Xayp = Xogp) + (Xopp = Xagp) + -+ 4+ (Xg/p = X(g-1)/0)
has an uncertainty distribution
U(z) = d(x/q). (12.31)
In addition,

t(X1 = Xo) = t((X1/p — Xogp) + (Xoyp = Xuyp) + -+ (Xpsp — Xp—1)/p))
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has an uncertainty distribution

T(z) = @(x/p/t) = ®(x/p/(q/p)) = (x/q). (12.32)

It follows from (12.31) and (12.32) that X;— X, and ¢(X; —Xo) are identically
distributed, and so are X; and (1 —¢)Xo + ¢ X;.

Remark 12.5: If X; is a stationary independent increment process with
Xo =0, then X;/t and X; are identically distributed uncertain variables. In
other words, there is an uncertainty distribution ¢ such that

X

Tt ~ () (12.33)
or equivalently,

X, ~ ® (%) (12.34)

for any time ¢ > 0. Note that ® is just the uncertainty distribution of Xj.

Theorem 12.11 (Liu [139]) Let X, be a stationary independent increment
process whose initial value and increments have inverse uncertainty distribu-
tions. Then there exist two continuous and strictly increasing functions p(«)
and v(«) such that Xy has an inverse uncertainty distribution

o, Ha) = pla) +v(a)t. (12.35)

Conversely, if there exist two continuous and strictly increasing functions
p(a) and v(a) such that (12.35) holds, then there exists a stationary inde-
pendent increment process X; whose inverse uncertainty distribution is just
®; ! (a). Furthermore, X; has a Lipschitz continuous version.

Proof: Assume X, is a stationary independent increment process whose ini-
tial value and increments have inverse uncertainty distributions. Then Xj
and X; — X are independent uncertain variables whose inverse uncertainty
distributions exist and are denoted by p(a) and v(«), respectively. Then u(a)
and v(«) are continuous and strictly increasing functions. Furthermore, it
follows from Theorem 12.10 that X; and X, + (X1 — Xo)t are identically
distributed uncertain variables. Hence X; has the inverse uncertainty distri-
bution ®; () = p(a) + v(a)t.

Conversely, let us prove that there exists a stationary independent incre-
ment process whose inverse uncertainty distribution is just ®; * (). Without
loss of generality, we only consider the range of ¢ € [0,1]. Let

{&(r) | r represents rational numbers in [0,1]}

be a countable sequence of independent uncertain variables, where £(0) has
an inverse uncertainty distribution p(a) and £(r) have a common inverse
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uncertainty distribution v(«) for all rational numbers r in (0,1]. For each
positive integer n, we define an uncertain process

1<a (i k
= — ift=— (k=1,2,---
XZL: 5(0)+n1_1£(n>’ ! n ( 7 777/)

linear, otherwise.

It may prove that X;* converges in distribution as n — oo. Furthermore, we
may verify that the limit is a stationary independent increment process and
has the inverse uncertainty distribution ®;*(c). The theorem is verified.

¢,
a=09
a=0.8
a=0.7
a=0.6
a=0.5
a=04
a=0.3
a=0.2
a=0.1

Figure 12.4: Inverse Uncertainty Distribution of Stationary Independent In-
crement Process: A Family of Linear Functions of ¢ indexed by «

Exercise 12.7: Show that there exists a stationary independent increment
process with linear uncertainty distribution.

Exercise 12.8: Show that there exists a stationary independent increment
process with zigzag uncertainty distribution.

Exercise 12.9: Show that there exists a stationary independent increment
process with normal uncertainty distribution.

Exercise 12.10: Show that there does not exist a stationary independent
increment process with lognormal uncertainty distribution.

Theorem 12.12 (Liu [129]) Let X; be a stationary independent increment
process. Then there exist two real numbers a and b such that

E[X,] =a+bt (12.36)

for any time t > 0.
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Proof: It follows from Theorem 12.10 that X; and Xy + (X3 — Xo)t are
identically distributed uncertain variables. Thus we have

E[X] = E[Xo + (X1 — Xo)t].

Since Xy and X; — X are independent uncertain variables, we obtain
E[X;] = E[Xo] + F[X; — Xo]t.

Hence (12.36) holds for a = F[X,] and b = E[X; — X

Theorem 12.13 (Liu [129]) Let X, be a stationary independent increment
process with an initial value 0. Then for any times s and t, we have

E[Xert] = E[Xs] + E[Xt] (1237)

Proof: It follows from Theorem 12.12 that there exists a real number b such
that E[X;] = bt for any time ¢ > 0. Hence

E[Xstt) =b(s+1t) =bs+ bt = E[X,] + E[Xy)].
Theorem 12.14 (Chen [17]) Let X, be a stationary independent increment

process with a crisp initial value Xo. Then there exists a real number b such
that

V[X:] = bt? (12.38)

for any time t > 0.

Proof: It follows from Theorem 12.10 that X; and (1 — )Xo + tX; are
identically distributed uncertain variables. Since X is a constant, we have

VIXi] = V[(1 — )Xo +tX1] = V[X4].
Hence (12.38) holds for b = V[X;].

Theorem 12.15 (Chen [17]) Let X, be a stationary independent increment
process with a crisp initial value Xo. Then for any times s and t, we have

VVIXord] = VVIX] + VX (12.39)

Proof: It follows from Theorem 12.14 that there exists a real number b such
that V[X,] = bt? for any time ¢ > 0. Hence

V[Xeri] = Vb(s + 1) = Vbs + Vit = VV[X,] + V/V[X,].



SECTION 12.6 - EXTREME VALUE THEOREM 273

12.6 Extreme Value Theorem

This section will present a series of extreme value theorems for sample-
continuous independent increment processes.

Theorem 12.16 (Liu [135], Extreme Value Theorem) Let X; be a sample-
continuous independent increment process with uncertainty distribution ®4(x).
Then the supremum

sup X (12.40)
0<t<s
has an uncertainty distribution
U(x) = ngis Dy (z); (12.41)
and the infimum
inf X, (12.42)
0<t<s
has an uncertainty distribution
U(z) = sup Py(z). (12.43)
0<t<s

Proof: Let 0 =t <ty < --- < t, = s be a partition of the closed interval
[0, s]. Tt is clear that

Xti = th + (th - Xt1) +oe (Xti - Xti—l)
for i =1,2,--- ,n. Since the increments
thv th - th? e ath - th—l

are independent uncertain variables, it follows from Theorem 2.15 that the
maximum

max X,
1<i<n

has an uncertainty distribution

1I§Ilzléln D, (z).

Since X; is sample-continuous, we have

max X; — sup X
1<i<n 0<t<s

and

in ®;,(x) = inf ®
208, Pl = B Pl
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as n — oo. Thus (12.41) is proved. Similarly, it follows from Theorem 2.15
that the minimum

min Xy,
1<i<n

has an uncertainty distribution

1I£ia§Xn D, (z).

Since X; is sample-continuous, we have

min X;, — inf X,
1<i<n 0<t<s
and
max ®y, (z) — sup Dy(x)
1<i<n 0<t<s

as n — oo. Thus (12.43) is verified.

Theorem 12.17 (Liu [135]) Let X; be a sample-continuous independent in-
crement process with uncertainty distribution ®¢(x). If f is a strictly increas-
ing function, then the supremum

sup f(X¢) (12.44)
0<t<s
has an uncertainty distribution
— -1 .
V(2) = inf (7 (@) (12.45)
and the infimum
oinf F(Xe) (12.46)
has an uncertainty distribution
U(x) = sup ®;(f *(z)). (12.47)
0<t<s

Proof: Since f is a strictly increasing function, f(X;) < z if and only if
X; < f~1(=). Tt follows from the extreme value theorem that

U(z) = M{ sup f(Xy) < x}

0<t<s
—M{ sup X; < fl(:c)}
0<t<s

= inf O (f ().

0<t<s
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Similarly, we have

\If(x)M{ inf f(Xt)gzz:}

0<t<s

:M{ inf thf_l(x)}

0<t<s

= sup @t(f_l(x)).
0<t<s

The theorem is proved.

Exercise 12.11: Let X; be a sample-continuous independent increment
process with uncertainty distribution ®;(z). Show that the supremum

sup exp(Xy) (12.48)
0<t<s
has an uncertainty distribution
U(z) = ogtlgs Oy (Inx); (12.49)
and the infimum
ogtliseXp(Xt) (12.50)
has an uncertainty distribution
U(z) = sup P;(lnx). (12.51)
0<t<s

Exercise 12.12: Let X; be a sample-continuous and positive independent
increment process with uncertainty distribution ®;(z). Show that the supre-
mum

sup In X, (12.52)
0<t<s
has an uncertainty distribution
U(z) = Oggs@t(eXp(z)); (12.53)
and the infimum
inf In X, (12.54)
0<t<s
has an uncertainty distribution
U(x) = sup Py(exp(z)). (12.55)

0<t<s
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Exercise 12.13: Let X; be a sample-continuous and nonnegative indepen-
dent increment process with uncertainty distribution ®,(z). Show that the
supremum

sup X7 (12.56)
0<t<s
has an uncertainty distribution
¥(z) = Ogtl;‘bt(\/i); (12.57)
and the infimum
inf X7 (12.58)
0<t<s
has an uncertainty distribution
U(z) = sup ®;(V7). (12.59)
0<t<s

Theorem 12.18 (Liu [135]) Let Xy be a sample-continuous independent in-
crement process with continuous uncertainty distribution ®,(x). If f is a
strictly decreasing function, then the supremum

sup f(X) (12.60)
0<t<s
has an uncertainty distribution
U(z)=1— sup &;(f (x)); (12.61)
0<t<s
and the infimum
Jint £(X0) (12.62)
has an uncertainty distribution
— 1 -1
U(r)=1 Ogtlis D (f (). (12.63)

Proof: Since f is a strictly decreasing function, f(X;) < z if and only if
X; > f~1(x). Tt follows from the extreme value theorem that

U(x) = M{ sup f(X¢) < 33} = M{ inf X; > f_l(x)}

0<t<s 0<t<s

=1 M{ogtlith < fl(m)} =1— sup ®;(f ().

0<t<s

Similarly, we have

U(z) = M{ inf f(X,) < x} = M{ sup X; > f_l(x)}

0<t< 0<t<s

IM{ sup X; < fl(x)} =1— inf ®,(f Y(x)).

0<t<s 0<t<s
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The theorem is proved.

Exercise 12.14: Let X; be a sample-continuous independent increment pro-
cess with continuous uncertainty distribution ®;(z). Show that the supre-

mum
sup exp(—X;) (12.64)

0<t<s

has an uncertainty distribution

¥(zr) =1— sup @;(—Inz); (12.65)
0<t<s
and the infimum
Ogtlgsexp(—Xt) (12.66)

has an uncertainty distribution

U(z)=1— inf &(—Inz). (12.67)

0<t<s

Exercise 12.15: Let X; be a sample-continuous and positive independent
increment process with continuous uncertainty distribution ®;(x). Show that
the supremum

1
sup — 12.68
ogtgs X ( )
has an uncertainty distribution
1
U(r)=1- sup ¥, () ; (12.69)
0<t<s x
and the infimum .
ogtlgs X, (12.70)

has an uncertainty distribution

U(r)=1— inf @, (1> (12.71)

0<t<s T

12.7 First Hitting Time

Definition 12.11 Let X; be an uncertain process and let z be a given level.
Then the uncertain variable

.=inf{t>0| X, =2} (12.72)

18 called the first hitting time that X; reaches the level z.
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Xy

T
Figure 12.5: First Hitting Time
Theorem 12.19 Let X; be an uncertain process and let z be a given level.

Then the first hitting time 7, that X; reaches the level z has an uncertainty
distribution,

M{ sup thz}, if Xo <z
0<t<s

T(s) = (12.73)
M{ inf thz}, if Xo > z.
0<t<s

Proof: When X < z, it follows from the definition of first hitting time that

7, < s if and only if sup X; > z.
0<t<s

Thus the uncertainty distribution of 7, is

T(s):M{ngs}:M{ sup thz}.

0<t<s
When Xy > z, it follows from the definition of first hitting time that

7, < s if and only if inf X; < z.
0<t<

S

Thus the uncertainty distribution of 7, is

T(S)M{ngs}M{ inf thz}.

0<t<s
The theorem is verified.

Theorem 12.20 (Liu [135]) Let Xy be a sample-continuous independent in-
crement process with continuous uncertainty distribution ®,(x). If f is a



SECTION 12.8 - TIME INTEGRAL 279

strictly increasing function and z is a given level, then the first hitting time
T, that f(X;) reaches the level z has an uncertainty distribution,

L= TG, > I(X0)
T(s) = o ' (12.74)
sup D:(f7"(2)), if z < f(Xo).

0<t<s

Proof: Note that X; is a sample-continuous independent increment process
and f is a strictly increasing function. When z > f(Xj), it follows from the
extreme value theorem that

T(S)M{TZSS}M{ sup f<Xt>zZ}1 inf @,(F(2).

0<t<s 0<t<s

When z < f(Xp), it follows from the extreme value theorem that

T(s) = M{r. Ss}:M{OggSﬂXt) Sz} = sup &,(f7(2)-

0<t<s

The theorem is verified.

Theorem 12.21 (Liu [135]) Let X; be a sample-continuous independent in-
crement process with continuous uncertainty distribution ®y(x). If [ is a
strictly decreasing function and z is a given level, then the first hitting time
T, that f(X:) reaches the level z has an uncertainty distribution,

sup ®;(f1(2)), if z > f(Xo)
T(s)={ == (12.75)

L= inf @(f 7R, if 2 < f(Xo).

Proof: Note that X; is an independent increment process and f is a strictly

decreasing function. When z > f(Xj), it follows from the extreme value
theorem that

T(s) = M, gs}M{ sup F(X,) zz} — up Bi(L(2)).

0<t<s 0<t<s

When z < f(Xp), it follows from the extreme value theorem that

YT(s) =M{r, <s}= M{Oiégisf(Xt) < z} =1— inf ®(f1(2)).

0<t<s

The theorem is verified.



280 CHAPTER 12 - UNCERTAIN PROCESS

12.8 Time Integral

This section will give a definition of time integral that is an integral of un-
certain process with respect to time.

Definition 12.12 (Liu [123]) Let X, be an uncertain process. For any par-
tition of closed interval [a,b] with a =t <ty < -+ < tgp1 = b, the mesh is
written as

A= 1Slagxk |ti+1 - tz| (1276)

Then the time integral of X; with respect to t is

b k
/a Xtdt = AILHOZ;X“ . (ti+1 - ti) (1277)

provided that the limit exists almost surely and is finite. In this case, the
uncertain process X; is said to be time integrable.

Since X, is an uncertain variable at each time ¢, the limit in (12.77) is
also an uncertain variable provided that the limit exists almost surely and
is finite. Hence an uncertain process X; is time integrable if and only if the
limit in (12.77) is an uncertain variable.

Theorem 12.22 [If X, is a sample-continuous uncertain process on [a,b],
then it is time integrable on [a,b].

Proof: Let a =11 <ty <--- <{tpy1 = b be a partition of the closed interval
[a, b]. Since the uncertain process X; is sample-continuous, almost all sample
paths are continuous functions with respect to t. Hence the limit

k
li X (tig1 — t;
AILHOE; tl( 1+1 z)
i=

exists almost surely and is finite. On the other hand, since X; is an uncertain
variable at each time ¢, the above limit is also a measurable function. Hence
the limit is an uncertain variable and then X; is time integrable.

Theorem 12.23 If X; is a time integrable uncertain process on [a,b], then
it is time integrable on each subinterval of [a,b]. Moreover, if ¢ € [a,b], then

b c b
a a c

Proof: Let [a’,b'] be a subinterval of [a,b]. Since X; is a time integrable
uncertain process on [a, b], for any partition

a=t < <tm=0a <tpmi1 < <tp=b <tpi1 <---<tpy1 =0,
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the limit
hm ZXt 1+1 - t

exists almost surely and is fimte. Thus the limit

lim X —t;)
A—>OZ nltin

exists almost surely and is finite. Hence X, is time integrable on the subin-
terval [a,b']. Next, for the partition

A=t < <tm=0C<tms1 < - <tpp1 =0,

we have
k m—1 k
ZXti (tiv1 —ti) = Z X, (tigr — i) + Z X, (tigr — ti).
i=1 i=1 i=m
Note that

b k
/a X,dt = A@O;Xti (tiv1 — ),
c m—1
/a Xtdt = iiino z; Xti (ti-i-l — ti),
b =
/C Xtdt = ilglo Z Xti (ti+1 — tz)
i=m

Hence the equation (12.78) is proved.

Theorem 12.24 (Linearity of Time Integral) Let X; and Y; be time inte-
grable uncertain processes on |a,b], and let o and B be real numbers. Then

b b b
/(aXt—i-,BYt)dt:oz/ Xtdt+ﬁ/ Yidt. (12.79)

Proof: Let a =t <t <--- <tgy1 = b be a partition of the closed interval
[a,b]. Tt follows from the definition of time integral that

b k
/(aXH—,BYt i, > (X, + Vi)t = )

A—0

b b
= a/ Xtdt—irﬂ/ Yidt.

Hence the equation (12.79) is proved.

k
= lim « Z Xz, (ti+1 - ti) + Aiinoﬂ Z Yi, (tiJrl — ti)
i=1 i=1
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12.9 Bibliographic Notes

The study of uncertain process was started by Liu [123] in 2008 for modeling
the evolution of uncertain phenomena. In order to describe uncertain process,
Liu [139] proposed the concepts of uncertainty distribution and inverse uncer-
tainty distribution. In addition, independence concept of uncertain processes
was also introduced by Liu [139].

Independent increment process was initialized by Liu [123], and a suffi-
cient and necessary condition was proved by Liu [139] for its inverse uncer-
tainty distribution. In addition, Liu [135] presented an extreme value theorem
and obtained the uncertainty distribution of first hitting time of independent
increment process.

Stationary independent increment process was initialized by Liu [123],
and its inverse uncertainty distribution was investigated by Liu [139]. Fur-
thermore, Liu [129] showed that the expected value is a linear function of
time, and Chen [17] verified that the variance is proportional to the square
of time.



Chapter 13

Uncertain Renewal
Process

Uncertain renewal process is an uncertain process in which events occur con-
tinuously and independently of one another in uncertain times. This chapter
will introduce uncertain renewal process, renewal reward process, and alter-
nating renewal process. This chapter will also provide block replacement
policy, age replacement policy, and an uncertain insurance model.

13.1 Uncertain Renewal Process

Definition 13.1 (Liu [128]) Let &1, &a, - -+ be tid uncertain interarrival times.
Define Sy =0 and S, =& + & + -+ &, forn > 1. Then the uncertain

process
N; = max {n|S, <t} (13.1)

18 called an uncertain renewal process.

It is clear that S, is a stationary independent increment process with re-
spect to m. Since £1,&5, -+ denote the interarrival times of successive events,
S, can be regarded as the waiting time until the occurrence of the nth event.
In this case, the renewal process NV, is the number of renewals in (0,¢]. Note
that NV; is not sample-continuous, but each sample path of N; is a right-
continuous and increasing step function taking only nonnegative integer val-
ues. Furthermore, since the interarrival times are always assumed to be
positive uncertain variables, the size of each jump of NV; is always 1. In other
words, IV; has at most one renewal at each time. In particular, N; does not
jump at time 0.

Theorem 13.1 (Fundamental Relationship) Let N, be a renewal process
with uncertain interarrival times £1,&,--+, and S, = & + & + -+ + &,.

© Springer-Verlag Berlin Heidelberg 2015 283
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&1 &2 &3 &4
So Sl SQ 53 S4

Figure 13.1: A Sample Path of Renewal Process. Reprinted from Liu [129].

Then we have

Ny>n<&e S, <t (13.2)
for any time t and integer n. Furthermore, we also have
Nt S n < Sn+1 > t. (133)

It follows from the fundamental relationship that N; > n is equivalent to
S, <t. Thus we immediately have

M{N, > n} = M{S, < t}. (13.4)

Since Ny < n is equivalent to S,,+1 > t, by using the duality axiom, we also

have

Theorem 13.2 (Liu [129]) Let Ny be a renewal process with uncertain inter-
arrival times &1, &, - -+ If those interarrival times have a common uncertainty
distribution ®, then N; has an uncertainty distribution

Ti(z)=1—-0 (Lth‘H> , Yz>0 (13.6)

where | x| represents the maximal integer less than or equal to x.

Proof: Note that S,;; has an uncertainty distribution ®(z/(n 4+ 1)). It
follows from (13.5) that

t

Since N; takes integer values, for any x > 0, we have
t
T =M{N; <z} =M{N; < =1-®(—-].
) = (N; <) = DN, < Lafp =1 -0 (L)

The theorem is verified.
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Tt(x)
T¢(5)
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T@ | :
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14(0)4 '
0 1 2 3 4 5 v

Figure 13.2: Uncertainty Distribution T;(x) of Renewal Process N;.
Reprinted from Liu [129].

Theorem 13.3 (Liu [129]) Let Ny be a renewal process with uncertain in-

terarrival times &1,&s,- -+ Then the average renewal number
Ny 1

%7
t &1

in the sense of convergence in distribution as t — oo.

(13.7)

Proof: The uncertainty distribution Y; of N; has been given by Theo-

rem 13.2 as follows,
t
Ti(z)=1-® ———
o) (F771)

where ® is the uncertainty distribution of &;. It follows from the operational
law that the uncertainty distribution of N/t is

Uy(z)=1-d (W)

where |tz ] represents the maximal integer less than or equal to tz. Thus at
each continuity point = of 1 — ®(1/x), we have

lim Uy(z) =1—& <1>

t—o00 X

which is just the uncertainty distribution of 1/&;. Hence N/t converges in
distribution to 1/&; as t — oo.

Theorem 13.4 (Liu [129], Elementary Renewal Theorem) Let Ny be a re-
newal process with uncertain interarrival times &1,&a,- -+ If E[1/&1] exists,

then E[N)] 1
. t
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If those interarrival times have a common uncertainty distribution ®, then

lim 2N _ /;OO ) <1) dz. (13.9)

t—oo t T

If the uncertainty distribution ® is reqular, then

. E[N{] |
1 = . 13.1
i == [ e 1510

Proof: Write the uncertainty distributions of N;/t and 1/&; by ¥(z) and
G(z), respectively. Theorem 13.3 says that ¥i(z) — G(x) as t — oo at
each continuity point « of G(z). Note that ¥;(x) > G(x). It follows from
Lebesgue dominated convergence theorem and the existence of E[1/&;] that

MHEWW]:lmlA+MO—QQ@»Mr:A+mO——G@de:E[;}.

t—o00 t t—o00 1

Since 1/&; has an uncertainty distribution 1 — ®(1/z), we have

. EBIN]  [1] [t /1
)E’Bot—E[gJ—/o ‘I’<x>d‘”'

Furthermore, since 1/£ has an inverse uncertainty distribution

1
-1(1—a)

o[ - [ e [ s

The theorem is proved.

G a)=

we get

Exercise 13.1: A renewal process N, is called linear if &;,&s,--- are iid
linear uncertain variables £(a, b) with a > 0. Show that

E[Ny] Inb—Ina

li = 13.11
B (12.11)
Exercise 13.2: A renewal process N; is called zigzag if &1,&o,- -+ are iid
zigzag uncertain variables Z(a, b, ¢) with a > 0. Show that
. EN] 1 /Inb—1Ina Inc—Inb
1 == . 13.12
A% T8 T3 \Tooa T e (13.12)
Exercise 13.3: A renewal process N is called lognormal if £1,&s, - -+ are iid
lognormal uncertain variables LOGN (e, o). Show that
EIN. \/goexp —e CSC\/§U, ifo<n/V3
lim 2V (Te) esel50) / (13.13)
t—oo t +00, if o > 71'/\/3
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13.2 Block Replacement Policy

Block replacement policy means that an element is always replaced at fail-
ure or periodically with time s. Assume that the lifetimes of elements are
iid uncertain variables &1, &s, - -+ with a common uncertainty distribution &.
Then the replacement times form an uncertain renewal process N;. Let a
denote the “failure replacement” cost of replacing an element when it fails
earlier than s, and b the “planned replacement” cost of replacing an element
at planned time s. Note that a > b > 0 is always assumed. It is clear that
the cost of one period is aNg + b and the average cost is

Ng+0
ats 0 (13.14)
s
Theorem 13.5 (Yao [250]) Assume the lifetimes of elements are iid uncer-
tain variables £1,&, - -+ with a common uncertainty distribution ®, and Ny is

the uncertain renewal process representing the replacement times. Then the
average cost has an expected value

E [QNSH’} - % (ai@ (%) +b> . (13.15)

Proof: Note that the uncertainty distribution of N; is a step function. It
follows from Theorem 13.2 that

E[_z\fs]/()+00<1>(L +1)de<I>( )

n=1

Thus (13.15) is verified by

N, EIN,
E{“ S’Lb}:“ [Ns] 5. (13.16)
S S
Finally, please note that
N, +b
lim 2 [“ + } + o0, (13.17)

SIE&E[aNij} a/0+oo ( ) . (13.18)

What is the optimal time s?

When the block replacement policy is accepted, one problem is concerned
with finding an optimal time s in order to minimize the average cost, i.e.,

mm< Z@( ) ) (13.19)
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13.3 Renewal Reward Process

Let (&1,m1), (€2,7m2),+ -+ be a sequence of pairs of uncertain variables. We
shall interpret 7; as the rewards (or costs) associated with the i-th interarrival
times &; for i = 1,2, - -, respectively.

Definition 13.2 (Liu [129]) Let &1, o, - - - be tid uncertain interarrival times,

and let my,1m9, -+ be #id uncertain rewards. Assume that (&1,&2,---) and
(n1,m2,--+) are independent uncertain vectors. Then
Ny
Ry => m; (13.20)
i=1

is called a renewal reward process, where Ny is the renewal process with un-
certain interarrival times &1,&o, - - -

A renewal reward process R; denotes the total reward earned by time ¢.
In addition, if n; = 1, then R; degenerates to a renewal process N;. Please
also note that R; = 0 whenever N; = 0.

Theorem 13.6 (Liu [129]) Let R be a renewal reward process with uncer-
tain interarrival times £1,&s,--- and uncertain rewards ny,m2, - Assume
those interarrival times and rewards have uncertainty distributions ® and ¥,
respectively. Then Ry has an uncertainty distribution

Ti(2) = max (1 ) <ki1>> AT (%) . (13.21)

Here we set x/k = 400 and ¥(z/k) =1 when k = 0.

Proof: It follows from the definition of renewal reward process that the
renewal process IV is independent of uncertain rewards 71,72, -+, and Ry
has an uncertainty distribution

Ny 9] k
Tt(x):M{ngm}:M{U(Nt:k)ﬂzmgx}

k=0 i=1

=M U (Ne=k)n (m < f) (this is a polyrectangle)
k=0 k

= maxM{(Nt <k)N (171 <

1 t lar th
5>0 )} (polyrectangular theorem)

(independence)

= <
II?SS‘M{M <Ek}AMIm

t
(1o (o)

The theorem is proved.

N—
>
S
/N
>R
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Figure 13.3: Uncertainty Distribution Y;(z) of Renewal Reward Process R;
in which the dashed horizontal lines are 1 — ®(¢/(k + 1)) and the dashed
curves are ¥(z/k) for k =0,1,2,--- Reprinted from Liu [129].

Theorem 13.7 (Liu [129]) Assume that Ry is a renewal reward process with

uncertain interarrival times £1,&2, - -+ and uncertain rewards ny,n2,--- Then
the reward rate

Be om

t &

in the sense of convergence in distribution as t — co.

(13.22)

Proof: It follows from Theorem 13.6 that the uncertainty distribution of Ry

) o) = (10 (7)) o 2),

Then R;/t has an uncertainty distribution

o) s (10 (1)) o (1),

When t — oo, we have

Ui (x) — sup(l — @(y)) A ¥(zy)
y=0
which is just the uncertainty distribution of 7, /¢;. Hence R;/t converges in
distribution to 7 /&; as t — co.

Theorem 13.8 (Liu [129], Renewal Reward Theorem) Assume that R; is a
renewal reward process with uncertain interarrival times &,&2, -+ and un-
certain rewards ny,me, -+ If E[n1/&1] exists, then
E[R
im 2R _ g {7’1} . (13.23)

t—o00 t 51
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If those interarrival times and rewards have regular uncertainty distributions
® and VU, respectively, then

. E[R] ' ¥ Yo
tlgglo ; —/0 mda. (13.24)

Proof: It follows from Theorem 13.6 that R;/t has an uncertainty distribu-

tion
t tx
o =5 (1= (757)) o (%)

and 71 /& has an uncertainty distribution

G(r) = 31;15(1 = ®(y)) A Y(xy).

Note that Fi(x) — G(x) and Fi(z) > G(x). It follows from Lebesgue domi-
nated convergence theorem and the existence of E[n;/£] that

tim 20 gy, /0+°°(1 _ Fy(a))de = /O+OO<1 _G(a))dz = B [771] .

t—o0 t t—00 g

Finally, since 1 /&1 has an inverse uncertainty distribution

the equation (13.24) is obtained.

13.4 Uncertain Insurance Model

Liu [135] assumed that a is the initial capital of an insurance company, b is
the premium rate, bt is the total income up to time ¢, and the uncertain claim
process is a renewal reward process

Ny
Ry =) n (13.25)
i=1
with iid uncertain interarrival times &1, &5, - - - and iid uncertain claim amounts
71,72, -+ Then the capital of the insurance company at time ¢ is
Zy=a+bt— Ry (13.26)

and Z; is called an insurance risk process.
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Zy

0 Sl 52 S3 54 s ”

Figure 13.4: An Insurance Risk Process

Ruin Index

Ruin index is the uncertain measure that the capital of the insurance company
becomes negative.

Definition 13.3 (Liu [135]) Let Z; be an insurance risk process. Then the
ruin index is defined as the uncertain measure that Z; eventually becomes
negative, i.e.,

Ruin =M {inf Zy < 0} . (13.27)
>0

It is clear that the ruin index is a special case of the risk index in the
sense of Liu [128].

Theorem 13.9 (Liu [135], Ruin Index Theorem) Let Zy = a + bt — Ry be
an insurance risk process where a and b are positive numbers, and R; is a

renewal reward process with iid uncertain interarrival times &1,&2,- -+ and iid
uncertain claim amounts ny,n2,- -+ If &1 and 1 have continuous uncertainty
distributions ® and U, respectively, then the ruin index is
T —a x
Ruin = maxsup® | —— | A (1 4 (f)) . 13.28
kziing ( kb ) k ( )

Proof: For each positive integer k, it is clear that the arrival time of the kth
claim is

Se=8&+&+ -+ &
whose uncertainty distribution is ®(s/k). Define an uncertain process in-
dexed by k as follows,

Ye=a+bS, —(m+n2+-+ ).
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It is easy to verify that Y) is an independent increment process with respect
to k. In addition, Y} is just the capital at the arrival time S and has an
uncertainty distribution

Z+T—a T
A = (22 A (1w (2)).
k(2) sup ( o ) .
Since a ruin occurs only at the arrival times, we have
Ruin =M {inf Ly < O} =M {minYk < O} .
t>0 E>1

It follows from the extreme value theorem that

Ruin = rl?gi(Fk(O) = maxsup ¢ (l‘k—ba) A (1 - U (%)) .

k>1 z>0

The theorem is proved.

Ruin Time

Definition 13.4 (Liu [135]) Let Z; be an insurance risk process. Then the
ruin time is determined by

T=inf{t>0|Z <0}. (13.29)

If Z; > 0 for all t > 0, then we define 7 = 400. Note that the ruin time is
just the first hitting time that the total capital Z; becomes negative. Since
inf;>0 Z: < 0 if and only if 7 < +o00, the relation between ruin index and
ruin time is

Ruin =M {t1r>1t(") Z; < O} = M{7 < +o0}.

Theorem 13.10 (Yao [257]) Let Z; = a + bt — R; be an insurance risk
process where a and b are positive numbers, and R; is a renewal reward
process with iid uncertain interarrival times £1,&a, - - - and iid uncertain claim
amounts M1, M2, -+ If & and my have reqular uncertainty distributions ® and
U, respectively, then the ruin time has an uncertainty distribution

Y(t) = maxsup @ (%) A (1 — (“ “;bx)) . (13.30)

k21 p<¢

Proof: For each positive integer k, let us write Sy = & + & + -+ + &,
Ye=a+bSy —(m +n2+ -+ n) and

T a+ bx
ap,=sup® (- |A[(1—-T .
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Then
o =sup {a|k® ' (a) <t} Asup{ala+k® () — kTl —a) <0}.

On the one hand, it follows from the definition of the ruin time 7 that

M{r <t} _M{ng;tZs <0} —M{U(Sk <t, Yy <O)}

k=1

o /[ k k k
:M{U (Zfz <t, a+bZ€i—Zm <0>}
k=1 \i=1 i=1 i1

& <@ o)) N (ns > (1 - ak))}

\%

<3
2
n
&

“Hag)) N (m > w1 - ak))}

£l
Il
A
S
Il
-

I
<3
o

M{(& < @ Haw) N (n; > 71— )}

ES
I
—
-
Il
—

I
<3
s

3\/[{5Z < Qfl(ak)} /\M{m > 01— ozk)}

£
Il
-
-
Il
-

o0
ap N\ ag = \/ Q.
k=1

|
T<¢
=

x~
Il
-
S
Il
—

On the other hand, we have
k k k
(Zﬁi <t, a+bZ§i —Zﬂi < 0)}
i=1 i=1 i=1

“Hag) U (g > ¥ (1 - ak))}

(@

M{r<t} =M

S
Il
—

IN
2
(-
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A

&

I
=

—N— —— ——
. >

l

1
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s
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Thus we obtain

M{T < t} = \/ A
k=1
and the theorem is verified.

13.5 Age Replacement Policy

Age replacement means that an element is always replaced at failure or at
an age s. Assume that the lifetimes of the elements are iid uncertain vari-

ables &1,&s, - with a common uncertainty distribution ®. Then the actual
lifetimes of the elements are iid uncertain variables
51 /\S, 52 /\S, (1331)

which may generate an uncertain renewal process

Ny = max {n | ;(@ As) < t} . (13.32)

Let a denote the “failure replacement” cost of replacing an element when
it fails earlier than s, and b the “planned replacement” cost of replacing an
element at the age s. Note that a > b > 0 is always assumed. Define

fl@) = { o o (13.33)

b, ifx=s.

Then f(& A s) is just the cost of replacing the ith element, and the average
replacement cost before the time ¢t is

1 &
- ;f(& A's). (13.34)

Theorem 13.11 (Yao and Ralescu [245]) Assume &1, - are 4id uncer-
tain lifetimes and s is a positive number. Then

f(€&1As)

vy (13.35)

1
;;f(fi/\s)%

in the sense of convergence in distribution as t — oo.

Proof: At first, the average replacement cost before time ¢ may be rewritten

as . .
| N STfEns) D (EAs)
T FEns) =" x S (13.36)

= D (Ens)

i=1
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For any real number x, on the one hand, we have

N N,
{Zf(fiAS)/Z(ii/\s) < x}
N <Zf(§i/\s)/2(&/\s) ga:)}

f&ns)/ §Z/\s)<x)}

Il

3

Lh

——
=
Il

U
(G
/—/H

3
Il
-

z =z
I I
= =

i Dg i D:

f&Ns)/ §1/\s)§x)}

U
(@
/—’H

3
Il
-

(f(&ins)/(&Ns) <)

U
Y

s
Il
-

and

Ny
y ;f(fiAs)Sx . {oo< (€19 _ )}_M{f(élAASs)Sx}_

Ny 1 EiNs

Z(& A's)

i=1

~

On the other hand, we have

{Nt—n (Zf@m/zms )}

f&Nns)/ Ez/\s)gx)}

Il
C# g

3
Il
—

3
Il
-

N
_z
——
e
=
D
C

f&Nns)/ §1As)<x)}

3
Il
—

N

(G
/—’H

Z

I

3

C

(f(&i As)/(&As) <)

s
Il
_

N
et
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and
N,
J(& Ns)
B s ) eafiona )
S (€A s) S 1
=1

Thus for any real number z, we have

Zt:f(fi/\s)

i= f(&Ns)
Z(& As)
i=1
Hence
Ny
f(&iNs)
; f(&1Ns)
= and ———~
Ny 51 NS
> (&ins)
i=1

are identically distributed uncertain variables. Since

N

D (&ns)

=1 —1
t

as t — 00, it follows from (13.36) that (13.35) holds. The theorem is verified.
Theorem 13.12 (Yao and Ralescu [245]) Assume &1,&s, -+ are 4id uncer-

tain lifetimes with a common continuous uncertainty distribution ®, and s is
a positive number. Then the long-run average replacement cost is

1 b a-b ® ®(x)
t;f(fi/\s)] = + . CI)(S)—l—a/O - dz. (13.37)

Proof: Let ¥(z) be the uncertainty distribution of f(& As)/(&1 As). It
follows from (13.33) that (&3 As) > b and & A s < s. Thus we have
f&As) b

>
ISR s

lim F

t—o0

almost surely. If z < b/s, then

we) = FEAD <o o,

§1/Ns
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Ifb/s <z < a/s, then

\I/(:c)M{

If x > a/s, then

fo(x):M{f(élAAsS)<x}:M{g<x}:M{gl>Z}:1—q>(;).

Hence we have

f(€1Ns)

€ ns Sx}M{glzs}lé(s).

0, if © < b/s
U(z) = 1-®(s), ifb/s<z<als
1—®(a/x), ifx>als
and
E{f(él?:)] - /0+°°(1 — W(z))dz = g +2 - ba(s) +a/08 (I):g)dx.
Since
Ny
> (EAs)
= <

t — )
it follows from (13.36) that

N
1 f€1As)
M - i < >M{———F<
{t;f(g/\s)_x}_ { Ens <z
for any real number x. By using the Lebesgue dominated convergence theo-
rem, we get
1 Ny 400 1 Ny
;Zf(fi/\s) 7)&20/0 1-M EZf(fi/\s)gx dz
i=1 i=1
+oo
/ (I—M{‘f(&/\s)gx}>dx
0 SEAY

lim F

t—o0

Hence the theorem is proved. Please also note that

1
2D f&ns)
i=1

lim lim F
s—04+ t—o0

= +00, (13.38)

lim lim F
s—+oo t—o0

Ny +o00 x
%Zf(gi A s)] = a/o q)g;)dx. (13.39)
i=1
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What is the optimal age s?

When the age replacement policy is accepted, one problem is to find the
optimal age s such that the average replacement cost is minimized. That is,
the optimal age s should solve

min (b +2 - ba(s) + a/os q)x(f)dm) : (13.40)

s>0 \' S

13.6 Alternating Renewal Process

Let (&1,m1),(&2,7m2),- -+ be a sequence of pairs of uncertain variables. We
shall interpret &; as the “on-times” and 7; as the “off-times” fori=1,2, -,
respectively. In this case, the i-th cycle consists of an on-time &; followed by
an off-time 7.

Definition 13.5 (Yao and Li [242]) Let &1,&a, - -+ be id uncertain on-times,
and let n1,m9, -+ be iid uncertain off-times. Assume that (&1,&2,--+) and
(n1,m2,--+) are independent uncertain vectors. Then

Ny Ny Ny
E=Y " i Y (Gm) SE<Y (G Am)+ v
i=1 i=1

=1

Ay = Ntﬁ . ’ - (13.41)
Db Y (GHm) v <t< D (Gtm)
=1 =1 =1

is called an alternating renewal process, where N is the renewal process with
uncertain interarrival times & + 11,82 + 12, - - -

Note that the alternating renewal process A; is just the total time at which
the system is on up to time ¢. It is clear that

N¢+1

Ny
Ya<Aa<d g (13.42)
=1 =1

for each time ¢t. We are interested in the limit property of the rate at which
the system is on.

Theorem 13.13 (Yao and Li [242]) Assume A; is an alternating renewal
process with uncertain on-times £1,&2,- -+ and uncertain off-times 11,12, - - -
Then the availability rate

A &

t o &+m

in the sense of convergence in distribution as t — oco.

(13.43)
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Proof: Write the uncertainty distributions of £; and 1; by ® and W, respec-
tively. Then the uncertainty distribution of &; /(& + n1) is

Y(z) = zli%q)(xy) A1 =T¥(y —zy)).

On the one hand, we have

1
M{tZ§i SI}

(@
/N

k41 ]
tw+§k+1+2m >t> N <t25i<$>}

i=1

%) f 1k‘+1 1 k
_x{() ( k;1+tzm>1a:>m<t2§§x>}.
k=0 =1 )

&1

. —0, ast—o0

k
domi~ (k4 Dm, Y &~ k&,
i=1

i=1 =

we have

= lim supM {771 >

t—=00 >0

}
~tmz (1= (557)) e ()
= zlilgé(xy) A1 =T(y —zy)) = T(2).

That is,
1
lim M {t Z& < x} < T(x). (13.44)
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On the other hand, we have

k=0 =1 =1
[e%) 1 5 k+1
. k+1
=M U(tzm <1x>ﬁ<2§1>x>}
k=0 1=1 i=1
Since
&“T“ —0, ast— o0
and
k+1
Zm ~ ki, Z@ (k + 1)é1,
we have

N:+1
.

<JH&M{ <771< t(1;x>> n (51 > kfl)}
ol

= lim sup {771 <

t—00 1> k+
— lim sup ¥ T
1im —
t—o00 kliI()) k k + ].
= sup(l — ®(ay)) A ¥ (y — zy).
y>0

By using the duality of uncertain measure, we get

| Nt
lim J\/[{ Z & < JU} >1—sup(l — ®(zy)) A ¥(y — zy)

t—o0 Pt y>0

inf &(xy) v (1 - U(y —2y)) = T(x).
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That is,
1 Nett
Jim M{ Y &< :c} > T (). (13.45)
— 00
i=1
Since N Vit
1 ot At 1 t+
ZZ&STSE 2 S
=1 =1
we obtain

{ Z&<x} {’i<x} { fozq}

It follows from (13.44) and (13.45) that for any real number z, we have

lim {At < x} =T(x).
t—00 t

Hence the availability rate A;/t converges in distribution to &; /(&1 +m1). The
theorem is proved.

Theorem 13.14 (Yao and Li [242], Alternating Renewal Theorem) Assume

A is an alternating remewal process with uncertain on-times £1,&2,-++ and
uncertain off-times ny,na, -+ If E[&1/(&1 + m1)] ewists, then
E[A
fm ZAd _pl & | (13.46)
t—o0 t fl —|— 7’]1

If those on-times and off-times have reqular uncertainty distributions ® and
U, respectively, then

. ElA] [ > ! (a)
Am = _/0 51 (a) + U 11— a) (1347)

Proof: Write the uncertainty distributions of A/t and & /(&1 +m1) by Fi(x)
and G(x), respectively. Since A;/t converges in distribution to &1 /(&1 + m1),
we have Fy(z) — G(x) as t — oo. It follows from Lebesgue dominated
convergence theorem that

Jim E[tAt] - tgrgo/ol(l ~ Fy())de = /01(1 ~G(2))dz = B [5131771} .

Finally, since the uncertain variable & /(&1 + m1) is strictly increasing with
respect to & and strictly decreasing with respect to 71, it has an inverse
uncertainty distribution

" Y(a)
“Ha) +¥(1—-a)
The equation (13.47) is thus obtained.

G ) = 5
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13.7 Bibliographic Notes

The concept of uncertain renewal process was first proposed by Liu [123] in
2008. Two years later, Liu [129] proved an uncertain elementary renewal the-
orem for determining the average renewal number. Liu [129] also provided
the concept of uncertain renewal reward process and verified an uncertain
renewal reward theorem for determining the long-run reward rate. In addi-
tion, Yao and Li [242] presented the concept of uncertain alternating renewal
process and proved an uncertain alternating renewal theorem for determining
the availability rate.

Based on the theory of uncertain renewal process, Liu [135] presented an
uncertain insurance model by assuming the claim is an uncertain renewal
reward process, and proved a formula for calculating ruin index. In addition,
Yao [257] derived an uncertainty distribution of ruin time. Furthermore, Yao
[250] discussed the uncertain block replacement policy, and Yao and Ralescu
[245] investigated the uncertain age replacement policy and obtained the
long-run average replacement cost.



Chapter 14

Uncertain Calculus

Uncertain calculus is a branch of mathematics that deals with differentiation
and integration of uncertain processes. This chapter will introduce Liu pro-
cess, Liu integral, fundamental theorem, chain rule, change of variables, and
integration by parts.

14.1 Liu Process

In 2009, Liu [125] investigated a type of stationary independent increment
process whose increments are normal uncertain variables. Later, this process
was named by the academic community as Liu process due to its importance
and usefulness. A formal definition is given below.

Definition 14.1 (Liu [125]) An uncertain process Cy is said to be a canon-
ical Liu process if

(i) Co = 0 and almost all sample paths are Lipschitz continuous,

(i1) Cy has stationary and independent increments,

(iii) every increment Csyy — Cs is a normal uncertain variable with expected
value 0 and variance t2.

It is clear that a canonical Liu process C; is a stationary independent
increment process and has a normal uncertainty distribution with expected
value 0 and variance 2. The uncertainty distribution of C is

By(z) = (1 +exp (—%t»_l (14.1)

and inverse uncertainty distribution is

(14.2)

© Springer-Verlag Berlin Heidelberg 2015 303
B. Liu, Uncertainty Theory, Springer Uncertainty Research,
DOI 10.1007/978-3-662-44354-5_15
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Figure 14.1: Inverse Uncertainty Distribution of Canonical Liu Process

that are homogeneous linear functions of time ¢ for any given a. See Fig-
ure 14.1.

A canonical Liu process is defined by three properties in the above defini-
tion. Does such an uncertain process exist? The following theorem answers
this question.

Theorem 14.1 (Liu [129], Existence Theorem) There exists a canonical Liu
process.

Proof: It follows from Theorem 12.11 that there exists a stationary inde-
pendent increment process C; whose inverse uncertainty distribution is

V3 «
——1In

T 1 -«

t.

o (o) =

Furthermore, C} has a Lipschitz continuous version. It is also easy to verify
that every increment Cs s — Cjs is a normal uncertain variable with expected
value 0 and variance ¢2. Hence there exists a canonical Liu process.

Theorem 14.2 Let C; be a canonical Liu process. Then for each time t >
0, the ratio Ci/t is a normal uncertain variable with expected value 0 and
variance 1. That is,

G (0,1) (14.3)

for any t > 0.

Proof: Since C; is a normal uncertain variable N'(0,t), the operational law
tells us that Cy/¢ has an uncertainty distribution

U(z) = Oy (tx) = <1 +exp (\”/g))_l .
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Hence Cy/t is a normal uncertain variable with expected value 0 and variance
1. The theorem is verified.

Theorem 14.3 (Liu [129]) Let C; be a canonical Liu process. Then for each
time t, we have

7 < E[C?] < % (14.4)
Proof: Note that C} is a normal uncertain variable and has an uncertainty

distribution ®;(z) in (14.1). It follows from the definition of expected value
that

“+o0 “+o0
B[C] = ; M{C} > z}dz = ; M{(Ct = Va) U (Ct < —Va)}da.

On the one hand, we have
+oo
BlC?) < / (M{Cy > VE} + M{Cy < —v/T))da
0

+oo
= [ a-ewm ey =

On the other hand, we have
—+oo t2

+oo
B> [ MGz vakde= [ (- auvado = 5.
0 0

Hence (14.4) is proved.

Theorem 14.4 (Twamura and Xu [69]) Let Cy be a canonical Liu process.
Then for each time t, we have

1.24t* < V[C?] < 4.31¢%. (14.5)

Proof: Let ¢ be the expected value of C2. On the one hand, it follows from
the definition of variance that

vicy = 0+°° M{(C? — )* > a}da

§/0+OOM{Ct2\/q+¢E}dx
+/()+OOM{Ot<—\/m}d$
+/O+OOM{W§Q§ q\/:E}dxr
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Since 2/2 < q < t2, we have

First Term :/O+OOM{Ct2 q+\/:5} dz
§/0+OOM{Ctz t2/2+\/5}d:1:
:/O+OO( <1+exp< 't2/2+f>>1 dx

< 1.725t4,

+oo
Second Term :/ M{C §\/q+\/5}dx
; t
+oo
< M{C < —y\/t? 2+\/5}dx
n/O ! /

= /O+OO (1 + exp (W” t2\//2§t+ ﬁ)) dx

< 1.725¢t4,

H
E
=
oL
5
=]
S—
+
3
2
—N
|
LS}
|
®
IA
S
IA
Le)

I
D
H/_/
o
8

It follows from the above three upper bounds that

V[C?] < 1.725t* + 1.725t* + 0.86t* = 4.31¢*.
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On the other hand, we have

“+o0
vice] = M{(CF — q)* > z}dz

[ o i

+oo
MCy >
“+oo
> M{Oz t2+\/5}d:c
/ =

:/0+oo 1-— <1+exp <—7T't\2[?::\/5>> dx

> 1.24t4.

The theorem is thus verified. An open problem is to improve the bounds of
the variance of the square of canonical Liu process.

Definition 14.2 Let C; be a canonical Liu process. Then for any real num-
bers e and o > 0, the uncertain process

At =et+ O'Ct (146)

18 called an arithmetic Liu process, where e is called the drift and o is called
the diffusion.

It is clear that the arithmetic Liu process A; is a type of stationary in-
dependent increment process. In addition, the arithmetic Liu process A; has
a normal uncertainty distribution with expected value et and variance ot2,
i.e.,

Ay ~ N (et, ot) (14.7)
whose uncertainty distribution is
-1
(et — x)
Qi(z)=(14exp| ———— 14.8
o) = (1o (120 (148)

and inverse uncertainty distribution is

otv/3 o
In .
™ 1l -«

O, Ha) = et + (14.9)

Definition 14.3 Let C; be a canonical Liu process. Then for any real num-
bers e and o > 0, the uncertain process

Gy = exp(et + oC}) (14.10)

1s called a geometric Liu process, where e is called the log-drift and o is called
the log-diffusion.
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Note that the geometric Liu process G has a lognormal uncertainty dis-
tribution, i.e.,

Gy ~ LOGN (et, ot) (14.11)

whose uncertainty distribution is

By (z) = (1 + exp <W)>l (14.12)

and inverse uncertainty distribution is

tv3
o, (a) = exp <et+ o3, o > . (14.13)
us 11—«
Furthermore, the geometric Liu process G; has an expected value,
otv/3exp(et) csc(oty/3), ift < n/(0V/3)
E[Gy] = (14.14)
+00, if t > 77/(0\/3).

14.2 Liu Integral

As the most popular topic of uncertain integral, Liu integral allows us to
integrate an uncertain process (the integrand) with respect to Liu process
(the integrator). The result of Liu integral is another uncertain process.

Definition 14.4 (Liu [125]) Let X; be an uncertain process and let Cy be
a canonical Liu process. For any partition of closed interval [a,b] with a =
t) <t <--- <tgpy1 =0, the mesh is written as

A= 11’;1’?;(}6 |ti+1 - tz| (1415)

Then Liu integral of X; with respect to Cy is defined as

b k
/a XtdCt = ilinoletl . (th‘,+1 — Ctl) (1416)

provided that the limit exists almost surely and is finite. In this case, the
uncertain process X; is said to be integrable.

Since X; and C} are uncertain variables at each time ¢, the limit in (14.16)
is also an uncertain variable provided that the limit exists almost surely and
is finite. Hence an uncertain process X; is integrable with respect to C} if
and only if the limit in (14.16) is an uncertain variable.
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Example 14.1: For any partition 0 = t; < t3 < -+- < tg41 = s, it follows
from (14.16) that

S

0

k
dCy = Z tion — Ci,) = Cs — Co = C.

That is,
/ dCy = Cs. (14.17)
0

Example 14.2: For any partition 0 = t; < to < -+ < tx41 = s, it follows
from (14.16) that

k
cz =Y (cz,-ct)

=1

k ) k
=> (Cipy = Cr)"+2) Cy, (Cryy = Chy)
=1 =1
0
as A — 0. That is,
/ C,dC, = 702 (14.18)
0

Example 14.3: For any partition 0 = t; < to < -+ < tg41 = s, it follows
from (14.16) that

k

SCS = Z <t¢+10t1.+1 — tiCtl.)

i=1

k
= ZCtH—l (tig1 —ts) + Z (Ctz+1 —Cy,)
i=1

0 0

as A — 0. That is,
0 0

Theorem 14.5 If X; is a sample-continuous uncertain process on |a, b, then
it is integrable with respect to Cy on [a, b)].
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Proof: Let a =t; <t <--- <tgy1 = b be a partition of the closed interval
[a, b]. Since the uncertain process X; is sample-continuous, almost all sample
paths are continuous functions with respect to ¢t. Hence the limit

hm ZXt (Ctiyy — C4,)

exists almost surely and is finite. On the other hand, since X; and C} are
uncertain variables at each time ¢, the above limit is also a measurable func-
tion. Hence the limit is an uncertain variable and then X; is integrable with
respect to Cj.

Theorem 14.6 If X; is an integrable uncertain process on [a,b], then it is
integrable on each subinterval of [a,b]. Moreover, if ¢ € [a,b], then

b c b

Proof: Let [a/,'] be a subinterval of [a,b]. Since X; is an integrable uncer-
tain process on [a, b], for any partition

a=t < <tm=0a <tpp1 < <tp=b <tpi1 <---<tpy1 =0,
the limit

hm ZXt (Ctiyy — C4,)

exists almost surely and is finite. Thus the limit

hm ZX{» (Ctivy — C4,)

exists almost surely and is finite. Hence X, is integrable on the subinterval
[a’,b']. Next, for the partition

a=t < - <tm=c<tmp1 < - <tgr1 =0,

we have

k m— k
Z Xti (CtH»l - Ctb) = Z Xti(CtH»l - Ct1) + Z Xti (CtH»l - Ctz)

i=m
Note that
b k
/a X dCy = ilino z; Xti (Cti+1 - Cti))
i=
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m—1

/ X,dC, = Jim Z X, (C,yy — Cuy),

/c X,dC, = lim Z X4, (Ciyy — Chy)-
Hence the equation (14.20) is proved.

Theorem 14.7 (Linearity of Liu Integral) Let X; and Y; be integrable un-
certain processes on |a,b], and let o and B be real numbers. Then

b b b

Proof: Let a =11 <ty <--- <tpy+1 = b be a partition of the closed interval
[a,b]. Tt follows from the definition of Liu integral that

k

b
/ (O[Xt + ﬂYt)dCt = Alglo (OéXti + ,BYti)(CtHl - th)
a =1

k
- l1maZXt (Cp,y — C )+iigloﬁzni(ctm—ctz)
=1

= Oé/ XtdCt"‘ﬁ/ }/tdct

Hence the equation (14.21) is proved.

Theorem 14.8 Let f(t) be an integrable function with respect to t. Then
the Liu integral

/ " f(ac, (14.22)
0

is a normal uncertain variable at each time s, and

/Osf(t)dct ~N (0,/05 f(t)|dt> : (14.23)

Proof: Since the increments of C} are stationary and independent normal
uncertain variables, for any partition of closed interval [0, s] with 0 = ¢; <
ty < - < tpy1 = s, it follows from Theorem 2.12 that

k
Zf(ti)(ctiJrl - i (0 Z ‘f z+1 )) .
i=1

That is, the sum is also a normal uncertain variable. Since f is an integrable
function, we have

k s
OGRS / F@)lat
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as the mesh A — 0. Hence we obtain

/Os f(H)dC; = Aligloif(ti)(ctiﬂ —Cy) ~ N (0/0 |f(t>|dt) .

The theorem is proved.

Exercise 14.1: Let s be a given time with s > 0. Show that the Liu integral

/ tdC, (14.24)
0

is a normal uncertain variable A'(0, s?/2) and has an uncertainty distribution

B, (z) = <1 +exp (—j%i))l (14.25)

Exercise 14.2: For any real number o with 0 < a < 1, the uncertain process
F, = / (s —t)~“dC (14.26)
0

is called a fractional Liu process with index a. Show that Fy is a normal

uncertain variable and .
—Q

F, ~N<o i ) (14.27)

"1—a

whose uncertainty distribution is
(1 — a)z))_l
y(z)=(1+exp |- . 14.28
(@) = (1o (-T2 (14.25)

Definition 14.5 (Chen and Ralescu [20]) Let Cy be a canonical Liu process
and let Z; be an uncertain process. If there exist uncertain processes py and
oy such that

t t
YA +/ psds +/ 0,dC5 (14.29)
0 0

for any t > 0, then Z; is called a Liu process with drift uy and diffusion oy.
Furthermore, Z; has an uncertain differential

dZt = ,L,Ltdt + atdCt. (1430)

Example 14.4: It follows from the equation (14.17) that the canonical Liu
process C; can be written as
t
Ct = / dCS
0
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Thus C} is a Liu process with drift 0 and diffusion 1, and has an uncertain
differential dC;.

Example 14.5: It follows from the equation (14.18) that C? can be written
as

t
C? = 2/ C,dCs.
0

Thus C? is a Liu process with drift 0 and diffusion 2C;, and has an uncertain
differential

Example 14.6: It follows from the equation (14.19) that tC; can be written

as
t t

tC’t:/ Csds—i-/ sdC,.
0 0

Thus tC} is a Liu process with drift C; and diffusion ¢, and has an uncertain
differential

Theorem 14.9 (Chen and Ralescu [20]) Liu process is a sample-continuous
uncertain process.

Proof: Let Z; be a Liu process. Then there exist two uncertain processes
e and o such that

t t
Zy = Zy —|—/ Hsds —|—/ o,dCs.
0 0

For each v € T', we have

1Ze(v) = Zr (V)| =

[ wnas+ [ . (0)C )| 0

as r — t. Thus Z; is sample-continuous and the theorem is proved.

14.3 Fundamental Theorem

Theorem 14.10 (Liu [125], Fundamental Theorem of Uncertain Calculus)
Let h(t,c) be a continuously differentiable function. Then Z; = h(t,C}) is a
Liu process and has an uncertain differential

oh oh
dZ; = a(t, Cy)dt + g(t, Cy)dC;. (14.31)
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Proof: Write AC; = Cyinr — Cy = Cay. It follows from Theorems 14.3
and 14.4 that At and AC; are infinitesimals with the same order. Since the
function A is continuously differentiable, by using Taylor series expansion,
the infinitesimal increment of Z; has a first-order approximation,

oh oh
AZy = St )AL+ So(t, CAC:,

Hence we obtain the uncertain differential (14.31) because it makes
el el
Zs=Zy +/ a—(t,Ct)dt—k/ —(t, Cy)dCy. (14.32)
0 6t 0 86

This formula is an integral form of the fundamental theorem.

Example 14.7: Let us calculate the uncertain differential of ¢{C;. In this
case, we have h(t,c) = tc whose partial derivatives are

oh oh
E(t,c) =c, %(t,c) =t.

It follows from the fundamental theorem of uncertain calculus that
d(tCy) = Cydt 4 tdC;. (14.33)
Thus tC} is a Liu process with drift C; and diffusion t.

Example 14.8: Let us calculate the uncertain differential of the arithmetic
Liu process A = et + oC;. In this case, we have h(t,c) = et + oc whose
partial derivatives are

oh oh
E(LC) =e, g(t,c) =o.

It follows from the fundamental theorem of uncertain calculus that
Thus A; is a Liu process with drift e and diffusion o.

Example 14.9: Let us calculate the uncertain differential of the geometric

Liu process Gy = exp(et + 0Cy). In this case, we have h(t,c) = exp(et + oc)

whose partial derivatives are
oh

E(t’ ¢) = eh(t,c),

It follows from the fundamental theorem of uncertain calculus that

oh
3 (t,c) = oh(t,c).

C

th = thdt + O’thct. (1435)

Thus Gy is a Liu process with drift eG; and diffusion oGy.
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14.4 Chain Rule

Chain rule is a special case of the fundamental theorem of uncertain calculus.

Theorem 14.11 (Liu [125], Chain Rule) Let f(c) be a continuously differ-
entiable function. Then f(Cy) has an uncertain differential

df(Cr) = f/(Cr)dC. (14.36)

Proof: Since f(c) is a continuously differentiable function, we immediately
have 9

0 ,
S =0, = f(e) = f(c).

It follows from the fundamental theorem of uncertain calculus that the equa-
tion (14.36) holds.

Example 14.10: Let us calculate the uncertain differential of C?. In this
case, we have f(c) = ¢® and f'(c) = 2¢. It follows from the chain rule that

dC? = 2C,dC;. (14.37)

Example 14.11: Let us calculate the uncertain differential of sin(Cy). In
this case, we have f(c) = sin(c) and f'(c) = cos(c). It follows from the chain
rule that

dsin(Cy) = cos(Cy)dCy. (14.38)

Example 14.12: Let us calculate the uncertain differential of exp(C}). In
this case, we have f(c) = exp(c) and f'(¢) = exp(c). It follows from the chain
rule that

dexp(Cy) = exp(Cy)dCy. (14.39)

14.5 Change of Variables

Theorem 14.12 (Liu [125], Change of Variables) Let f be a continuously
differentiable function. Then for any s > 0, we have

S Cys
/ f(C)dC, = f'(c)de. (14.40)
0 Co
That is, .
/0 F/(C)AC, = £(Cy) — F(Co). (14.41)

Proof: Since f is a continuously differentiable function, it follows from the
chain rule that

df(Cy) = f'(Cy)dC.
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By using the fundamental theorem of uncertain calculus, we get

J(Cy) = F(Co) + / F(CdC.
0
Hence the theorem is verified.

Example 14.13: Since the function f(c) = ¢ has an antiderivative ¢?/2, it
follows from the change of variables of integral that

° e 1 2_} 2
/Octdct_2cs S0 =502

Example 14.14: Since the function f(c) = ¢? has an antiderivative ¢3/3, it
follows from the change of variables of integral that

s 1 1 1
C2C, = -C2 - ~C3 = -C3.
/0 t t 3 s 3 0 3 s

Example 14.15: Since the function f(c¢) = exp(c) has an antiderivative
exp(c), it follows from the change of variables of integral that

/OS exp(Cy)dCy = exp(Cs) — exp(Cp) = exp(Cs) — 1.

14.6 Integration by Parts

Theorem 14.13 (Liu [125], Integration by Parts) Suppose X; and Y; are
Liu processes. Then
d(X,Y) = Vid X, + X,dY,. (14.42)

Proof: Note that AX; and AY; are infinitesimals with the same order. Since
the function xy is a continuously differentiable function with respect to x and
y, by using Taylor series expansion, the infinitesimal increment of X;Y; has
a first-order approximation,

Hence we obtain the uncertain differential (14.42) because it makes
XY, = XoYo +/ Yid X, +/ X dY;. (14.43)
0 0

The theorem is thus proved.

Example 14.16: In order to illustrate the integration by parts, let us cal-
culate the uncertain differential of

Z; = exp(t)C?.
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In this case, we define
X; =exp(t), Y;=C2

Then
dXt = exp(t)dt, dY;g = ZCtdCt

It follows from the integration by parts that
dZ; = exp(t)C?dt + 2 exp(t)CydCy.
Example 14.17: The integration by parts may also calculate the uncertain

differential of
t
Zy = sin(t + 1)/ sdC.
0

In this case, we define
t
Xy =sin(t+1), Y;= / sdCs.
0
Then

dX; = cos(t + 1)dt, dY; =tdC;.

It follows from the integration by parts that

t
dz; = </ stS> cos(t + 1)dt + sin(t + 1)tdCy.
0

Example 14.18: Let f and g be continuously differentiable functions. It is
clear that

Zy = f(t)g(Cy)

is an uncertain process. In order to calculate the uncertain differential of Z;,
we define

X :f(t)7 Y, :g(Ct)

Then
dXt = f/(t)dt, dYYt = g/(Ct)dCt

It follows from the integration by parts that

dZ, = f'(t)g(Cy)dt + f(t)g' (Cy)dC,.
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14.7 Bibliographic Notes

The concept of uncertain integral was first proposed by Liu [123] in 2008 in
order to integrate uncertain processes with respect to Liu process. One year
later, Liu [125] recast his work via the fundamental theorem of uncertain
calculus from which the techniques of chain rule, change of variables, and
integration by parts were derived.

Note that uncertain integral may also be defined with respect to other
integrators. For example, Liu and Yao [132] suggested an uncertain integral
with respect to multiple Liu processes. In addition, Chen and Ralescu [20]
presented an uncertain integral with respect to general Liu process. In order
to deal with uncertain process with jumps, Yao integral [241] was defined as
a type of uncertain integral with respect to uncertain renewal process. Since
then, the theory of uncertain calculus was well developed.



Chapter 15

Uncertain Differential
Equation

Uncertain differential equation is a type of differential equation involving
uncertain processes. This chapter will discuss the existence, uniqueness and
stability of solutions of uncertain differential equations, and introduce Yao-
Chen formula that represents the solution of an uncertain differential equation
by a family of solutions of ordinary differential equations. On the basis of
this formula, some formulas to calculate extreme value, first hitting time, and
time integral of solution are provided. Furthermore, some numerical methods
for solving general uncertain differential equations are designed.

15.1 Uncertain Differential Equation

Definition 15.1 (Liu [123]) Suppose C; is a canonical Liu process, and f
and g are two functions. Then

18 called an uncertain differential equation. A solution is a Liu process X

that satisfies (15.1) identically in t.

Remark 15.1: The uncertain differential equation (15.1) is equivalent to
the uncertain integral equation

£} S
X, = Xo 4+ / £t X0 dE + / o(t, X,)dCh. (15.2)
0 0
Theorem 15.1 Let u; and vy be two integrable uncertain processes. Then

the uncertain differential equation

dXt = ’U/tdt + vtdCt (153)

© Springer-Verlag Berlin Heidelberg 2015 319
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has a solution . .
X =Xo+ / usds + / vsdCy. (15.4)
0 0

Proof: This theorem is essentially the definition of uncertain differential or
a direct deduction of the fundamental theorem of uncertain calculus.

Example 15.1: Let a and b be real numbers. Consider the uncertain differ-
ential equation
dX; = adt + bdC;. (15.5)

It follows from Theorem 15.1 that the solution is
t t
X :X0+/ ads+/ bdC.
0 0
That is,
X = Xo + at +bC;. (15.6)

Theorem 15.2 Let u; and vy be two integrable uncertain processes. Then
the uncertain differential equation

dXt = ’LLtXtdt + ’UtXtdCt (157)

t t
X = Xgexp </ usds —|—/ vsts> . (15.8)
0 0

Proof: At first, the original uncertain differential equation is equivalent to
dX;
— = wdt + v dCy.
X, tdt + v dCy

It follows from the fundamental theorem of uncertain calculus that

has a solution

dX
dh’lXt = =t = Utdt + 'UtdCt
Xy

and then , ,
In X; =1In Xy —|—/ ugds —l—/ vsdCl.
0 0

Therefore the uncertain differential equation has a solution (15.8).

Example 15.2: Let a and b be real numbers. Consider the uncertain differ-
ential equation
dX; = aXdt + bXdCy. (15.9)

It follows from Theorem 15.2 that the solution is

t t
X, = Xpexp (/ ads +/ de’S> .
0 0

X: = Xoexp (at + bCh) . (15.10)

That is,
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Linear Uncertain Differential Equation

Theorem 15.3 (Chen and Liu [12]) Let uyy, uat, v1¢, vor be integrable uncer-
tain processes. Then the linear uncertain differential equation

dXt = (ultXt =+ Ugt)dt + (vltXt + v2t)dCt (1511)

has a solution

X, =U X+/t“25ds+/t”2sdc (15.12)
t — Ut 0 0 Us 0 Us s .

t t
U; = exp (/ u1sds +/ Ulsdcs) . (15.13)
0 0

Proof: At first, we define two uncertain processes U; and V; via uncertain
differential equations,

where

AU, = uy, Uydt + v, U,dCy, AV = 20+ 2240,
U, U,

It follows from the integration by parts that
d(UVy) = VidUy + UpdVy = (u1:Ui Vi + uge)dt + (01U Vi + v24)dC.

That is, the uncertain process X; = U;V; is a solution of the uncertain
differential equation (15.11). Note that

t t
U; = Uyexp (/ u1sds —|—/ vlstS) ,
0 0

t t

U2s V2s
ds + dCs.
o Us o Us

Taking Up = 1 and Vy = Xp, we get the solution (15.12). The theorem is
proved.

Vi=Vo+

Example 15.3: Let m,a,o be real numbers. Consider a linear uncertain
differential equation

At first, we have

Uy = exp (/Ot(—a)ds + /Ot OdCs> = exp(—at).

It follows from Theorem 15.3 that the solution is

¢ ¢
X; = exp(—at) (XO Jr/ mexp(as)ds +/ Uexp(as)dC's) .
0 0
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That is,
¢
X = % + exp(—at) (Xo - %) + crexp(fat)/ exp(as)dCs (15.15)
0

provided that a # 0. Note that X; is a normal uncertain variable, i.e.,

X, ~ N (% + exp(—at) (XO - %) : % - exp(—at)%) . (15.16)

Example 15.4: Let m and o be real numbers. Consider a linear uncertain
differential equation

At first, we have

¢ t
Uy = exp (/ 0ds +/ O’dCS) = exp(cCy).
0 0

It follows from Theorem 15.3 that the solution is

¢ ¢
X = exp(cCh) (Xo +/ mexp(—os)ds +/ OdCs) .
0 0

That is,
¢
X = exp(cCy) (Xo + m/ exp(—UC’S)ds> ) (15.18)
0

15.2 Analytic Methods

This section will provide two analytic methods for solving some nonlinear
uncertain differential equations.

First Analytic Method

This subsection will introduce an analytic method for solving nonlinear un-
certain differential equations like

dX; = f(t, X¢)dt + 0 X3 dCy (15.19)

and
dXt = OétXtdt + g(t, Xt)dCt (1520)

Theorem 15.4 (Liu [148]) Let f be a function of two variables and let oy
be an integrable uncertain process. Then the uncertain differential equation

dX; = f(t, X;)dt + 0, X;dCy (15.21)
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has a solution
X, =Y (15.22)

t
Y; = exp (—/ USdCS) (15.23)
0

and Zy is the solution of the uncertain differential equation

where

dZ, = Y, f(t, Y, 1 Z,)dt (15.24)
with initial value Zg = Xy.

Proof: At first, by using the chain rule, the uncertain process Y; has an
uncertain differential

t
d}/;g = —exp (/ crstS) O'tdCt = *thdct.
0

It follows from the integration by parts that
d(X:Y;) = XedY; + Vid Xy = — X Yi0:dCy + Vi f (¢, Xy )dt + Yio: X dCh.

That is,
d(X:Y;) = Yif(t, Xy)dt.

Defining Z; = X;Y;, we obtain X; = Y; 'Z, and dZ; = Y, f(t,Y, ' Z;)dt.
Furthermore, since Yy = 1, the initial value Z; is just Xy. The theorem is
thus verified.

Example 15.5: Let a and o be real numbers with a # 1. Consider the
uncertain differential equation

At first, we have Y; = exp(—oC}) and Z; satisfies the uncertain differential
equation,

dZ; = exp(—oCy)(exp(cCy) Z:)“dt = exp((a — 1)oCy) Z{dt.
Since a # 1, we have
dZ}7* = (1 — a) exp((a — 1) Cy)dt.

It follows from the fundamental theorem of uncertain calculus that
t
Zl =27+ (1 - a)/ exp((a — 1)oCs)ds.
0

Since the initial value Z; is just X, we have

t 1/(1-a)
Z, = (Xé_o‘ +(1- a)/ exp((a — I)GC’s)ds)
0
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Theorem 15.4 says the uncertain differential equation (15.25) has a solution
X, =Y,'7, ie.,

t 1/(1-a)
X; = exp(cCy) (Xéa +(1- a)/ exp((a — 1)0’05)(18)
0

Theorem 15.5 (Liu [1/8]) Let g be a function of two variables and let
be an integrable uncertain process. Then the uncertain differential equation

dXt = O[tXtdt + g(t7 Xt)dCt (1526)

has a solution
X, =Y, 'z (15.27)

t
Y; = exp (—/ asds) (15.28)
0

and Zy is the solution of the uncertain differential equation

where

dZ; = Yig(t, Y, Z,)dC,y (15.29)
with initial value Zy = Xo.

Proof: At first, by using the chain rule, the uncertain process Y; has an
uncertain differential

t
dY; = —exp (/ asds) a;dt = —Yioudt.
0

It follows from the integration by parts that
d(Xt)/t) = Xtd}/t + Y;ngt = —XtY'tOltdt + }/—tOétXtdt + Kg(t, Xt)dCt

That is,

Defining Z; = X,;Y;, we obtain X; = Y, 'Z; and dZ, = Yig(t,Y; ' Z;)dC;.
Furthermore, since Yy = 1, the initial value Z; is just Xy. The theorem is
thus verified.

Example 15.6: Let a and S be real numbers with 8 # 1. Consider the
uncertain differential equation

dX; = aX,dt + X[dC,. (15.30)

At first, we have YV; = exp(—at) and Z; satisfies the uncertain differential
equation,

AZ; = exp(—at)(exp(at) Z,)?dC, = exp((8 — 1)at) 2 dC,.
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Since 5 # 1, we have
Az % = (1 — B) exp((B — 1)at)dC,.

It follows from the fundamental theorem of uncertain calculus that
t
Z77P =27 (1 - ﬂ)/ exp((B — Das)dC,.
0

Since the initial value Zj is just X, we have
) t 1/(1-8)
Z, = <X0_5 +(1- 5)/ exp((8 — 1)ozs)dC’s> .
0

Theorem 15.5 says the uncertain differential equation (15.30) has a solution
Xt = Y;_th, i.e.,

t 1/(1-5)
X, = exp(at) <Xé_5 +(1- B)/O exp((8 — 1)as)dC’s)

Second Analytic Method

This subsection will introduce an analytic method for solving nonlinear un-
certain differential equations like

dXt = f(f,Xt)dt—i-O'tdCt (1531)

and
dXt = Oétdt + g(t, Xt)dC’t (1532)

Theorem 15.6 (Yao [247]) Let f be a function of two variables and let oy
be an integrable uncertain process. Then the uncertain differential equation

dX; = f(t, Xy)dt + 0, dC, (15.33)
has a solution
Xy =Y+ 7, (15.34)
where ,
0

and Zy is the solution of the uncertain differential equation
dZ; = f(t, Ve + Zp)dt (15.36)

with initial value Zy = Xg.
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Proof: At first, Y; has an uncertain differential dY; = 0;dC;. It follows that
d(X: — V) =dX; — dY: = f(t, Xi)dt + 0¢dCy — 0:dC.

That is,

Defining Z; = X; — Y;, we obtain X; =Y, + Z; and dZ;, = f(t,Y; + Z;)dt.
Furthermore, since Yy = 0, the initial value Z; is just Xy. The theorem is
proved.

Example 15.7: Let o and o be real numbers with  # 0. Consider the
uncertain differential equation

dX; = aexp(Xy)dt + odCy. (15.37)
At first, we have Y; = 0C} and Z; satisfies the uncertain differential equation,
dZ; = aexp(cCy + Zy)dt.
Since a # 0, we have
dexp(—Z;) = —aexp(cCy)dt.

It follows from the fundamental theorem of uncertain calculus that
exp(—2Z;) = exp(—Zp) — a/ot exp(cCs)ds.

Since the initial value Z; is just X, we have
Z; =Xo—1n (1 - oz/ot exp(Xo + UC’S)ds> .

Hence .
X, =Xg+0C;—In (1 - a/ exp(Xo + O'CS)dS> .
0

Theorem 15.7 (Yao [247]) Let g be a function of two variables and let oy
be an integrable uncertain process. Then the uncertain differential equation

dX; = audt + g(t, X)dCy (15.38)
has a solution
X =Y+ 7, (15.39)
where .
Y, = / asds (15.40)
and Zy is the solution of the uncertaiv’? differential equation
AZ, = g(t,Y; + Z,)dC, (15.41)

with initial value Zy = Xo.
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Proof: The uncertain process Y; has an uncertain differential dY; = adt. It
follows that

d(Xt — }/;5) = dXt - d}/;g = Oétdt + g(t, Xt)dCt - Oétdt.

That is,
d(Xt — }/t) = g(t, Xt)dCt

Defining Z; = X; — Y;, we obtain X; = Y; + Z; and dZ; = ¢(¢,Y: + Z;)dC,.
Furthermore, since Y, = 0, the initial value Z; is just Xy. The theorem is
proved.

Example 15.8: Let a and o be real numbers with o # 0. Consider the
uncertain differential equation

dX,; = adt + o exp(X,;)dC;. (15.42)
At first, we have Y; = at and Z; satisfies the uncertain differential equation,
dZ; = o exp(at + Z;)dC,.
Since o # 0, we have
dexp(—Z:) = o exp(at)dCy.

It follows from the fundamental theorem of uncertain calculus that

t
exp(—Z;) = exp(—Zp) + o’/ exp(as)dCs.
0

Since the initial value Z; is just X, we have

t
Z;=Xo—1n (1 — 0/ exp(Xo + as)dCs> .
0

Hence .
Xi=Xo+at—In <1 - 0/ exp(Xo + ozs)dCs) :
0

15.3 Existence and Uniqueness

Theorem 15.8 (Chen and Liu [12], Existence and Uniqueness Theorem)
The uncertain differential equation

dX; = f(t, X¢)dt + g(t, X¢)dCy (15.43)

has a unique solution if the coefficients f(t,x) and g(t, x) satisfy linear growth
condition
o)+ gt )| <LO+|al), YoeRie>0  (15.44)
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and Lipschitz condition
for some constant L. Moreover, the solution is sample-continuous.

Proof: We first prove the existence of solution by a successive approximation
method. Define Xt(o) = Xy, and

X™ = X, + /t f (s,Xg’l*l)) ds + /tg (s,Xs(”’l)) e,
0 0

forn=1,2,--- and write

XM () = x ™ (7))

for each v € T'. It follows from linear growth condition and Lipschitz condi-
tion that

0
D () = max,

| xoms [ g(v,deOv(w’
0 0

StA uxvp¥@|dv+1cné 190, Xo)| dv

< (14 [Xol)L(L+ K )t

where K, is the Lipschitz constant to the sample path Ci(vy). In fact, by
using the induction method, we may verify
Ln+1(1+K’Y)n+1 i

(n+1)!

DM () < (1+ X))

for each n. This means that, for each v € T', the sample paths Xt(k)('y)

converges uniformly on any given time interval. Write the limit by X:(v)
that is just a solution of the uncertain differential equation because

t t
X :XOJr/ f(s,Xs)ds+/ g(s, Xs)ds.
0 0
Next we prove that the solution is unique. Assume that both X; and X}

are solutions of the uncertain differential equation. Then for each v € T, it
follows from linear growth condition and Lipschitz condition that

X:(7) — Xi ()| < L1+ K) / X, (7) — X3 ()],

By using Gronwall inequality, we obtain

1X:(7) = X7 (1] < 0- exp(L(1L+ K, )t) = 0.
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Hence X; = X;. The uniqueness is verified. Finally, for each v € I", we have

X(7) - X, ()] = / F(s, Xa(7)ds + / 9, X.(1))dCs(7)| = 0

as 7 — t. Thus X; is sample-continuous and the theorem is proved.

15.4 Stability
Definition 15.2 (Liu [125]) An uncertain differential equation is said to be
stable if for any two solutions X; and Y, we have

i M|X;: - Y| < t>0=1 15.46
P {IX¢ = Yi| < ¢ for all t > 0} ( )

for any given number € > 0.

Example 15.9: In order to illustrate the concept of stability, let us consider
the uncertain differential equation

dX; = adt 4 bdC;. (15.47)
It is clear that two solutions with initial values Xy and Y, are

X, = Xo + at + bCy,

Y, = Yy + at + bC,.
Then for any given number € > 0, we have

lim M{|X;-Y<eforallt>0}= lim M{|Xo—Yo|<e}=1
|X0—Y0|—>0 |X0—Y0|—>O

Hence the uncertain differential equation (15.47) is stable.

Example 15.10: Some uncertain differential equations are not stable. For
example, consider
dX; = X dt + bdC. (15.48)

It is clear that two solutions with different initial values Xg and Y are

¢
X = exp(t)Xo + bexp(t)/ exp(—s)dCs,
0

¢
Y, = exp(t)Yo + bexp(t) / exp(—s)dCs.
0

Then for any given number € > 0, we have

lim M{|X;—-Y;| <eforallt>0}
‘Xo*YO‘A)O

= lim  M{exp(t)|Xo — Yp| < e forallt >0} =0.

| X0o—Yo|—0

Hence the uncertain differential equation (15.48) is unstable.
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Theorem 15.9 (Yao, Gao and Gao [243], Stability Theorem) The uncertain
differential equation

AX, = f(t, X,)dt + ¢(t, X,)dC, (15.49)
is stable if the coefficients f(t,z) and g(t,x) satisfy linear growth condition
|f(t,x)| + |g(t, )] < K1+ |z]), VYzeR,t>0 (15.50)
for some constant K and strong Lipschitz condition
|t x) = f(t )+ gt x) — gt y)| < L(t)|lw —yl, Vao,y € R,t>0 (15.51)
for some bounded and integrable function L(t) on [0, 400).

Proof: Since L(t) is bounded on [0,400), there is a constant R such that
L(t) < R for any t. Then the strong Lipschitz condition (15.51) implies the
following Lipschitz condition,

It follows from linear growth condition (15.50), Lipschitz condition (15.52)
and the existence and uniqueness theorem that the uncertain differential
equation (15.49) has a unique solution. Let X; and Y; be two solutions with
initial values Xy and Yj, respectively. Then for each v, we have

dIXe(v) =Yi(V)l < £ X)) = f(EYe(0)] + |9t Xe (7)) — g(t, Ye(7))]
< LO)Xi(y) = Yi(y)ldt + LK (7)| X (v) = Yily)ldt
= L(t)(1+ K(7)[Xe(7) = Yi(y)|dt

where K () is the Lipschitz constant of the sample path Ci(y). It follows
that

+oo
1X,(7) — V()] < |Xo — Yo exp ((1 k) | L(s)ds) .

Thus for any given £ > 0, we always have

M{|X; - Yy <eforallt >0}

“+oo
> M{|X0—Y0|exp ((1—&—[((7))/ L(s)ds) <E}.
0
Since oo
M{|XO—Y0|exp ((1+K(’y))/ L(s)ds) <5}—>1
0
as |Xo — Yo| — 0, we obtain

lim M{|X,-Y|<eforalt¢>0}=1.
| Xo—Yo|—0
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Hence the uncertain differential equation is stable.

Exercise 15.1: Suppose uy, Uy, V14, Vo are bounded functions with respect
to t such that

+o0o +oo
/ |uge]dt < 400, / |v1|dt < 4o0. (15.53)
0 0

Show that the linear uncertain differential equation
dX; = (ultXt + UQt)dt + ('UltXt + ’Ugt)dct (1554)

is stable.

15.5 «-Path

Definition 15.3 (Yao and Chen [246]) Let a be a number with 0 < o < 1.
An uncertain differential equation

dX; = f(t, X;)dt + g(t, X;)dC; (15.55)

is said to have an a-path X§* if it solves the corresponding ordinary differen-
tial equation
dX{ = f(t, XO)dt + |g(t, X))@ (a)dt (15.56)

where ®~1(a) is the inverse standard normal uncertainty distribution, i.e.,

3 (a) = ? In - f‘a. (15.57)

Remark 15.2: Note that each a-path X[* is a real-valued function of time ¢,
but is not necessarily one of sample paths. Furthermore, almost all a-paths
are continuous functions with respect to time t.

Example 15.11: The uncertain differential equation dX; = adt+ bdC; with
Xo = 0 has an a-path
X =at+ |b|@ (a)t (15.58)

where ®~! is the inverse standard normal uncertainty distribution.

Example 15.12: The uncertain differential equation dX; = aX;dt+bX;dC}
with Xy = 1 has an a-path

X = exp (at + [b|® ! (a)t) (15.59)

where ®~! is the inverse standard normal uncertainty distribution.
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Figure 15.1: A Spectrum of a-Paths of dX; = aX,dt + bX,dC;. Reprinted
from Liu [129].

15.6 Yao-Chen Formula

Yao-Chen formula relates uncertain differential equations and ordinary dif-
ferential equations, just like that Feynman-Kac formula relates stochastic
differential equations and partial differential equations.

Theorem 15.10 (Yao-Chen Formula [246]) Let X; and X§ be the solution
and a-path of the uncertain differential equation

respectively. Then
M{X, < X2, ¥t} = a, (15.61)
M{X: > X, Vt}=1—a. (15.62)

Proof: At first, for each a-path X}, we divide the time interval into two

parts,
TH={t|g@t X)) >0},

T ={t|gtX) <0}.
It is obvious that 7+ NT~ =@ and Tt UT~ = [0, +oc). Write

AF = {7 | dCSE’Y) < & 1(a) for any t € T+} ,
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AT = {7 ’ dc:;;'Y) >® (1 —a)forany t € T_}

where @1 is the inverse standard normal uncertainty distribution. Since T+
and T~ are disjoint sets and C; has independent increments, we get

M{Af}=a, M{A7}=a, M{ATNA]}=a.
For any v € A] N AT, we always have

olt, x,(7) 2

Hence X;(v) < X for all ¢ and

< lg(t, XM)|®™ (o), VL.

M{X; < X7, Vi > M{AT NAT} = (15.63)

On the other hand, let us define

d
A;:{7|C§t(v)><b1(a) for anyt6T+},
A;:{W}dc(’;@<<I>_1(1—a)foranyt€T_}.

Since Tt and T~ are disjoint sets and C; has independent increments, we
obtain

M{AT}=1—0a, M{A;}=1-0a, M{AFNA}=1-a.
For any v € AJ N A5, we always have

olt, x,(7) 2

Hence X;(y) > X for all ¢ and

> |g(t, X{) @~ (a), V.

M{X; > X2Vt >M{AT NA}=1—a. (15.64)

Note that {X; < X, Vt} and {X; £ X7, Vt} are opposite events with each
other. By using the duality axiom, we obtain

M{X, < X2, Vt} + M{X, £ X, ¥t} = 1.

It follows from M{X, > X, Vi} ¢ M{X, £ X/, V¢} and monotonicity
theorem that

M{X; < X2, V) +M{X; > X2, vt} < 1. (15.65)

Thus (15.61) and (15.62) follow from (15.63), (15.64) and (15.65) immedi-
ately.
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Remark 15.3: It is also shown that Yao-Chen formula may be written as
M{X: < X[¥, Yt} = a, (15.66)
M{X; > X, Vt} =1—a. (15.67)

Please mention that {X; < X7, Vt} and {X; > X, Vt} are disjoint events
but not opposite. Generally speaking, their union is not the universal set,
and it is possible that

M{(X: < X7, VU (X > X, V)< 1. (15.68)
However, for any «, it is always true that

M{X, < X2, V) +M{X; > X, Vi) = 1. (15.69)

Uncertainty Distribution of Solution

Theorem 15.11 (Yao and Chen [246]) Let X; and X be the solution and
a-path of the uncertain differential equation

respectively. Then the solution X; has an inverse uncertainty distribution
T o) = X7 (15.71)

Proof: Note that {X;, < X7} D {X, < X, Vs} holds. By using the
monotonicity theorem and Yao-Chen formula, we obtain

M{X; < X7} > M{X, < X7, Vs} =a. (15.72)
Similarly, we also have
M{X; > X7 >M{X; > X Vst =1-—a. (15.73)
In addition, since {X; < X} and {X; > X} are opposite events, the duality
axiom makes
M{Xt < Xta} + M{Xt > Xta} =1. (1574)
It follows from (15.72), (15.73) and (15.74) that M{X; < X} = a. The
theorem is thus verified.
Exercise 15.2: Show that the solution of the uncertain differential equation
dX; = adt + bdC; with Xy = 0 has an inverse uncertainty distribution
U, a) = at + |[b|d " (a)t (15.75)
where ®~! is the inverse standard normal uncertainty distribution.
Exercise 15.3: Show that the solution of the uncertain differential equation
dX; = aXdt + bX;:dCy with Xy = 1 has an inverse uncertainty distribution
U, (@) = exp (at + b2 (a)t) (15.76)

where ®~! is the inverse standard normal uncertainty distribution.
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Expected Value of Solution

Theorem 15.12 (Yao and Chen [246]) Let X, and X be the solution and
a-path of the uncertain differential equation

respectively. Then for any monotone (increasing or decreasing) function J,
we have

E[J(X})] = /01 J(X%)da. (15.78)

Proof: At first, it follows from Yao-Chen formula that X; has an uncertainty
distribution ¥; !(a) = X¢*. Next, we may have a monotone function become
a strictly monotone function by a small perturbation. When J is a strictly
increasing function, it follows from Theorem 2.9 that J(X;) has an inverse
uncertainty distribution

Ty (a) = J(XP).

Thus we have

E[J(Xt)]:/o Tt_l(a)doz:/o J(X)da.

When J is a strictly decreasing function, it follows from Theorem 2.16 that
J(X}) has an inverse uncertainty distribution

Y (@) = J(X 7).
Thus we have

ELJ(X))] = /0 Y (a)da = /0 (X da = /0 C J(XP)da

The theorem is thus proved.

Exercise 15.4: Let X; and X;* be the solution and a-path of some uncertain
differential equation. Show that

E[X)]= [ Xdao, (15.79)

1
E[(X, — K)*] = /0 (X¢ — K)tda, (15.80)

1
B[(K — X,)*] = /0 (K — X&) da. (15.81)
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Extreme Value of Solution

Theorem 15.13 (Yao [244]) Let X; and X{ be the solution and a-path of
the uncertain differential equation

respectively. Then for any time s > 0 and strictly increasing function J(x),
the supremum
sup J(X3) (15.83)
0<t<s

has an inverse uncertainty distribution

U (o) = sup J(XP); (15.84)
0<t<s
and the infimum
inf J(X,) (15.85)
0<t<s

has an inverse uncertainty distribution

U (o) = inf J(XP). (15.86)

0<t<s

Proof: Since J(z) is a strictly increasing function with respect to x, it is
always true that

{ sup J(X0) < sup J<X?>} S (X, < X2, Vi),
0<t<s 0<t<s

By using Yao-Chen formula, we obtain

M{ sup J(X;) < sup J(Xta)} > M{X: < X7, Vt} = o (15.87)

0<t<s 0<t<s

Similarly, we have

M{ sup J(X¢) > sup J(Xf‘)} >M{X, > X, Vt} =1—a. (15.88)

0<t<s 0<t<s

It follows from (15.87), (15.88) and the duality axiom that

M{ sup J(X;) < sup J(Xto‘)} =« (15.89)

0<t<s 0<t<s

which proves (15.84). Next, it is easy to verify that

{ inf J(X;) < Oglisj(xta)} o {X, < X, Vit}.

0<t<s
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By using Yao-Chen formula, we obtain

M{ inf J(X,) < inf J(Xta)} >M{X, < X, Vt} =a.  (15.90)

0<t<s

Similarly, we have

M{ inf J(X,)> inf J(Xf‘)} >M{X, > X, Vit =1—a. (15.91)

0<t<s

It follows from (15.90), (15.91) and the duality axiom that

M{ inf J(X;) < oigrtlgs J(Xf‘)} =a (15.92)

0<t<s
which proves (15.86). The theorem is thus verified.

Exercise 15.5: Let r and K be real numbers. Show that the supremum

sup exp(—rt)(X; — K)

0<t<s
has an inverse uncertainty distribution

U (a) = sup exp(—rt)(X? — K)
0<t<s

for any given time s > 0.

Theorem 15.14 (Yao [244]) Let X; and X§ be the solution and a-path of
the uncertain differential equation

respectively. Then for any time s > 0 and strictly decreasing function J(x),
the supremum
sup J(X3) (15.94)

0<t<s

has an inverse uncertainty distribution

U (@) = sup J(X,9); (15.95)
0<t<s
and the infimum
inf J(X¢) (15.96)
0<t<s

has an inverse uncertainty distribution

U a)= inf J(X/™%). (15.97)

s 0<t<s
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Proof: Since J(x) is a strictly decreasing function with respect to x, it is
always true that

{ sup J(X;) < sup J(tho‘)} O {X; > X7, vt}

0<t<s 0<t<s
By using Yao-Chen formula, we obtain
M{ sup J(X;) < sup J(th—a)} >M{X; > X} 7% Vi) =a.  (15.98)
0<t<s 0<t<s

Similarly, we have

M{ sup J(X;)> sup J(tha)} >M{X, <X} vty =1—a. (15.99)
0

<t<s 0<t<s

It follows from (15.98), (15.99) and the duality axiom that

M{ sup J(X:) < sup J(tho‘)} =a (15.100)

0<t<s 0<t<s

which proves (15.95). Next, it is easy to verify that

{ inf J(X;) < OigrtlisJ(tha)} O {X; > X/}, vt}

0<t<s

By using Yao-Chen formula, we obtain
: < i 11—« > > 11—« = a. )
M {ogi}is J(Xy) < Oggs J(X; )} >M{X: > X; % Vt} =a. (15.101)
Similarly, we have

M {0 inf J(X¢)> inf )J(tho‘)} >M{X, <X} ¥t} =1—a. (15.102)

<t<s

It follows from (15.101), (15.102) and the duality axiom that

M{ inf J(X;) < Oglisj(x,}a)} =a (15.103)

0<t<s
which proves (15.97). The theorem is thus verified.

Exercise 15.6: Let r and K be real numbers. Show that the supremum

sup exp(—rt)(K — X3)
0<t<s

has an inverse uncertainty distribution

U ' (a) = sup exp(—rt)(K — X/~%)
0<t<s

for any given time s > 0.
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First Hitting Time of Solution

Theorem 15.15 (Yao [244]) Let X; and X§ be the solution and a-path of
the uncertain differential equation

dX, = f(t, X,)dt + g(t, X,)dC, (15.104)

with an initial value Xq, respectively. Then for any given level z and strictly
increasing function J(x), the first hitting time 7, that J(X:) reaches z has
an uncertainty distribution

1 inf{a | sup J(X7) > Z} , if 2> J(Xo)
0<t<s

U(s) = - (15.105)
sup {a | OggsJ(Xf‘) Sz}, if z < J(Xo).
Proof: At first, assume z > J(Xp) and write
ap = inf{a | sup J(X7) > z} .
0<t<s
Then we have

sup J(X[0) =z,
0<t<s

0<t<s

{r: <s}= { sup J(X;) > } D {X; > X[, Vt},
} D {Xy < X[, Vi}.

{Tz>5}{sup J(Xp) <

0<t<s
By using Yao-Chen formula, we obtain
M{r, < s} >M{X; > X[, Vt} =1 — ay,

M{r, > s} > M{X; < X°, Vt} = ap.

It follows from M{7, < s} + M{7, > s} = 1 that M{r, < s} = 1 — «p. Hence
the first hitting time 7, has an uncertainty distribution

U(s) =M{r, < s} = 1—inf{a‘ sup J(X) Zz}.

0<t<s

Similarly, assume z < J(X) and write

ao—sup{a| inf J(X7) < }

0<t<s

Then we have
inf J(X[°) =z,

0<t<s
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{r: <s}= { inf J(X;) < z} O {X, < X[, Vt},

0<t<s

— 3 [e7s)
{r, >s}= {O%Itlgs J(Xy) > z} D {X; > X[, Vt}.
By using Yao-Chen formula, we obtain
M{r, < s} >M{X; < X[, Vt} = ay,

M7, > s} > M{X; > X, Vt} =1 — «p.

It follows from M{7, < s} + M{7r, > s} = 1 that M{r, < s} = ap. Hence
the first hitting time 7, has an uncertainty distribution

/i — < — 3 « < .
The lheOrem iS \/eliﬁed.

Theorem 15.16 (Yao [244]) Let X; and X§ be the solution and a-path of
the uncertain differential equation

with an initial value Xq, respectively. Then for any given level z and strictly
decreasing function J(x), the first hitting time 7, that J(X;) reaches z has
an uncertainty distribution

sup {a ’ sup J(X}) > z} ,if 2> J(Xo)
U(s) = psrss (15.107)
lmf{a | inf J(X7) < }, if =z < J(Xo).

0<t<s

Proof: At first, assume z > J(Xy) and write

o—sup{a| sup J(X[) > }
0<t<s
Then we have

sup J(X°) =z
0<t<s

)

0<t<s

{r, <s}= { sup J(X;) > } D {X; < X[, Vt},
} D {Xf > Xta07 Vt}

{TZ>3}{sup J(Xt)

0<t<s
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By using Yao-Chen formula, we obtain
M{r, < s} >M{X; < X[, Vt} = ay,

M{r, > s} > M{X; > X, Vi} =1 — ayp.
It follows from M{7, < s} + M{7r, > s} = 1 that M{r, < s} = ap. Hence
the first hitting time 7, has an uncertainty distribution
U(s) = M{r, < s} =sup {a | sup J(X7) > z} .

0<t<s

Similarly, assume z < J(X) and write

ag = inf{a | OirgisJ(Xf‘) < z}

Then we have

inf J(X0) =
onf (XP0) =z,

{r, <s} = { inf J(X;) < z} D {X; > X[, Vt},

0<t<s

{r. > s} = { inf J(X;) > z} O {X; < X[°, Vt}.

0<t<s
By using Yao-Chen formula, we obtain
M{r, < s} >M{X; > X, Vi} =1— ay,

M{r, > s} > M{X; < X, Vt} = ap.

It follows from M{r, < s} +M{r, > s} =1 that M{r, < s} =1 —ay. Hence
the first hitting time 7, has an uncertainty distribution

0<t<s

U(s)=M{r, <s}=1- inf{a | inf J(X7) < z}
The theorem is verified.

Time Integral of Solution

Theorem 15.17 (Yao [244]) Let X; and X§ be the solution and a-path of
the uncertain differential equation

respectively. Then for any time s > 0 and strictly increasing function J(x),
the time integral

/s J(X,)dt (15.109)
0
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has an inverse uncertainty distribution
U= a) = / J(XO)dt. (15.110)
0

Proof: Since J(x) is a strictly increasing function with respect to z, it is
always true that

{/0 J(X))dE < /0 J(Xf“)dt} S {J(X,) < J(X), ¥} S {X, < X2, Vi),
By using Yao-Chen formula, we obtain
M{/O J(X)dt < /0 J(Xf‘)dt} > M{X, < X0, V) =a. (15.111)
Similarly, we have
M {/OS J(Xy)dt > /OS J(Xto‘)dt} >M{X: > X, vt} =1—a. (15.112)
It follows from (15.111), (15.112) and the duality axiom that

M{/O J(X,)dt < /0 J(X?)dt} =a. (15.113)

The theorem is thus verified.

Exercise 15.7: Let r and K be real numbers. Show that the time integral

/OS exp(—rt)(X; — K)dt

has an inverse uncertainty distribution

U (o) = / exp(—rt) (X — K)dt
0
for any given time s > 0.

Theorem 15.18 (Yao [244]) Let X; and X§ be the solution and a-path of
the uncertain differential equation

respectively. Then for any time s > 0 and strictly decreasing function J(x),
the time integral

/S J(X,)dt (15.115)
0

has an inverse uncertainty distribution

U () = /O J(X}m™)dt. (15.116)
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Proof: Since J(x) is a strictly decreasing function with respect to x, it is
always true that

{/O J(X)dt < /O J(th‘“)dt} o {X; > X}, vt}
By using Yao-Chen formula, we obtain
M {/O J(X;)dt < /O J(th_“)dt} >M{X, > X} Vt} =a. (15.117)
Similarly, we have
M{/OSJ(Xt)dt >/08J(Xt1_(’)dt} >M{X; <X} 7% Vt} =1—a. (15.118)

It follows from (15.117), (15.118) and the duality axiom that

M {/O J(X)dt < /0 J(Xga)dt} — (15.119)

The theorem is thus verified.

Exercise 15.8: Let r and K be real numbers. Show that the time integral

/OS exp(—rt)(K — X;)dt

has an inverse uncertainty distribution
S
U () :/ exp(—rt)(K — X} ~*)dt
0

for any given time s > 0.

15.7 Numerical Methods

It is almost impossible to find analytic solutions for general uncertain differ-
ential equations. This fact provides a motivation to design some numerical
methods to solve the uncertain differential equation

In order to do so, a key point is to obtain a spectrum of a-paths of the un-
certain differential equation. For this purpose, Yao and Chen [246] designed
a Euler method:

Step 1. Fix o on (0,1).
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Step 2. Solve dX{ = f(t, X{)dt +|g(t, X)|®~1(a)dt by any method of or-
dinary differential equation and obtain the a-path X/, for example,
by using the recursion formula

Xf = X7+ f(t, XP)h + |g(ti, X7) @7 (a)h (15.121)

where ®~! is the inverse standard normal uncertainty distribution
and h is the step length.

Step 3. The a-path X/ is obtained.

Remark 15.4: Shen and Yao [209] designed a Runge-Kutta method that
replaces the recursion formula (15.121) with

X =X+ %(lﬁ + 2kg + 2k3 + k4) (15.122)
where

kv = f(ti, X{) + lg(t, X{) @7 (e), (15.123

ko = f(ti+h/2, X7+ Bk /2) + [g(ti +h/2, X+ 1%k /2)| @7 (), (15.124

ks = f(ti+h/2, XF+h2ka/2) +|g(ti + h/2, X+ h%kq /2)| @ (), (15.125

(

)
)
)
15.126)

kg = f(ti +h, X0 + h?ks) + g(t; + h, XX + hPk3)| 27" (o).

Example 15.13: In order to illustrate the numerical method, let us consider
an uncertain differential equation

dX; = (t — X)dt + /(1 + X,)dCy, Xo = 1. (15.127)

The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
solve this equation successfully and obtain all a-paths of the uncertain dif-
ferential equation. Furthermore, we may get

E[X,] ~ 0.870. (15.128)

Example 15.14: Now we consider a nonlinear uncertain differential equa-
tion

dX, = VX dt + (1 — 1) X,dC;, X = 1. (15.129)

Note that (1 — t)X; takes not only positive values but also negative values.
The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm) may
obtain all a-paths of the uncertain differential equation. Furthermore, we
may get

E[(Xs —3)1] ~ 2.845. (15.130)
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15.8 Bibliographic Notes

The study of uncertain differential equation was pioneered by Liu [123] in
2008. This work was immediately followed upon by many researchers. Nowa-
days, the uncertain differential equation has achieved fruitful results in both
theory and practice.

The existence and uniqueness theorem of solution of uncertain differential
equation was first proved by Chen and Liu [12] under linear growth condi-
tion and Lipschitz continuous condition. The theorem was verified again by
Gao [53] under local linear growth condition and local Lipschitz continuous
condition.

The first concept of stability of uncertain differential equation was pre-
sented by Liu [125], and some stability theorems were proved by Yao, Gao and
Gao [243]. Following that, different types of stability of uncertain differen-
tial equations were explored, for example, stability in mean (Yao and Sheng
[252]), stability in moment (Sheng and Wang [210]), almost sure stability
(Liu, Ke and Fei [143]), and exponential stability (Sheng [214]).

In order to solve uncertain differential equations, Chen and Liu [12] ob-
tained an analytic solution to linear uncertain differential equations. In ad-
dition, Liu [148] and Yao [247] presented a spectrum of analytic methods to
solve some special classes of nonlinear uncertain differential equations.

More importantly, Yao and Chen [246] showed that the solution of an
uncertain differential equation can be represented by a family of solutions of
ordinary differential equations, thus relating uncertain differential equations
and ordinary differential equations. On the basis of Yao-Chen formula, Yao
[244] presented some formulas to calculate extreme value, first hitting time,
and time integral of solution of uncertain differential equation. Furthermore,
some numerical methods for solving general uncertain differential equations
were designed among others by Yao and Chen [246] and Shen and Yao [209].

Uncertain differential equation was extended by many researchers. For
example, uncertain delay differential equation was studied among others by
Barbacioru [4], Ge and Zhu [54], and Liu and Fei [142]. In addition, uncertain
differential equation with jumps was suggested by Yao [241], and backward
uncertain differential equation was discussed by Ge and Zhu [55].

Uncertain differential equation has been widely applied in many fields
such as uncertain finance (Liu [134]), uncertain optimal control (Zhu [284]),
and uncertain differential game (Yang and Gao [238]).



Chapter 16

Uncertain Finance

This chapter will introduce uncertain stock model, uncertain interest rate
model, and uncertain currency model by using the tool of uncertain differen-
tial equation.

16.1 Uncertain Stock Model

Liu [125] supposed that the stock price follows an uncertain differential equa-
tion and presented an uncertain stock model in which the bond price X; and
the stock price Y; are determined by

dXt = ’I"Xtdt
(16.1)

dY; = eYidt + oY, dCy

where r is the riskless interest rate, e is the log-drift, o is the log-diffusion, and
C} is a canonical Liu process. Note that the bond price is X; = X exp(rt)
and the stock price is

Y: = Yo exp(et + oCy) (16.2)

whose inverse uncertainty distribution is

(16.3)

tv3
;" (a) = Yoexp (et—i— UflnliyOé).

European Option

Definition 16.1 A FEuropean call option is a contract that gives the holder
the right to buy a stock at an expiration time s for a strike price K.

The payoff from a European call option is (Y; — K)™ since the option is ra-
tionally exercised if and only if Yy > K. Considering the time value of money
resulted from the bond, the present value of the payoff is exp(—rs)(Y; — K)T.
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Hence the European call option price should be the expected present value
of the payoff.

Definition 16.2 Assume a Furopean call option has a strike price K and
an expiration time s. Then the Furopean call option price is

fe =exp(—rs)E[(Y, — K)T]. (16.4)
Y;
K /\/‘Vl\/ ﬁ/\l\'\v/\\lr‘/\\[v/w/\/\/\/\/
Yo
0 s t

Figure 16.1: Payoff (Y; — K)* from European Call Option

Theorem 16.1 (Liu [125]) Assume a European call option for the uncertain
stock model (16.1) has a strike price K and an expiration time s. Then the
FEuropean call option price is

+
fe = exp(—rs) /1 (Yg exp (63 + %\/?7, In 2> ) — K) da.  (16.5)

0 11—«

Proof: Since (Y; — K)* is an increasing function with respect to Y, it has
an inverse uncertainty distribution

+
\Pgl(a)<Yoexp<es+05\/§ln a )K) .
‘ T -«

It follows from Definition 16.2 that the European call option price formula is
just (16.5).

Remark 16.1: It is clear that the European call option price is a decreasing
function of interest rate r. That is, the European call option will devaluate
if the interest rate is raised; and the European call option will appreciate in
value if the interest rate is reduced. In addition, the European call option
price is also a decreasing function of the strike price K.
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Example 16.1: Assume the interest rate r = 0.08, the log-drift e =
0.06, the log-diffusion o = 0.32, the initial price Yy = 20, the strike price
K = 25 and the expiration time s = 2. The Matlab Uncertainty Toolbox
(http://orsc.edu.cn/liu/resources.htm) yields the European call option price

f.=6.91.

Definition 16.3 A Furopean put option is a contract that gives the holder
the right to sell a stock at an expiration time s for a strike price K.

The payoff from a European put option is (K —Y;)™T since the option is ra-
tionally exercised if and only if Yy < K. Considering the time value of money
resulted from the bond, the present value of this payoff is exp(—rs)(K —Y;)™T.
Hence the European put option price should be the expected present value
of the payoff.

Definition 16.4 Assume a FEuropean put option has a strike price K and
an expiration time s. Then the Furopean put option price is

fp = exp(—7rs)E[(K — Y)T]. (16.6)

Theorem 16.2 (Liu [125]) Assume a European put option for the uncertain
stock model (16.1) has a strike price K and an expiration time s. Then the
Furopean put option price is

¥
fp =exp(—rs) /01 (K —Ypexp (es + %\/3 In — )) da.  (16.7)

11—«

Proof: Since (K — Y;)™" is a decreasing function with respect to Ys, it has
an inverse uncertainty distribution

+
1—

U a) = (YO exp (es + o5V3 In a) - K) .
a

™

It follows from Definition 16.4 that the European put option price is

+
1 —
fo = exp(—rs)/ <K — Yy exp (es + 08\/§1n 1 a)) do
0 7T «

1 +
= exp(—rs) / (K —Yyexp (es + 75V3 In — >> da.
0 7T 11—«

The European put option price formula is verified.

Remark 16.2: It is easy to verify that the option price is a decreasing
function of the interest rate r, and is an increasing function of the strike
price K.
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Example 16.2: Assume the interest rate » = 0.08, the log-drift e =
0.06, the log-diffusion o = 0.32, the initial price Yy = 20, the strike price
K = 25 and the expiration time s = 2. The Matlab Uncertainty Toolbox
(http://orsc.edu.cn/liu/resources.htm) yields the European put option price

= 4.40.

American Option

Definition 16.5 An American call option is a contract that gives the holder
the right to buy a stock at any time prior to an expiration time s for a strike
price K.

It is clear that the payoff from an American call option is the supremum
of (Y;— K)™ over the time interval [0, s]. Considering the time value of money
resulted from the bond, the present value of this payoff is

sup exp(—rt)(Y; — K)*. (16.8)
0<t<s

Hence the American call option price should be the expected present value
of the payoff.

Definition 16.6 Assume an American call option has a strike price K and
an expiration time s. Then the American call option price is

fe=FE LS<1?<) exp(—rt)(Y; — K)'ﬂ . (16.9)

Theorem 16.3 (Chen [13]) Assume an American call option for the uncer-
tain stock model (16.1) has a strike price K and an expiration time s. Then
the American call option price is

! Ut\/§ « "
fe= / sup exp(—rt) (YO exp <et +——1In ) — K) da.
0 ™

0<t<s 11—«

Proof: It follows from Theorem 15.13 that supy<,<, exp(—rt)(Y; — K)* has
an inverse uncertainty distribution

tV3 ’
U (o) = sup exp(—rt) <YO exp (et + V2 1 c a> — K) .
m

0<t<s

Hence the American call option price formula follows from Definition 16.6
immediately.

Remark 16.3: It is easy to verify that the option price is a decreasing
function with respect to either the interest rate r or the strike price K.
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Example 16.3: Assume the interest rate r = 0.08, the log-drift e =
0.06, the log-diffusion o = 0.32, the initial price Yy = 40, the strike price
K = 38 and the expiration time s = 2. The Matlab Uncertainty Toolbox
(http://orsc.edu.cn/liu/resources.htm) yields the American call option price

f.=19.8.

Definition 16.7 An American put option is a contract that gives the holder
the Tight to sell a stock at any time prior to an expiration time s for a strike
price K.

It is clear that the payoff from an American put option is the supremum
of (K —Y3)" over the time interval [0, s]. Considering the time value of money
resulted from the bond, the present value of this payoff is

sup exp(—rt)(K — Y;)*". (16.10)
0<t<s

Hence the American put option price should be the expected present value
of the payoff.

Definition 16.8 Assume an American put option has a strike price K and
an expiration time s. Then the American put option price is

fr=FE [ sup exp(—rt)(K — Yt)ﬂ . (16.11)

0<t<s

Theorem 16.4 (Chen [13]) Assume an American put option for the uncer-
tain stock model (16.1) has a strike price K and an expiration time s. Then
the American put option price is

1 ot\/§ « -
fo= / sup exp(—rt) (K —Yyexp (et + ——1In 1 )) dav.
0 ™

0<t<s -«

Proof: It follows from Theorem 15.14 that supy<,<, exp(—rt)(K —Y;)" has
an inverse uncertainty distribution

+
1 Ut\/g 1l -«
U (a) = sup exp(—rt) | K —Ypexp | et + In .

0<t<s T o

Hence the American put option price formula follows from Definition 16.8
immediately.

Remark 16.4: It is easy to verify that the option price is a decreasing
function of the interest rate r, and is an increasing function of the strike
price K.
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Example 16.4: Assume the interest rate r = 0.08, the log-drift e =
0.06, the log-diffusion o = 0.32, the initial price Yy = 40, the strike price
K = 38 and the expiration time s = 2. The Matlab Uncertainty Toolbox
(http://orsc.edu.cn/liu/resources.htm) yields the American put option price

fp = 3.90.

Asian Option

Definition 16.9 An Asian call option is a contract whose payoff at the ex-

piration time s s
1 S +
(/ Yidt — K) (16.12)
s Jo

Considering the time value of money resulted from the bond, the present
value of the payoff from an Asian call option is

where K is a strike price.

exp(—rs) (i /OSYtdt _ K)+. (16.13)

Hence the Asian call option price should be the expected present value of the
payoff.

Definition 16.10 Assume an Asian call option has a strike price K and an
expiration time s. Then the Asian call option price is

Je=exp(=rs)E l(i /0 Yidt — K> +] : (16.14)

Theorem 16.5 (Sun and Chen [218]) Assume an Asian call option for the
uncertain stock model (16.1) has a strike price K and an expiration time s.
Then the Asian call option price is

Yy, e otv3 « -
fe =exp(—rs) / =0 / exp | et + In dt — K| da.
0 s Jo m 1-«

Proof: It follows from Theorem 15.17 that the inverse uncertainty distribu-
tion of time integral
S
/ Yidt
0

Ul (a) = yo/ exp (et—l— oiV3, o )dt.
0 s

is

n
1—«

Hence the Asian call option price formula follows from Definition 16.10 im-
mediately.



SECTION 16.1 - UNCERTAIN STOCK MODEL 353

Definition 16.11 An Asian put option is a contract whose payoff at the

expiration time s 1S
1 S +
(K 7/ Ytdt> (16.15)
S Jo

Considering the time value of money resulted from the bond, the present
value of the payoff from an Asian put option is

where K is a strike price.

exp(—rs) (K _ l/osndt)+. (16.16)

S

Hence the Asian put option price should be the expected present value of the
payoff.

Definition 16.12 Assume an Asian put option has a strike price K and an
expiration time s. Then the Asian put option price is

(K - i/osY,;dt> +] . (16.17)

Theorem 16.6 (Sun and Chen [218]) Assume an Asian put option for the
uncertain stock model (16.1) has a strike price K and an expiration time s.
Then the Asian put option price is

+
! Yo [° tV/3
fC:exp(—rs)/ (K—O/ exp et—&-g\fln a dt | do.
0 s Jo T l1-«a

Proof: It follows from Theorem 15.17 that the inverse uncertainty distribu-
tion of time integral
/ Y. dt
0

° tv3
U (o) = Yo/ exp (et +2 V3 In 2 ) dt.
0 ™ 1

—

fp =exp(—rs)E

is

Hence the Asian put option price formula follows from Definition 16.12 im-
mediately.

General Stock Model

Generally, we may assume the stock price follows a general uncertain differ-
ential equation and obtain a general stock model in which the bond price X;
and the stock price Y; are determined by

{ dXt = ’I“Xtdt

(16.18)
dY; = F(t,Y,)dt + G(t, ¥;)dC,
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where 7 is the riskless interest rate, F' and G are two functions, and C} is a
canonical Liu process.

Note that the a-path Y,* of the stock price Y; can be calculated by some
numerical methods. Assume the strike price is K and the expiration time is
s. It follows from Definition 16.2 and Theorem 15.12 that the European call
option price is

fe= exp(—rs)/o (Y — K)Tda. (16.19)

It follows from Definition 16.4 and Theorem 15.12 that the European put
option price is

1
fp= exp(frs)/0 (K —Y*)Tda. (16.20)

It follows from Definition 16.6 and Theorem 15.13 that the American call
option price is

fo= /01 { sup exp(—rt)(Y,® — K)*}da. (16.21)

0<t<s

It follows from Definition 16.8 and Theorem 15.14 that the American put
option price is

1
Iy :/ [ sup exp(—rt)(K — Yf‘)ﬂ da. (16.22)
o Llo<i<s

It follows from Definition 16.9 and Theorem 15.17 that the Asian call option
price is

1 i 1 S +-

fe= CXp(—T’S)/ ( Y>dt — K> da. (16.23)
0 S Jo

It follows from Definition 16.11 and Theorem 15.18 that the Asian put option
price is

- . T
fp =exp(—rs) /01 (K - %/0 Yf‘dt) da. (16.24)

Multifactor Stock Model

Now we assume that there are multiple stocks whose prices are determined
by multiple Liu processes. In this case, we have a multifactor stock model in
which the bond price X; and the stock prices Y;; are determined by

dXt = T'Xtdt

- . (16.25)
dYy = eYiudt +»_ 03;V;ydCy, i = 1,2, ,m
j=1
where r is the riskless interest rate, e; are the log-drifts, o;; are the log-
diffusions, C}; are independent Liu processes, i = 1,2,--- ,m, j =1,2,--- ,n.
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Portfolio Selection

For the multifactor stock model (16.25), we have the choice of m+ 1 different
investments. At each time t we may choose a portfolio (8, S1t, - - , Bme) (i€,
the investment fractions meeting 8y + 81t + - - - + Bme = 1). Then the wealth
Z,; at time t should follow the uncertain differential equation

AZ =B Zedt + Y eiBiuZedt + > > 0B ZdCj. (16.26)
i=1 i=1 j=1

That is,

t m n t m
Zt = ZO exp(rt) exp / Z(ez — r)ﬁisds + Z/ Z O'ij/Bistjs
0 ;=1 j=170 =1

Portfolio selection problem is to find an optimal portfolio (8¢, S1¢, - » Bmt)
such that the wealth Z is maximized in the sense of expected value.

No-Arbitrage
The stock model (16.25) is said to be no-arbitrage if there is no portfolio

(Bt, Bity -+ » Bmt) such that for some time s > 0, we have

M{exp(—rs)Zs > Zp} =1 (16.27)
and

M{exp(—rs)Zs > Zp} >0 (16.28)

where Z; is determined by (16.26) and represents the wealth at time .

Theorem 16.7 (Yao’s No-Arbitrage Theorem [248]) The multifactor stock
model (16.25) is no-arbitrage if and only if the system of linear equations

011 012 - Oln T €1 —T
021 022 - O2 T2 ey — T
= ) (16.29)
Oml1 Om2 T Omn Tn Em — T
has a solution, i.e., (e1—r,ea—7r, -, ey,—r) is a linear combination of column
vectors (011,021, ,0m1), (012,022, - ,0m2), ***, (O1n, 020, s Omn)-

Proof: When the portfolio (8¢, B1t,- - - , Bmt) is accepted, the wealth at each
time ¢ is

t m n t m
Zt = Z() exp(rt) exp / Z(ez — T)ﬂist + Z/ Z oijﬂistjs
0 =1 j=170 =1
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Thus

t m n t m
ln(exp(—rt)Zt) —1In Zo = / Z(el — ’/‘)ﬂisds + Z/ Z aijﬁistjs
0 ;=1 j=170 =1

is a normal uncertain variable with expected value

/t zm:(ei —7)Bisds
0 =1

and variance )

ds

E / E 0:Bis
j=170 [|i=1

Assume the system (16.29) has a solution. The argument breaks down
into two cases. Case I: for any given time ¢ and portfolio (8, Sit, - , Bmt),

suppose
m

g 05 Bis
=1

W

m
Za-ijﬁis:()a j:1,2,"',n,5€(0,t}-
i=1

ds = 0.

Then

Since the system (16.29) has a solution, we have

m

> (ei—1)Bis =0, s€ (0,4
i=1
and D m
/ Z(ei —1)Bisds = 0.
0 =1

This fact implies that
In(exp(—rt)Z:;) —InZy =0

and
M{exp(—rt)Zy > Zp} = 0.

That is, the stock model (16.25) is no-arbitrage. Case II: for any given time
t and portfolio (8¢, B1t, -+ , Bmt), SUppOse

n t| m
E / E Uz‘jﬂis
j=170 |i=1

ds # 0.
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Then In(exp(—rt)Z;) — InZy is a normal uncertain variable with nonzero

variance and
M{In(exp(—7rt)Z;) —InZy > 0} < 1.
That is,
M{exp(—rt)Z > Zp} < 1

and the multifactor stock model (16.25) is no-arbitrage.
Conversely, assume the system (16.29) has no solution. Then there exist
real numbers aq, a9, - -, a,, such that

E

f:aijai =0, j=12,--
i=1

and

Z(ei —r)a; > 0.

i=1

Now we take a portfolio

B, Bt 1 Bmt) =1 — (a1 + s+ + ), 00,00, , Q).
Then
t m
In(exp(—rt)Z;) —In Zy = / Z(ei —r)a;ds > 0.
0 ‘=
Thus we have
M{exp(—rt)Z; > Zp} = 1.

Hence the multifactor stock model (16.25) is arbitrage. The theorem is thus
proved.

Theorem 16.8 The multifactor stock model (16.25) is no-arbitrage if its
log-diffusion matrix

011 012 O1n
021 022 O2n (16 30)
Om1 Om?2 tee Omn

has rank m, i.e., the row vectors are linearly independent.

Proof: If the log-diffusion matrix (16.30) has rank m, then the system of
equations (16.29) has a solution. It follows from Theorem 16.7 that the
multifactor stock model (16.25) is no-arbitrage.

Theorem 16.9 The multifactor stock model (16.25) is no-arbitrage if its
log-drifts are all equal to the interest rate r, i.e.,

e, =1, =12 ,m. (16.31)
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Proof: Since the log-drifts e; = r for any ¢« = 1,2, ,m, we immediately
have
(e —ryea —1, -+ yem — 1) = (0,0,---,0)

that is a linear combination of (011,021, ,0m1), (012,022, ,Om2), -+,
(01ny02n, s Omn). It follows from Theorem 16.7 that the multifactor stock
model (16.25) is no-arbitrage.

16.2 Uncertain Interest Rate Model

Real interest rates do not remain unchanged. Chen and Gao [21] assumed
that the interest rate follows an uncertain differential equation and presented
an uncertain interest rate model,

where m, a,o are positive numbers. Besides, Jiao and Yao [75] investigated
the uncertain interest rate model,

dXt = (m — aXt)dt + o4/ XtdC’t. (1633)

More generally, we may assume the interest rate X; follows a general uncer-
tain differential equation and obtain a general interest rate model,

dX, = F(t, X, )dt + G(t, X;)dC, (16.34)

where F' and G are two functions, and C} is a canonical Liu process.

Zero-Coupon Bond

A zero-coupon bond is a bond bought at a price lower than its face value
that is the amount it promises to pay at the maturity date. For simplicity,
we assume the face value is always 1 dollar. One problem is how to price a
zero-coupon bond.

Definition 16.13 Let X; be the uncertain interest rate. Then the price of a
zero-coupon bond with a maturity date s 1is

f=E {exp (— /0 Xtdt)] : (16.35)

Theorem 16.10 Let X' be the a-path of the uncertain interest rate Xi.
Then the price of a zero-coupon bond with maturity date s is

f= /01 exp (— /Os X?dt) da. (16.36)
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Proof: It follows from Theorem 15.17 that the inverse uncertainty distribu-
tion of time integral
/ Xt
0

U o) = / Xedt.
0

Hence the price formula of zero-coupon bond follows from Definition 16.13
immediately.

is

16.3 Uncertain Currency Model

Liu, Chen and Ralescu [152] assumed that the exchange rate follows an un-
certain differential equation and proposed an uncertain currency model,

dX; = uXdt (Domestic Currency)

dY; = vYidt (Foreign Currency) (16.37)

dZ; = eZydt + 0 Z;dC;  (Exchange Rate)
where X; represents the domestic currency with domestic interest rate u, Y;
represents the foreign currency with foreign interest rate v, and Z; represents
the exchange rate that is domestic currency price of one unit of foreign cur-

rency at time ¢. Note that the domestic currency price is Xy = Xgexp(ut),
the foreign currency price is Y; = Yp exp(vt), and the exchange rate is

Zy = Zyexp(et + oCh) (16.38)

whose inverse uncertainty distribution is

(16.39)

tv3
®; (o) = Zyexp (et—l—a;[lnlf()).

European Currency Option

Definition 16.14 A FEuropean currency option is a contract that gives the
holder the right to exchange one unit of foreign currency at an expiration
time s for K units of domestic currency.

Suppose that the price of this contract is f in domestic currency. Then
the investor pays f for buying the contract at time 0, and receives (Z; — K)™
in domestic currency at the expiration time s. Thus the expected return of
the investor at time 0 is

— f+exp(—us)E[(Zs — K)T]. (16.40)
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On the other hand, the bank receives f for selling the contract at time 0,
and pays (1 — K/Z,)" in foreign currency at the expiration time s. Thus the
expected return of the bank at the time 0 is

f —exp(—vs)ZoE[(1 — K/Z,)T]. (16.41)

The fair price of this contract should make the investor and the bank have
an identical expected return, i.e.,

— f+exp(—us)E[(Z; — K)t] = f — exp(—vs) ZoE[(1 — K/Z,)t]. (16.42)
Thus the European currency option price is given by the definition below.

Definition 16.15 (Liu, Chen and Ralescu [152]) Assume a European cur-
rency option has a strike price K and an expiration time s. Then the Euro-
pean currency option price s

1 1
f= 3 exp(—us)E[(Zs — K)T] + 3 exp(—vs)ZoE[(1 — K/Z,)T].  (16.43)
Theorem 16.11 (Liu, Chen and Ralescu [152]) Assume a European cur-

rency option for the uncertain currency model (16.37) has a strike price K
and an expiration time s. Then the European currency option price is

+
1
f:lexp(—us)/ (Zoexp <68+JS\/§ID a )K) da
2 0 s l-a

+
1 1
—&—5 exp(—vs)/ (Zo — K/exp (es + Mln 1 a )) da.
0

s —

Proof: Since (Zs — K)* and Zo(1 — K/Z)" are increasing functions with
respect to Z,, they have inverse uncertainty distributions

+
U a) = (Zoexp (es—i— asﬁln 1 a ) —K) ,

™ —

+
Tsl(a):(ZO—K/exp<es—|—US;/§In a )) ,

l1—«

respectively. Thus the European currency option price formula follows from
Definition 16.15 immediately.

Remark 16.5: The European currency option price of the uncertain cur-
rency model (16.37) is a decreasing function of K, u and v.

Example 16.5: Assume the domestic interest rate v = 0.08, the foreign in-
terest rate v = 0.07, the log-drift e = 0.06, the log-diffusion ¢ = 0.32, the ini-
tial exchange rate Zy = 5, the strike price K = 6 and the expiration time s =
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2. The Matlab Uncertainty Toolbox (http://orsc.edu.cn/liu/resources.htm)
yields the European currency option price

f=0.977.

American Currency Option

Definition 16.16 An American currency option is a contract that gives the
holder the right to exchange one unit of foreign currency at any time prior
to an expiration time s for K units of domestic currency.

Suppose that the price of this contract is f in domestic currency. Then
the investor pays f for buying the contract, and receives

sup exp(—ut)(Z; — K)* (16.44)
0<t<s

in domestic currency. Thus the expected return of the investor at time 0 is
—f+E| sup exp(—ut)(Z; — K)*|. (16.45)
0<t<s

On the other hand, the bank receives f for selling the contract, and pays

sup exp(—uvt)(1 — K/Z;)". (16.46)

0<t<s

in foreign currency. Thus the expected return of the bank at time 0 is

f—-E [ sup exp(—vt)Zy(1 — K/Zt)ﬂ . (16.47)
0<t<s

The fair price of this contract should make the investor and the bank have

an identical expected return, i.e.,

—f+E { sup exp(—ut)(Z; — K)*}
0<t<s

(16.48)

=f-FE [ sup exp(—uvt)Zp(1 — K/Zt)ﬂ .
0<t<s

Thus the American currency option price is given by the definition below.

Definition 16.17 (Liu, Chen and Ralescu [152]) Assume an American cur-
rency option has a strike price K and an expiration time s. Then the Amer-
ican currency option price 18

1 1
f==F| sup exp(—ut)(Z; — K)*‘} + E[ sup exp(—vt)Zo(1 — K/Z)"|.
2 |o<t<s 2 |o<t<s
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Theorem 16.12 (Liu, Chen and Ralescu [152]) Assume an American cur-
rency option for the uncertain currency model (16.37) has a strike price K
and an expiration time s. Then the American currency option price is

1/t otV/3 « "
f= 7/ sup exp(—ut) [ Zoexp | et + In - K| da
2 0 ™ ]. (6%

0<t<s

1! otV3. o« ’
+- / sup exp(—vt) (ZO — K/exp (et +——1n >> da.
2 Jo T 1-a

0<t<s

Proof: It follows from Theorem 15.13 that supg<, <, exp(—ut)(Z; — K)* and
SUPg< ;< eXp(—vt) Zo(1 — K/Z;)" have inverse uncertainty distributions

V3 -
U (a) = sup exp(—ut) (ZO exp (et L IVO @ ) _ K) ’
™

0<t<s l1—«

i
T;'(a) = sup exp(—ut) (ZO — K/exp <et + Ut\/gl a )) ,

n
0<t<s s 11—«

respectively. Thus the American currency option price formula follows from
Definition 16.17 immediately.

General Currency Model

If the exchange rate follows a general uncertain differential equation, then we
have a general currency model,

dX; = uX;dt (Domestic Currency)
dY; = vY;dt (Foreign Currency) (16.49)
dZ, = F(t, Zy)dt + G(t, Z;)dCy  (Exchange Rate)

where u and v are interest rates, F' and G are two functions, and C} is a
canonical Liu process.

Note that the a-path Z* of the exchange rate Z; can be calculated by some
numerical methods. Assume the strike price is K and the expiration time
is s. It follows from Definition 16.15 and Theorem 15.12 that the European
currency option price is

f= % / (exp(—us)(Z8 — K)* + exp(—vs) Zo(1 — K/Z¢)") da.
0

It follows from Definition 16.17 and Theorem 15.13 that the American cur-
rency option price is

1/
f= 7/ ( sup exp(—ut)(Zy — K)* + sup exp(—vt)Zo(1 — K/Zf)*‘) dao.
2 Jo \o<i<s 0<t<s
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16.4 Bibliographic Notes

The classical finance theory assumed that stock price, interest rate, and ex-
change rate follow stochastic differential equations. However, this preassump-
tion was challenged among others by Liu [134] in which a convincing paradox
was presented to show why the real stock price is impossible to follow any
stochastic differential equations. As an alternative, Liu [134] suggested to
develop a theory of uncertain finance.

Uncertain differential equations were first introduced into finance by Liu
[125] in 2009 in which an uncertain stock model was proposed and European
option price formulas were provided. Besides, Chen [13] derived American
option price formulas, Sun and Chen [218] verified Asian option price formu-
las, and Yao [248] proved a no-arbitrage theorem for this type of uncertain
stock model. It is emphasized that other uncertain stock models were also
actively investigated by Peng and Yao [182], Yu [259], and Chen, Liu and
Ralescu [19], among others.

Uncertain differential equations were used to simulate interest rate by
Chen and Gao [21] in 2013 and an uncertain interest rate model was pre-
sented. On the basis of this model, the price of zero-coupon bond was also
produced. Besides, Jiao and Yao [75] investigated another type of uncertain
interest rate model.

Uncertain differential equations were employed to model currency ex-
change rate by Liu, Chen and Ralescu [152] in which an uncertain currency
model was proposed and some currency option price formulas were also de-
rived for the uncertain currency markets. In addition, Shen and Yao [208]
discussed another type of uncertain currency model.



Appendix A

Probability Theory

It is generally believed that the study of probability theory was started by
Pascal and Fermat in the 17th century when they succeeded in deriving the
exact probabilities for certain gambling problem. After that, probability
theory was subsequently studied by many researchers. A great progress was
achieved when von Mises [226] initialized the concept of sample space in
1931. A complete axiomatic foundation of probability theory was given by
Kolmogorov [88] in 1933. Since then, probability theory has been developed
steadily and widely applied in science and engineering.

The emphasis in this appendix is mainly on probability measure, ran-
dom variable, probability distribution, independence, operational law, ex-
pected value, variance, moment, entropy, law of large numbers, conditional
probability, stochastic process, stochastic calculus, and stochastic differential
equation.

A.1 Probability Measure

Let 2 be a nonempty set, and let A be a o-algebra over (). Each element in A
is called an event. In order to present an axiomatic definition of probability,
the following three axioms are assumed:

Axiom 1. (Normality Aziom) Pr{Q} =1 for the universal set Q.

Axiom 2. (Nonnegativity Aziom) Pr{A} > 0 for any event A.

Axiom 3. (Additivity Aziom) For every countable sequence of mutually dis-
joint events A, As, - -+, we have

© Springer-Verlag Berlin Heidelberg 2015 365
B. Liu, Uncertainty Theory, Springer Uncertainty Research,
DOI 10.1007/978-3-662-44354-5
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Definition A.1 The set function Pr is called a probability measure if it sat-
isfies the normality, nonnegativity, and additivity axioms.

Example A.1: Let Q = {wy,ws, -}, and let A be the power set of Q.
Assume that p1, ps, -+ are nonnegative numbers such that p; +ps+--- = 1.
Define a set function on A as

Pr{d} =Y pi. (A.2)

w; EA
Then Pr is a probability measure.

Example A.2: Let ¢ be a nonnegative and integrable function on R (the
set of real numbers) such that

/ o(z)dz = 1. (A.3)
R

Define a set function on the Borel algebra as

Pr{A} = / ¢(x)dz. (A.4)
A
Then Pr is a probability measure.

Definition A.2 Let () be a nonempty set, let A be a o-algebra over ), and let
Pr be a probability measure. Then the triplet (2,.A, Pr) is called a probability
space.

Example A.3: Let Q = {w;y,ws, -}, let A be the power set of 2, and let Pr
be a probability measure defined by (A.2). Then (£2,.A,Pr) is a probability
space.

Example A.4: Let Q = [0,1], let A be the Borel algebra over 2, and let Pr
be the Lebesgue measure. Then (2, A, Pr) is a probability space. For many
purposes it is sufficient to use it as the basic probability space.

Theorem A.1 (Probability Continuity Theorem) Let (Q, A, Pr) be a proba-
bility space. If Ay, As,--- € A and lim;_, o, A; exists, then

lim Pr{4;} =Pr { lim Al} . (A.5)
1—00 71— 00
Proof: STEP 1: Suppose {A;} is an increasing sequence of events. Write

A; — A and Ag = 0. Then {A;\A4;_1} is a sequence of disjoint events and

k

G(Ai\Ai_l) =4, [JU\4i) =4

i=1 i=1
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for k=1,2,--- Thus we have

Pr{A} — Pr { ile(Ai\Ai_l)} _ i Pr{A,\A; 1}

k k
k—oc0 i=1 k—o0

i=1

= lim Pr{Ag}.
k—o0

STEP 2: If {A;} is a decreasing sequence of events, then the sequence
{A1\A4;} is clearly increasing. It follows that

Pr{A,} — Pr{A} = Pr {ilggo (Al\Ai)} = lim Pr{4;\4;}
=Pr{A4;} — lim Pr{A4;}
71— 00
which implies that Pr{4;} — Pr{A4}.

STEP 3: If {4;} is a sequence of events such that A; — A, then for each

k, we have
(A c Ax c | A
i=k i=k

Since Pr is an increasing set function, we have
Pr{m AZ} < Pr{4;} < Pr{U AZ} .
i=k i=k
Note that
NAita, Jala
i=k i=k

It follows from Steps 1 and 2 that Pr{A4;} — Pr{A}.

Product Probability

Let (Qg, Ak, Pry), k= 1,2,--- be a sequence of probability spaces. Now we
write

9291XQ2X"'7 A:Alelgx--~ (A6)

It has been proved that there is a unique probability measure Pr on the
product o-algebra A such that

Pr { lo_o[ Ak} = ﬁ PI‘k{Ak} (A7)
k=1 k=1
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where Ay, are arbitrarily chosen events from Ay for k = 1,2, - respectively.
This conclusion is called product probability theorem. Such a probability
measure is called product probability measure, denoted by

Pr="Pr; x Pry x --- (A.8)

Remark A.1: Please mention that the product probability theorem cannot
be deduced from the three axioms except we presuppose that the product
probability meets the three axioms. If I was allowed to reconstruct probability
theory, I would like to replace the product probability theorem with Axiom 4:
Let (Q, Ak, Pry) be probability spaces for k = 1,2, -+ The product probability
measure Pr is a probability measure satisfying

Pr { ﬁ Ak} = lo—o[ Prk{Ak} (Ag)
k=1 k=1

where Ay, are arbitrarily chosen events from Ay for k =1,2,---, respectively.
One advantage is to force the practitioners to justify the product probability
for their own problems.

Definition A.3 Assume (Q, Ar, Pry) are probability spaces fork =1,2,---
Let Q=Q1 x Qo x -+, A=A1 Xx Ay X --- and Pr = Pry Xx Pry x--- Then
the triplet (2, A, Pr) is called a product probability space.

Independence of Events

Definition A.4 The events Ay, A, -+, A, are said to be independent if

Pr { ﬁ AZ*} = ﬁ Pr{A;}. (A.10)

where AY are arbitrarily chosen from {A;,Q}, i = 1,2,--- ,n, respectively,
and <) is the sure event.

Remark A.2: Especially, two events A; and As are independent if and only
if
Pr{AlﬁAg} :PI'{Al} X PI‘{AQ} (A].l)

Example A.5: The impossible event () is independent of any event A because

Pr{dn A} =Pr{0} =0 = Pr{0} x Pr{A}.

Example A.6: The sure event € is independent of any event A because

Pr{2n A} = Pr{A} = Pr{Q} x Pr{A}.
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Theorem A.2 Let (Q, Ak, Pri) be probability spaces and Ay € Ay for k =
1,2,--- . n. Then the events

QX oo X Qg X A X Qg X oo X Qpy, k=1,2,---n (A.12)
are always independent in the product probability space. That is, the events
Ay, A, - A, (A.13)

are always independent if they are from different probability spaces.

Proof: For simplicity, we only prove the case of n = 2. It follows from
the product probability theorem that the product probability measure of the
intersection is

PI‘{(Al X Qg) n (Ql X AQ)} = PI‘{Al X AQ} = PI‘l{Al} X PI‘Q{AQ}.
By using Pr{4; x Q2} = Pr1{4;} and Pr{Q; x Ay} = Pra{As}, we obtain
PI{(Al X QQ) N (Ql X AQ)} = PI‘{Al X QQ} X Pr{Ql X AQ}

Thus A; x Q5 and 27 X A, are independent events. Furthermore, since A;
and As are understood as A; x €5 and € x As in the product probability
space, respectively, the two events A; and A are also independent.

A.2 Random Variable

Definition A.5 A random wvariable is a function from a probability space
(Q,A,Pr) to the set of real numbers such that {§ € B} is an event for any
Borel set B.

Example A.7: Take (9, A, Pr) to be {wy,ws} with Pr{w;} = Pr{ws} = 0.5.
Then the function
0, ifw=uw
§(w)—{ 1, ifw=ws

is a random variable.

Example A.8: Take (€, A, Pr) to be the interval [0, 1] with Borel algebra
and Lebesgue measure. We define ¢ as an identity function from [0, 1] to
[0,1]. Since ¢ is a measurable function, it is a random variable.

Definition A.6 Let&y, &, -+, &, be random variables on the probability space
(Q,A,Pr), and let [ be a real-valued measurable function. The

§=f(&1,8&2,,6n) (A.14)

1s a random variable defined by

5(0‘}) = f(gl(w)7§2(w)7 e afn(w))7 Vw € Q. (A15)
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Theorem A.3 Let &1,&,--- ,&, be random variables, and let f be a real-
valued measurable function. Then f(&1,&a, -+ ,&n) is a random variable.

Proof: Since £1,&s,- -+, &, are random variables, they are measurable func-
tions from a probability space (£2,.A,Pr) to the set of real numbers. Thus
f(&1,&2,-+- , &) is also a measurable function from the probability space
(2, A,Pr) to the set of real numbers. Hence f(&1,&2, - ,&,) is a random
variable.

A.3 Probability Distribution

Definition A.7 The probability distribution ® of a random variable & is
defined by

O(x) =Pr{{ < x} (A.16)

for any real number x.
That is, ®(x) is the probability that the random variable ¢ takes a value less

than or equal to z. A function ® : 8 — [0, 1] is a probability distribution if
and only if it is an increasing and right-continuous function with

xEIPoo O(z) =0; 111)11100 O(z) =1. (A.17)

Example A.9: Take (2, A, Pr) to be {wy,ws} with Pr{w;} = Pr{ws} = 0.5.
We now define a random variable as follows,

R
Then ¢ has a probability distribution
0, ifz<0
P(x)=< 05, f0<z<l1
1, ifz>1.

9

Definition A.8 The probability density function ¢: R — [0,400) of a ran-
dom variable £ is a function such that
o) = [ o)y (A1

holds for any real number x, where ® is the probability distribution of the
random variable €.

Theorem A.4 (Probability Inversion Theorem) Let £ be a random variable
whose probability density function ¢ exists. Then for any Borel set B, we
have

M&eB%aéwww. (A.19)
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Proof: Assume that € is the class of all subsets C of & for which the relation
Pr(¢ e Ch= [ olu)dy (A.20)
c

holds. We will show that C contains all Borel sets. On the one hand, we
may prove that C is a monotone class (if A; € C and A; T A or A; | A, then
A € @). On the other hand, we may verify that € contains all intervals of the
form (—o0, a], (a,b], (b,00) and @ since

Pr{¢ € (—o0,a]} = ®(a / #(y)dy,

—+o0
Pr{¢ € (b +00)} = ®(+00) — B(D) = / H(y)dy,
b
Pr{€ € (a,b]} = B(b) - D(a) = / $(y)dy,
Pr{¢ e /gb

where ® is the probability distribution of £. Let F be the algebra consisting of
all finite unions of disjoint sets of the form (—oo, a], (a,b], (b, 00) and (. Note
that for any disjoint sets C1,Cs, -+ ,Cyy of Fand C =C1UC U --- U Cp,
we have

PriceCy =Y PriceCyy =3 [ oty = [ sy
j=1 j=17Cj

That is, C € C. Hence we have F C €. Since the smallest o-algebra contain-
ing F is just the Borel algebra, the monotone class theorem (if ¥ C € and
o(F) is the smallest o-algebra containing F, then o(F) C €) implies that C
contains all Borel sets.

Definition A.9 A random variable £ has a uniform distribution if its prob-
ability density function is

¢(m)=b_a, a<z<b (A.21)

where a and b are real numbers with a < b.

Definition A.10 A random variable & has an exponential distribution if its
probability density function is

() =+ exp (—m> . x>0 (A.22)

where B is a positive number.
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Definition A.11 A random variable £ has a normal distribution if its prob-
ability density function is

o2 202

o(z) = L exp (—("T_“)Q> , —oo<x< 400 (A.23)

where p and o are real numbers with o > 0.

Definition A.12 A random wvariable £ has a lognormal distribution if its
logarithm is normally distributed, i.e., its probability density function is

1 Inz — p)?
P(x) = mexp (—W) , >0 (A.24)

where p and o are real numbers with o > 0.

A.4 Independence

Definition A.13 The random wvariables &1,&2,--- , &, are said to be inde-
pendent if

Pr { & e Bi)} = [[Pr{s € B:} (A.25)
=1 i=1

for any Borel sets By, By, -+, By,.

Example A.10: Let £ (w1) and &2(w2) be random variables on the probabil-
ity spaces (1,41, Pr1) and (Q9, A, Pra), respectively. It is clear that they
are also random variables on the product probability space (91,41, Pr1) X
(Q2, Az, Pra). Then for any Borel sets B; and B, we have

Pr{(& € B1) N (& € Bs)}
= Pr{(wi,w2) [&1(w1) € By, &a(w2) € Ba}
= Pr{(wi[&(w1) € B1) X (w2|&2(w2) € Ba)}
= Pry {w1 |&1(w1) € B1} X Pro {ws | & (we) € Ba}
=Pr{¢ € B1} x Pr{& € Bo}.
Thus &; and & are independent in the product probability space. In fact, it

is true that random variables are always independent if they are defined on
different probability spaces.

Theorem A.5 Let &1,&,--- ,&, be independent random variables, and let

f1, fo, -+, fn be measurable functions. Then fi1(&1), fa(&), -+, fn(&n) are
independent random variables.
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Proof: For any Borel sets By, Bs,--- , By, it follows from the definition of
independence that

{ﬂ (fi(&) € By) } r{ﬂ(&efﬁ(&))}

i=1
n

= [[pPr{gie st }—HPr{ﬁ &) € By}

=1 =1

Thus f1(&1), f2(&2), -+, fn(&n) are independent random variables.

A.5 Operational Law

Theorem A.6 Let&y,&o, -+, &, be independent random variables with prob-

ability distributions ®1,®q,--- , ®,, respectively, and let f : R* — R be a
measurable function. Then the random variable
ng(é-lvééa"' 7§n) (A26)

has a probability distribution
B(x) = / 4Dy (21) A (5) - - - ADy (1), (A.27)
f(z1,z2 Tn) <z

Proof: It follows from the additivity axiom of probability measure and the
independence of the random variables £1,&5,- -+ , &, that

(I)(.’I,‘) = Pr{f(flvf% T 7£’ﬂ) < .1?}

:/ Pro((zi < & < @i+ da)
f(z1,x2, xn)<z .

i=1
= / l_IPr{:z:z <& <w;+da;}
fz1,x2, 20 )<z ;1
_ / (@i (i + das) — ;(a2)
f(@1,@2, zn)<z ;1
_ / 4B, (21)dDs (22) - - - A (1),
f(z1,22, 2n)<z

The theorem is proved.

Remark A.3: If &1,&, -+ , &, have probability density functions ¢1, ¢o, - - -,
¢n, respectively, then & = f(&1,8&,- -+ ,&,) has a probability distribution

O(z) = / d1(x1)Pa(22) - - o (xp)dardes - - - dayy (A.28)
f(z1,22 Tn) <z
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because d®;(x;) = ¢;(x;)dx; for i =1,2,---  n.

Exercise A.1: Let &,&, - ,&, be independent random variables with
probability distributions ®q, @5, --- , ®,, respectively. Show that the sum
E=6+&+ 46 (A.29)

has a probability distribution

d(x) = / d®q (z1)dPa(z2) - - - APy, (). (A.30)
z1+x2+ -+, <z

Especially, let &; and & be independent random variables with probability
distributions ®; and ®,, respectively. Then £ = & + & has a probability
distribution

—+o0
ba) = [ @io - y)da) (A31)
that is called the convolution of ®; and 5.
Exercise A.2: Let &1,&, -+ ,&, be independent random variables with
probability distributions ®1, ®5,--- , P, respectively. Show that the max-
imum
§:€1v€2\/"'\/§n (A32)
has a probability distribution
O(z) = 1 (x)Pa(x) - - Pp (). (A.33)
Exercise A.3: Let &1,&, -+ ,&, be independent random variables with
probability distributions ®1, ®o, .-, ®,,, respectively. Show that the min-
imum
E=& NN N (A.34)
has a probability distribution
D(z) =1 - (1= P1(2))(1 — 2(x)) -+ (1 = Pp(2)). (A.35)

Operational Law for Boolean System

Theorem A.7 Assume that 1,8, , &, are independent Boolean random
variables, i.e.,

(A.36)

¢ = 1 with probability a;
"] 0 with probability 1 — a;

fori=1,2,--- n. If f is a Boolean function, then & = f(&1,&2,-+ ,&n) is a
Boolean random variable such that

Pr{¢ =1} = Z < Hi(l“i)) f(@1, 20, 2y) (A.37)

(z1,22, ,,)€{0,1}
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where

a;, ’if.’L'Z‘Zl
i(Zi) = . A.38
pi(a) {1_% oo (4.38)

fori=1,2,--- n.

Proof: It follows from the additivity axiom of probability measure and the
independence of the random variables &1, &s, - , &, that

Pr{{ =1} = > Pr{ﬂ(fz‘zwi)}f(f(zl,@w"an):l)

(z1,22, - ,xn)€{0,1}" i=1

= Z (H Pr{¢& = $Z}> f(xy, w2, 1)

(z1,22,,20)€{0,1}™ \i=1

= Z ( Mz‘(%‘)) flxy, @, @)

(z1,22, ,2,)€{0,1}"

where I(+) is the indicator function. The theorem is proved.

Exercise A.4: Let &,&, -+, &, be independent Boolean random variables
defined by (A.36). Show that
E=GNEN N, (A.39)
is a Boolean random variable such that
Pr{{ =1} =a1az- - an. (A.40)
Exercise A.5: Let £1,&, -+, &, be independent Boolean random variables
defined by (A.36). Show that
§=& V&V VE, (A.41)
is a Boolean random variable such that
Pr{i{=1}=1-(1-a)(1 —az) --(1—ay). (A.42)
Exercise A.6: Let £1,&5, -+, &, be independent Boolean random variables
defined by (A.36). Show that
¢ = k-max [&,8, -, &) (A.43)

is a Boolean random variable such that

Prig=1}= Y ( m(mi)> kema o1, @3, 0] (A44)
i=1

(z1,22, ,xn)€{0,1}"

where

iy if Z:1
uim)—{la T (i=1,2---,n).  (Ad5)



376 APPENDIX A - PROBABILITY THEORY

A.6 Expected Value

Definition A.14 Let £ be a random variable. Then the expected value of &
s defined by

“+oc0 0
E[¢] = /o Pr{{ > r}dx —/ Pr{¢{ < z}dx (A.46)

— 00

provided that at least one of the two integrals is finite.

Exercise A.7: Assume that £ is a discrete random variable taking values x;
with probabilities p;, i = 1,2, -+ ,m, respectively. Show that

El¢] = Zpil‘i-
i=1

Theorem A.8 Let € be a random variable with probability distribution ®.
Then

“+o0 0
E[¢] = /0 (1—®(x))dx — / O (x)dz. (A.47)

— 00

Proof: It follows from the probability inversion theorem that for almost all
numbers z, we have Pr{¢ > 2} =1 — ®(z) and Pr{¢ < 2} = ®(z). By using
the definition of expected value operator, we obtain

B = [ Priezaar- [ Prie<ajas

—o0
+o00o 0
= / (1—®(x))dx — / O(x)d.
0 —o0
The theorem is proved.
Theorem A.9 Let & be a random variable with probability distribution ®.
Then

+o0
Elg] = / xd®(x). (A.48)

— 00

Proof: It follows from the integration by parts and Theorem A.8 that the
expected value is

+o00o 0
Ele] :/0 (1_q>(x))dx—/ (x)dz

— 0o

:/0+Ooxd<1>(x)+/0 xd@(x):/Jrooxd‘I)(x).

— 00 — 00
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The theorem is proved.

Remark A.4: Let ¢(x) be the probability density function of £. Then we

immediately have
—+o0

Ele] = /_ 26(x)da (A.49)

because d®(z) = ¢(x)dx.

Theorem A.10 Let & be a random wvariable with regular probability distri-
bution ®. Then

1
E[¢) = /0 & !(a)da. (A.50)

Proof: Substituting ®(x) with o and x with ®~1(«a), it follows from the
change of variables of integral and Theorem A.8 that the expected value is

El¢] = /m rd®(z) = /01 & Ha)da.

— 00
The theorem is proved.

Theorem A.11 Let&y,&s,--- , &, be independent random variables with prob-
ability distributions ®1,®q,--- , ®,, respectively, and let f : R* — R be a
measurable function. Then & = f(&1,&2, -+ , &) has an expected value

E[¢] = - flx1, 22, -, 2n)d Py (z1)dPo(z2) - - - APy, (). (A.51)

Proof: It follows from the operational law of random variables that & has a
probability distribution

flz1,2, - 2n) <z

= [ 1 ra ) < )8 (A (oa) -4 ()
where I(-) is the indicator function. Furthermore, we have
do(z) = / dI(f(z1, 22, ,xn) < 2)dPq(21)dPs(x2) - - - APy (2,).
It follows from Theorem A.9 that

+oo
BU©) = [ o [ A1 ma ) < )@ o)d0a(ra) A (o)

= /TL/Jroode(f(sm,xg, comy) < 2)d®y (21)dPo(22) - - A, (24)

= o flar,xe, -+ xn)dPy (21)dPa(22) - - - APy (24,).
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The theorem is proved.

Theorem A.12 Let&q,&o, -+, &, be independent random variables with prob-
ability density functions ¢1, ¢a,- -+ , On, respectively, and let f: R" — R be a
measurable function. Then & = f(&1,&2,- -+ , &) has an expected value

E[¢] = - flxr,xa, - yxn)d1(x1)d2(22) - - Pp(p)drrday - - - day,. (A52)

Proof: It follows from d®;(x;) = ¢i(x;)dx;, ¢ = 1,2,--- ,n and Theo-
rem A.11 immediately.

Theorem A.13 Let £ and n be independent random wvariables with finite
expected values. Then

E[¢n] = E[E]E[n). (A.53)

Proof: Let £ and 1 have probability distributions ® and W, respectively. It
follows from Theorem A.11 that

+oo +oo
Elen) = / / ryd®(2)d T (y)
+oo

+oo
— [ wdv) [ yavty) = EED).
The theorem is verified.

Theorem A.14 Let £ and n be random variables with finite expected values.
Then for any numbers a and b, we have

Ela& + bn] = aE[] 4+ bE[n). (A.54)

Proof: STEP 1: We first prove that E[¢ +b] = E[£] + b for any real number
b. When b > 0, we have
0

E[f—l—b]:/oooPr{f—i—bzx}dx—/ Pr{¢ +b < x}dzx

— 0o

e’} 0
= / Pr{¢ >z —b}dx — / Pr{¢ <z —b}dx
0 o)

b
:E[§]+/O (Pr{¢ >z — b} + Pr{€ <z — b)) da
— El¢] +b.

If b < 0, then we have

EE+H:EEL14(Pd§2x—M+Pﬂ§<m—bD¢w:Em+b
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STEP 2: We prove that E[aé] = aF[¢] for any real number a. If a = 0,
then the equation E[af] = aE[£] holds trivially. If a > 0, we have

[eS) 0
Elaé] :/0 Pr{a& > z}dx —/ Pr{a¢ < z}dx

/OooPr{§ZZ}dx/OooPr{§§ s
—a [TeefeztYa(d) <o [ er{est)a()
= aL[¢].

If a < 0, we have

Flag] = /0 " Pr{ag > a}ds — / " Pr{at < 2)da

—00

:/OOOPr{§<Z}dx—/_O Pr{gzg}dx

[ ZJa) o [ eefe=2)a(2)

= aE[¢].

oo

STEP 3: We prove that E[{ + n] = E[¢] + E[n] when both ¢ and n

are nonnegative simple random variables taking values ai,as,--- ,a, and
b1,ba, - , by, respectively. Then £ + 7 is also a nonnegative simple random
variable taklng values a; +b;,1=1,2,---,m, j=1,2,--- ,n. Thus we have
Elg+n] = Zl Zl(aﬂrb ;) Pr{¢ = ai,n = b;}
i=17=
= 2312 a; Pr{¢ = a;,n=1"; }—|—Z Zb Pr{¢ =a;,n=1b;}
i=1j=1 i=1j=
= > a;Pr{¢ =ai} + Eb Pr{n=1b;}

.
Il
-

I
S|
m,
_|_
=
=)

STEP 4: We prove that E[¢ + n] = F[§] + E[n] when both & and 7 are
nonnegative random variables. For every ¢ > 1 and every w € (), we define

k-1 k-1

i

§i(w) = 2 2

i, if i <&(w),

k .
Sg(w)<§7k:172a 7i2l
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k-1 k—1
LT
2t A

i, ifi < nw).

Then {&}, {m:} and {& + n;} are three sequences of nonnegative simple
random variables such that & 1 &, n; Tnand & +n; T&+n as ¢ — co. Note
that the functions Pr{¢; > x}, Pr{n; > =}, Pr{§ +mn >z}, i =1,2,--- are
also simple. It follows from the probability continuity theorem that

Pr{¢ >z} tPr{{ >z}, V2 >0

k .
SU(W)< 77k:1527"' 7i21
ni(w) = 2

as i — oo. Since the expected value E[¢] exists, we have

+oo +oo
Ele] = / Pr{¢, > o}dr — / Pri¢ > z}de = E¢]
0 0
as i — oco. Similarly, we may prove that E[n;] — E[n] and E[{;+n;] — E[{+n]
as i — oco. It follows from Step 3 that E[§ + n] = E[§] + E[n).

STEP 5: We prove that E[¢ +1n] = E[£] + E[n] when £ and 7 are arbitrary
random variables. Define

&(w)z{ e T = m(w):{ W), i) = i

—i, otherwise, —i, otherwise.
Since the expected values E[¢] and E[n] are finite, we have
lim Ble] = Ble). lim Bln) = Blrl.  m Bl + ] = Bl + 1)

1—>00
Note that (&; +¢) and (n; + ¢) are nonnegative random variables. It follows
from Steps 1 and 4 that

E[¢ + 1)

Jim & + ni]

Jim (E[(& + 1) + (m + )] — 20)
Jim (B[&; + 4] + Eln; + 1] — 2i)
Jim (El&G] + i+ Bl + 1 — 20)
= lli}goE[fJ + il_if&E[m]

= E[¢] + Enl.

STEP 6: The linearity E[a& + bn] = aF[¢] + bE[n] follows immediately
from Steps 2 and 5. The theorem is proved.

Theorem A.15 Let & be a random variable, and let t be a positive number.
If E[|€]'] < oo, then
lim 2’ Pr{|¢| > 2} = 0. (A.55)
Tr—00

Conwversely, let £ be a random variable satisfying (A.55) for somet > 0. Then
E[€]*] < oo for any 0 < s < t.
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Proof: It follows from the definition of expected value that

E(eft] = / Pr{El > rdr < oo,

Thus we have -

lim Pr{|¢|" > r}dr = 0.
2

T—00 zt/

The equation (A.55) is proved by the following relation,

/oo Pr{l¢[t > r}dr > /T/Q Pr{|¢|" > r}dr > %wt Pr{|¢]| > «}.

1/2
Conversely, if (A.55) holds, then there exists a number a such that
o' Pr{l¢| > 2} <1, Vz>a.

Thus we have

a +OO
Bl = [ Peiler 2 ryars [ Prer = ryar
a +DO
s s—1
< [Tertgr = s [ tee 2 ar
a +OO
S s—t—1
< [Tertgrzarss [t

< 4-o00. (by/ rPdr < oo for anyp<1)
0

The theorem is proved.

Example A.11: The condition (A.55) does not ensure that E[|{|"] <

We consider the positive random variable

. 2i . . 1 .
&= \/7 with probability 50 1=1,2,---
i 1

It is clear that

t
2n 1 2
. t _ . t _ . _
th ' Pr{{ >z} = lim < ) E 5= lim — =0.

n—oo

However, the expected value of £ is

Q.
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Theorem A.16 Let & be a random wvariable, and let f be a nonnegative
function. If f is even and increasing on [0,00), then for any given number
t > 0, we have

Pr{l¢] > ) < Eﬁ;’;ﬁf” (A.56)

Proof: It is clear that Pr{|¢| > f~!(r)} is a monotone decreasing function
of r on [0,00). It follows from the nonnegativity of f(§) that

+00 Foo
E[f(6)] = /O Pr{f(¢) > x}da = /0 Pr{le] > /' (a)}de

I(

f#) t)
-1 -1
> /O Pr{l¢| > f~ (2)}dx > /0 Pr{[¢[ > f(f(¥))}dx

f(@®)
— [ Pelle) 2 the = (0 a{le] 2 1)
0
which proves the inequality.

Theorem A.17 (Markov Inequality) Let & be a random variable. Then for
any giwen numbers t > 0 and p > 0, we have
E¢]7]

Pr{le > 1} < = (A57)

Proof: It is a special case of Theorem A.16 when f(z) = |z|P.

A.7 Variance

Definition A.15 Let £ be a random variable with finite expected value e.
Then the variance of & is defined by V[£] = E[(£ — e)?].

Since (£ — €)? is a nonnegative random variable, we also have

+oo
V¢ = / Pr{(¢ —e)? > x}da. (A.58)
0
Theorem A.18 If € is a random variable whose variance exists, and a and

b are real numbers, then V]a& + b] = G2V[ﬂ-

Proof: Let e be the expected value of £&. Then E[a& +b] = ae +b. It follows
from the definition of variance that

Viaé +b] = E [(a& + b— ae — b)*] = ®E[(§ — e)?] = a*V[¢].

Theorem A.19 Let £ be a random wvariable with expected value e. Then
V[l = 0 if and only if Pr{{ = e} = 1. That is, the random variable £ is
essentially the constant e.
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Proof: We first assume V[¢] = 0. It follows from the equation (A.58) that

+oo
/ Pr{(¢ —e)?>z}dz =0
0
which implies Pr{(¢ — e)? > 2} = 0 for any z > 0. Hence we have

Pr{(¢ —e)* =0} =1.

That is, Pr{¢ = e} = 1. Conversely, assume Pr{{ = e}
immediately have Pr{(¢ —e)? = 0} = 1 and Pr{(¢£ —¢)? >
2 > 0. Thus

= 1. Then we
x} = 0 for any
+oo
Vi = / Pr{(¢ —e)* > z}dz = 0.
0
The theorem is proved.

Theorem A.20 If &1,&, -+, &, are independent random variables with fi-
nite variances, then

VG +&+ -+ &) =V[a] + ViG] +- -+ V[E] (A.59)

Proof: Let &,&, -+, &, have expected values e, es, - ,e,, respectively.
Then we have

El§i+ &+ +&]=e1+ea+ - +en.

It follows from the definition of variance that

|4 Z&] =) E[&—e)] +2 i: D E[&—e)& —e)l
i=1 i=1 i=1 j=i+1

Since &1, &2, - -+ , &, are independent, E [(§; — ¢€;)(§; — ;)] = 0 for all 4, j with
i # j. Thus (A.59) holds.

Theorem A.21 (Chebyshev Inequality) Let £ be a random variable whose
variance exists. Then for any given number t > 0, we have

1413
Pr{le - Blell 2 1) < ) (A.60
Proof: It is a special case of Theorem A.16 when the random variable £ is

replaced with £ — E[¢], and f(x) = 2%

Theorem A.22 (Kolmogorov Inequality) Let &1,&s,- -+ ,&, be independent
random variables with finite expected values. Write S; = & + &+ -+ +&; for
each i > 1. Then for any given number t > 0, we have

Pr{ max |S; — E[S;]| > t} < V}Ef"]. (A.61)

1<i<n
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Proof: Without loss of generality, assume that E[¢;] = 0 for each i. We set
Al = {‘Sl| Z t}? A’L = {|S_7| < t?] = 1727"' 77; - 17 and |Si| Z t}

for i =2,3,--- ,n. It is clear that

A= { max |S;| > t}
1<i<n

is the union of disjoint sets Ay, Ay, -+, A,. Since E[S,] = 0, we have

+oo n +oo
VI[Sn] = / Pr{S2 > r}dr > Z/ Pr{(S;>r)nA,}dr. (A62)
0 =10
Now for any k& with 1 < k < n, it follows from the independence that
+oo
/ Pr{(Sizr)ﬂAk}dr

0

+oo
= [P (S g+ 62 2 N A
0

—+oo
:/ Pr{(Sp+ &1+ +& >r)NA,}dr
0

n

123 Bl SIE) S Pr{AqBlGIEE]

J=k+1 J#LgI=k+1

+oo

2/ Pr{(Sﬁzr)ﬂAk}dr
0

> 2 Pr{Ax}.

Using (A.62), we get
VIS, > t? Z Pr{A;} = t* Pr{A}
i=1

which implies that the Kolmogorov inequality holds.

Theorem A.23 Let £ be a random variable with probability distribution ®
and expected value e. Then

+oo
Ve = /0 (1 —®(e+ Va)+ (e — Va))da. (A.63)
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Proof: It follows from the additivity of probability measure that the variance
is

+oo
Vig= [ Prie—ef 2 o)
+o0
= [Pz e+ v U < Vi
+oo
= [ Priez e v+ Pr{E < - Vo

—+oo
:/ (1—®(e+ V) + (e — Vr))da.
0
The theorem is proved.

Theorem A.24 Let & be a random variable with probability distribution ®
and expected value e. Then

—+oo

V¢ = / (z — e)%d®(z). (A.64)

— 00

Proof: For the equation (A.63), substituting e + /7y with  and y with
(x — €)?, the change of variables and integration by parts produce

+o0 +oo Foo
/0 (1—<I>(e+\/§))dy:/ (1—<I>(:c))d(x—e)2:/ (2 — ¢)2dd(2).

2

Similarly, substituting e — ,/y with x and y with (z — e)?, we obtain

/Om Ole— Vy)dy = /eoo O(z)d(z —e)® = / (z — €)2dd ().

It follows that the variance is
+oo e +oo
Vie = / (2 — ¢)2dd(z) + / (2 — ¢)2dd(z) / (2 — ¢)2dd(x).
e — 00 — 00
The theorem is verified.

Remark A.5: Let ¢(z) be the probability density function of £. Then we
immediately have

+oo
V¢ = / (x —e)?¢(x)dz. (A.65)

— 00

because d®(z) = ¢(x)dx.

Theorem A.25 Let & be a random variable with regular probability distri-
bution ® and expected value e. Then

1
V[g]:/o (@ ) — e)?da. (A.66)
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Proof: Substituting ®(x) with « and = with ®~1(«), it follows from the
change of variables of integral and Theorem A.24 that the variance is

“+oc0 1
Vg = / (x — e)zdé(x) = /0 (<I>*1(a) - e)2da.

—0o0

The theorem is verified.

A.8 Moment

Definition A.16 Let £ be a random variable, and let k be a positive integer.
Then E[¢*] is called the kth moment of &.

Theorem A.26 Let & be a random variable with probability distribution @,
and let k be an odd number. Then the k-th moment of £ is

0

+o0
B = [ a-emae- [ emi Ao

— 00

Proof: Since k is an odd number, it follows from the definition of expected
value operator that

+oo 0
E[¢¥] = /O Pr{¢* > z}dx — / Pr{¢* < z}dz

— 00

-/ b > Yajdr - / OOO Pr{¢ < {/ahda

:/0+°°(1_q><w))dx_/o () da.

—00

The theorem is proved.

Theorem A.27 Let & be a random variable with probability distribution @,
and let k be an even number. Then the k-th moment of £ is

+oo
Bt = [ 0= 0(ya) + o= )i (A.68)
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Proof: Since k is an odd number, £ is a nonnegative random variable. It
follows from the definition of expected value operator that

+oo
B = [ Peleh > ajas
+oo
= [ Prtez vp e < -V
+oo
= [ etz m) e < —Vapar

+o00o
- [ a-aym + e .
0
The theorem is verified.

Theorem A.28 Let £ be a random variable with probability distribution @,
and let k be a positive integer. Then the k-th moment of € is

El¢¥) = / o 28 (x). (A.69)

— 00

Proof: When k is an odd number, Theorem A.26 says that the k-th moment

1S
0

—+oo
Bt = / (1 - &(/7)dy - / D(7)dy.

—00
Substituting {/y with x and y with 2%, the change of variables and integration
by parts produce

+o00 +oo +o0
_ k — — x xk: l‘k X
/0 (1 - &(¢/7)dy / (1- &(x))d / a®(z)

and

/O @(W)dy:/o @(x)dxkz—/o 25 dB(z).

— 00 — 00 —00

Thus we have

B¢ :/O+Ooxkd<l>(m)+/0 xkdq>(x)=/+ooxkdq>(x).

— 00 — 00

When £k is an even number, Theorem A.27 says that the k-th moment is

+oo
"] = / (1 - ®(/5) + B(~ /7))dy.

Substituting {/y with x and y with 2% the change of variables and integration
by parts produce

+00 Foo Hoeo
— k = — x xk: xk xZ).
/0 (1 - ®(¢7))dy / (1- &(z))d / 1)
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Similarly, substituting — {/y with x and y with z*, we obtain

/;Oo @(—w)dy—/o (ID(x)dxk—/o 2Fdd(z).

It follows that the k-th moment is
+oo 0 “+oco
E[¢¥) = / 2Fd(x) +/ 2Hdd(x) = / kA (z).
0 —0 oo
The theorem is thus verified for any positive integer k.

Theorem A.29 Let & be a random variable with reqular probability distri-
bution @, and let k be a positive integer. Then the k-th moment of € is

E[¢¥) = /0 (@ a))*da. (A.70)

Proof: Substituting ®(z) with o and z with ®~1(a), it follows from the
change of variables of integral and Theorem A.28 that the k-th moment is

+oo 1
E[g’f}:/ xkdd)(x):/o (@ Ha))*da.

—00

The theorem is verified.

A.9 Entropy

Given a random variable, what is the degree of difficulty of predicting the
specified value that the random variable will take? In order to answer this
question, Shannon [205] defined a concept of entropy as a measure of uncer-
tainty.

Definition A.17 Let & be a random variable with probability density func-
tion ¢. Then its entropy is defined by

+oo
H[¢) = —/ ¢(z) In ¢(z)dz. (A.71)

— 0o

Example A.12: Let £ be a uniformly distributed random variable on [a, b].
Then its entropy is H[¢] = In(b — a). This example shows that the entropy
may assume both positive and negative values since In(b—a) < 0ifb—a < 1;
and In(b—a) >0ifb—a > 1.

Example A.13: Let £ be an exponentially distributed random variable with
expected value 8. Then its entropy is H[{] =1+ Inj3.

Example A.14: Let £ be a normally distributed random variable with
expected value e and variance 2. Then its entropy is H[¢] = 1/2+ Inv/270.
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Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible probability distributions. For this case, we would
like to select the distribution that maximizes the value of entropy and satisfies
the prescribed constraints. This method is often referred to as the mazimum
entropy principle (Jaynes [70]).

Example A.15: Let £ be a random variable on [a,b] whose probability
density function exists. The maximum entropy principle attempts to find
the probability density function ¢(z) that maximizes the entropy

b
- [ o) ooz

subject to the natural constraint fj ¢(x)dz = 1. The Lagrangian is

L= —/ab¢>(x)1n¢(x)dx—A (/aquﬁ(x)dx— 1) .

It follows from the Euler-Lagrange equation that the maximum entropy prob-
ability density function meets

Inp(z)+1+A=0

and has the form ¢(z) = exp(—1 — A). Substituting it into the natural
constraint, we get
1

¢*(;v):b_a, a<z<b

which is just a uniform probability density function, and the maximum en-
tropy is H[¢*] = In(b — a).

Example A.16: Let £ be a random variable on (—o0, +00) whose probability
density function exists. Assume that the expected value and variance of £ are
prescribed to be p and o2, respectively. The maximum entropy probability
density function ¢(x) should maximize the entropy

+oo
- [ oo
subject to the constraints

/m $(z)dz = 1, /m zé(z)dz = p, /m(x P (e)dx = o2,

— 00 — 00 — 00
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The Lagrangian is

L—-— / T ) n g — A, ( :o (z)dz — 1)

W (/j 26 (x)dz — N) Y (/:O(x — W)2é(x)dz — 02> .

The maximum entropy probability density function meets Euler-Lagrange
equation

Iné(z) + 1+ A+ daz + Ng(x — ) =0

and has the form ¢(z) = exp(—1 — A1 — Aoz — A3(x — p)?). Substituting it
into the constraints, we get

¢ (@) = — exp(—W), e

N

which is just a normal probability density function, and the maximum entropy
is H[¢*] =1/2 + Inv270.

A.10 Random Sequence
Random sequence is a sequence of random variables indexed by integers. This
section introduces four convergence concepts of random sequence: conver-

gence almost surely (a.s.), convergence in probability, convergence in mean,
and convergence in distribution.

Table A.1: Relations among Convergence Concepts

Convergence Almost Surely
N\, Convergence N Convergence

Convergence in Mean /4 in Probability in Distribution

Definition A.18 The random sequence {&;} is said to be convergent a.s. to
& if and only if there exists an event A with Pr{A} =1 such that

Jim [€(w) — €(w)] =0 (A.72)

for every w € A. In that case we write §; — &, a.s.
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Definition A.19 The random sequence {&;} is said to be convergent in prob-
ability to & if
lim Pr{j& — € > <} =0 (A.73)
11— 00

for every e > 0.

Definition A.20 The random sequence {&;} is said to be convergent in mean
to & if
lim E[|¢; — &[] = 0. (A.74)
1—> 00

Definition A.21 Let ®, &, Py, -+ be the probability distributions of ran-
dom variables £,&1,&a, -+, respectively. We say the random sequence {&;}
converges in distribution to £ if

lim ®;(z) = ®(x) (A.75)

1—00

for all x at which ®(x) is continuous.

Convergence Almost Surely vs. Convergence in Probability

Theorem A.30 The random sequence {&;} converges a.s. to € if and only if
for every e > 0, we have

Jim_Pr { UJis—¢l= e}} =0. (A.76)
Proof: For every i > 1 and € > 0, we define
A={we | lim &) # &)},
Ai(e) = {w e Q| [&(w) — Ew)| > e}

It is clear that

A= (ﬁ OA@)).

e>0 \n=1li=n

Note that & — &, a.s. if and only if Pr{A} = 0. That is, {& — &, a.s. if and

only if
Pr{ﬂ U Ai(s)} =0

n=1i=n

for every € > 0. Since

U Ai(e) 4 m U Ai(e),

i=n n=1i=n
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it follows from the probability continuity theorem that
nh_}rr;O Pr { L_J Ai(s)} = Pr{ Ol L_J Ai(s)} =0.
The theorem is proved.

Theorem A.31 If the random sequence {&;} converges a.s. to &, then {&;}
converges in probability to £.

Proof: It follows from the convergence a.s. and Theorem A.30 that

7}i_>H§oPr{U{|§i - > a}} -0

i=n

for each € > 0. For every n > 1, since

{I6n =€l > e} c | Jl& — ¢l > e},

we have Pr{|§, — ¢| > ¢} — 0 as n — co. Hence the theorem holds.

Example A.17: Convergence in probability does not imply convergence a.s.
For example, take (€2, A,Pr) to be the interval [0, 1] with Borel algebra and
Lebesgue measure. For any positive integer i, there is an integer j such that
i = 27 + k, where k is an integer between 0 and 27 — 1. We define a random
variable by

0, otherwise

1, ifk/2 <w<(k+1)/27
@(w)z{ / (k+1)/

fori=1,2,--- and £ = 0. For any small number £ > 0, we have
1
Pr{|§i—§\2€}=§—>0

as i — oo. That is, the sequence {&;} converges in probability to £&. However,
for any w € [0, 1], there is an infinite number of intervals of the form [k/27, (k+
1)/27] containing w. Thus &;(w) 4 0 as i — co. In other words, the sequence
{&} does not converge a.s. to &.

Convergence in Probability vs. Convergence in Mean

Theorem A.32 If the random sequence {&;} converges in mean to &, then
{&} converges in probability to &.
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Proof: It follows from the Markov inequality that, for any given number
e >0,
Prije — &> < 2B =El

as ¢ — oo. Thus {} converges in probablhty to &.

Example A.18: Convergence in probability does not imply convergence in
mean. For example, take (2, A, Pr) to be {wy,ws, -} with Pr{w,} = 1/27
for j =1,2,--- The random variables are defined by

2t ifj=1i
Silw;) = { 0, otherwise

fori=1,2,--- and £ = 0. For any small number £ > 0, we have
1
Prilé —¢l2eb=5 =0

as i — oo. That is, the sequence {&;} converges in probability to £&. However,

we have 1
FE ¢ =1
le—el =25

for each 4. That is, the sequence {;} does not converge in mean to &.

Convergence Almost Surely vs. Convergence in Mean

Example A.19: Convergence a.s. does not imply convergence in mean. For
example, take (2, A,Pr) to be {wi,ws, -} with Pr{w;} = 1/27 for j =
1,2,--- The random variables are defined by

2 =
§ilwj) = { 0, otherwise

for i = 1,2,--- and £ = 0. Then {&} converges a.s. to £&. However, the
sequence {&;} does not converge in mean to &.

Example A.20: Convergence in mean does not imply convergence a.s. For
example, take (2,A,Pr) to be the interval [0,1] with Borel algebra and
Lebesgue measure. For any positive integer i, there is an integer j such
that 4 = 27 4+ k, where k is an integer between 0 and 2/ — 1. We define a
random variable by
@) 1, ifk/27 <w<(k+1)/27

i(w) =
’ 0, otherwise

fori=1,2,--- and £ = 0. Then

Efl& - &l = *%0
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as i — oo. That is, the sequence {¢;} converges in mean to £. However, {;}
does not converge a.s. to £.

Convergence in Probability vs. Convergence in Distribution

Theorem A.33 If the random sequence {&;} converges in probability to &,
then {&;} converges in distribution to €.

Proof: Let x be any given continuity point of the probability distribution
®. On the one hand, for any y > x, we have

G<at={& <2, <yu{& <z &>yt c{{<yu{l& —¢&l >y —a}

which implies that

Di(x) < @(y) + Pr{|&i —&[ =2y —x}.

Since {&;} converges in probability to &, we have Pr{|¢; — & > y — a2} — 0.
Thus we obtain limsup,_, . ®;(x) < ®(y) for any y > x. Letting y — z, we
get

lim sup ®;(z) < ®(z). (A.TT)

1—00

On the other hand, for any z < x, we have
<zt ={{<2&<au{l < >al C{ <2 uf{lG - €l 22— 2}
which implies that
D(2) < By(x) + Pr{l& — €] >z — 2},

Since Pr{|¢; — ¢| > — 2z} — 0 as i — 00, we obtain ®(z) < liminf; . P;(x)
for any z < x. Letting z — =, we get

®(z) < liminf ®;(x). (A.78)

71— 00

It follows from (A.77) and (A.78) that ®;(z) — ®(z) as i — co. The theorem
is proved.

Example A.21: Convergence in distribution does not imply convergence
in probability. For example, take (2, A,Pr) to be {wy,ws} with Pr{w;} =

Pr{ws} = 0.5, and
-1, ifw=w
f(w) a { 1, ifw:wg.
We also define §; = —¢ for all ¢. Then & and & are identically distributed.
Thus {&;} converges in distribution to £. But, for any small number ¢ > 0,
we have Pr{|¢; — &| > ¢} = Pr{Q2} = 1. That is, the sequence {;} does not
converge in probability to &.
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A.11 Law of Large Numbers

The laws of large numbers include two types: (a) the weak laws of large
numbers dealing with convergence in probability; (b) the strong laws of large
numbers dealing with convergence a.s. In order to introduce them, we will
denote

Sp=&+&+-+&, (A.79)

for each n throughout this section.

Weak Laws of Large Numbers

Theorem A.34 (Chebyshev’s Weak Law of Large Numbers) Let &1,&2, -+ be
a sequence of independent but not necessarily identically distributed random
variables with finite expected values. If there exists a number a > 0 such
that V[&] < a for all i, then (S, — E[Syp])/n converges in probability to 0 as
n — 0o.

Proof: For any given € > 0, it follows from Chebyshev inequality that

{2 ) < 2 [5] -  5o

n - g2 n e2n? g2

as n — o0o. The theorem is proved. Especially, if those random variables
have a common expected value e, then S, /n converges in probability to e.

Theorem A.35 Let £1,&2,--- be a sequence of iwid random variables with
finite expected value e. Then S, /n converges in probability to e as n — oco.

Proof: For each i, since the expected value of &; is finite, there exists 8 > 0
such that F[|&]] < 8 < co. Let a be an arbitrary positive number, and let n
be an arbitrary positive integer. We define

fj _ { €i7 if |§z| < no

0, otherwise

fori=1,2,--- It is clear that {£} is a sequence of iid random variables. Let
e} be the common expected value of £, and Sy =& +&5 +---+&5. Then
we have

VIE < B[&?] < naBllg]]] < nap,
B [Sn] Bl + ElG]+ -+ E[G] _ .

n

y {S} _ VI +VIE]+- o+ VIE]

n2
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It follows from Chebyshev inequality that

> 5} <Ly {Sn] <9 (A.80)

g2 n| = &2

S*
Pr{ = —ey
n

for every € > 0. It is also clear that e}, — e as n — 0o by Lebesgue dominated
convergence theorem. Thus there exists an integer N* such that |ef —e| < &
whenever n > N*. Applying (A.80), we get

>25}<Pr{ S

* *

Pn

Pr{s

n
for any n > N*. It follows from the iid hypothesis and Theorem A.15 that

n *
— —e
n n

> s} < i—f (A.81)

Pr{S; # S,} < ZPr{\éﬂ > na} <nPr{|é&| > na} — 0

i=1
as n — o0o. Thus there exists an integer N** such that
Pr{S; #S,} <a, Vn>N*".
Applying (A.81), for all n > N* VvV N** we have

o

as a — 0. It follows that S, /n converges in probability to e as n — co.

Sn
—6‘225}§a5+a—>0
n 3

Strong Laws of Large Numbers

Lemma A.1 (Toeplitz Lemma) Let a,a1,a9, -+ be a sequence of real num-
bers such that a; — a as i — o0o. Then

i SOt (A.82)

n—00 n

Proof: Let € > 0 be given. Since a; — a, there exists an integer N such
that .

la; —a| < 3 Vi > N.
It is also able to choose an integer N* > N such that

N

1 €
N*;|ai—a|<§.

Thus for any n > N*, we have

n

%Zai—a

i=1

n

N
1 1
SN* E |ai—a|—|—glg la; —a] < e.
i=1 i=N-+1

It follows from the arbitrariness of ¢ that Toeplitz lemma holds.
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Lemma A.2 (Kronecker Lemma) Let ay,as, -+ be a sequence of real num-
bers such that > .-, a; converges. Then

9 . N
iy D202 A (A.83)

n— 00 n

Proof: We set s =0 and s; =ay +as+---+a; fori =1,2,--- Then we

have
n n—1
1
75 ia; = — E sl—si_l):sn—fg ;.
‘ n
1,=1 =1

The sequence {si} converges to a finite limit, say s. It follows from Toeplitz
lemma that Z?;ll si/n — s as n — oo. Thus Kronecker lemma is proved.

Theorem A.36 (Kolmogorov Strong Law of Large Numbers) Let 1,8z, - -
be a sequence of independent random variables with finite expected values. If

(A.84)
then s _glg
%[n] — 0, a.s. (A.85)
as n — 0o.
Proof: Since £;,&5, -+ are independent random variables with finite ex-

pected values, for every given € > 0, we have

O

7=0

n+j

€z_ z
d T

= lim Pr O(%&— ngll >€>
m—00
= lim Pr{ max %——E Tg& >€}
m=—00 0<j<m | £~
1 [ . .
< mlgnoo 8—2‘/ Z z] (by Kolmogorov inequality)
Wf, )
= mﬁm T2 Z

i=n

Thus Y2, (& —E[&)) / i converges a.s. Applying Kronecker lemma, we obtain

R =) BT

i=1
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as n — co. The theorem is proved.

Theorem A.37 (Strong Law of Large Numbers) Let £1,&a, -+ be a sequence
of iid random variables with finite expected value e. Then

Sn,
—_ _> 67 a.s. (A86)
n

as n — oo.

Proof: For each i > 1, let & be &; truncated at i, i.e.,

g:{a,m¢§i

0, otherwise,

and write Sy = &7 4+ &5 + -+ - +&;;. Then we have

VIEI<EBE <> °Pr{j—1< &) <j}
j=1

for all 7. Thus
i VI
. 2 =
=1 =

:Z Pr{]*1<|§1|<J}Z

8

*PT{J —-1<]&4] <4}

8

2
<223Pr{3—1< G| <4} by Z 7S5
=j
=2+2§:U—DPﬂj—1§Kﬂ<j}
j=1
<24 2e < o0.
It follows from Theorem A.36 that
S* — E[S}
Sn = Bl — 0, as. (A.87)
n

as n — oo. Note that & 1 & as ¢ — oo. Using the Lebesgue dominated
convergence theorem, we conclude that E[¢f] — e. It follows from Toeplitz

Lemma that
BlS;) _ Blgi) + Bleg)+ -+ Fle)

(A.88)
n n
Since (& — &) — 0, a.s. as i — o0, Toeplitz Lemma states that
— 1
u — a.s. (A.89)

It follows from (A.87), (A.88) and (A.89) that S, /n — e a.s. as n — oo.
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A.12 Conditional Probability

We consider the probability of an event A after it has been learned that some
other event B has occurred. This new probability is called the conditional
probability of A given B.

Definition A.22 Let (2, A, Pr) be a probability space, and A, B € A. Then
the conditional probability of A given B is defined by

Pr{AN B}

Pr{A|B} = 5

(A.90)

provided that Pr{B} > 0.

Example A.22: Let £ be an exponentially distributed random variable with
expected value $. Then for any real numbers a > 0 and x > 0, the conditional
probability of € > a + = given £ > a is

Pr{€ > a+al¢ > a} = exp(—a/8) = Pr{¢ > z}

which means that the conditional probability is identical to the original prob-
ability. This is the so-called memoryless property of exponential distribution.
In other words, it is as good as new if it is functioning on inspection.

Theorem A.38 (Bayes Formula) Let the events A1, Aa,--- , A, form a par-
tition of the space Q such that Pr{A;} > 0 fori=1,2,--- ,n, and let B be
an event with Pr{B} > 0. Then we have

PI‘{Ak} PI‘{B|Ak}

; Pr{A;} Pr{B|A;}

Pr{Ak|B} =

(A.91)

fork=1,2,--- n.

Proof: Since A;, Ay, -+, A, form a partition of the space 2, we immediately
have

Pr{B} = iPr{Ai N B} = iPr{Ai} Pr{B|A4;}

which is also called the formula for total probability. Thus, for any k, we have
Pr{Ax N B Pr{A:} Pr{B|A
Pr{Ay|B} {Ax N B} _ nr{ ky Pr{B|Ar}
> Pr{A;} Pr{B|A;}
i=1

Pr{B}

The theorem is proved.
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Remark A.6: Especially, let A and B be two events with Pr{A} > 0 and
Pr{B} > 0. Then A and A€ form a partition of the space 2, and the Bayes

formula is
Pr{A}Pr{B|A}

PHA|B} = =

(A.92)

Remark A.7: In statistical applications, the events Ay, Ao, - -- , A, are often
called hypotheses. Furthermore, for each i, the Pr{A;} is called a priori
probability of A;, and Pr{A;|B} is called a posteriori probability of A; after
the occurrence of event B.

Definition A.23 The conditional probability distribution ®: R — [0,1] of a
random variable £ given B is defined by

®(x|B) = Pr{¢ < z|B} (A.93)
provided that Pr{B} > 0.

Example A.23: Let £ and n be random variables. Then the conditional
probability distribution of £ given n = y is

Pr{¢ <az,n=y}

P(zln=y)=Pr{{ <zln=y}= Pr{n =y}

provided that Pr{n =y} > 0.

Definition A.24 The conditional probability density function ¢ of a random
variable & given B is a monnegative function such that

@(x\B):[ é(y|B)dy, VreR (A.94)

where ®(z|B) is the conditional probability distribution of £ given B.

Example A.24: Let (£,7n) be a random vector with joint probability density
function . Then the marginal probability density functions of £ and n are

+00 Foo
fa)= | dl@ydy gly)= [ dlzyde,
respectively. Furthermore, we have
prig<ansi= [ [ weowa= [" [ X Dar g

which implies that the conditional probability distribution of £ given n = y

B(aln = y) = [ ’ ‘”;z’yi’)dr, as. (A.95)




SECTION A.13 - RANDOM SET 401

and the conditional probability density function of £ given n =y is

P(zln=y) = ¥z.9) = ﬂ;b(x,y) , A8, (A.96)

Y(x,y)de

— 00

Note that (A.95) and (A.96) are defined only for g(y) # 0. In fact, the set
{y|g(y) = 0} has probability 0. Especially, if £ and 5 are independent random

variables, then 1 (z,y) = f(x)g(y) and ¢(z|n =y) = f(x).

A.13 Random Set

It is believed that the earliest study of random set was Robbins [198] in
1944, and a rigorous definition was given by Matheron [167] in 1975. In this
book, let us redefine the concept of random set and propose a concept of
membership function for it.

Definition A.25 A random set is a function & from a probability space
(Q,A,Pr) to a collection of sets such that both {B C &} and {£ C B} are
events for any Borel set B.

Example A.25: Take a probability space (£2, A, Pr) to be {w;,ws,ws}. Then
the set-valued function

[1,3], ifw=w
fw) =<K [2,4], ifw=ws (A.97)
3

[3,5], ifw=uws
is a random set on (2, A, Pr).

Definition A.26 A random set £ is said to have a membership function p
if for any Borel set B, we have

Pr{BC¢} = ;22 w(x), (A.98)
Pr{¢{cB}=1- seué)c (). (A.99)

The above equations will be called probability inversion formulas.

Remark A.8: When a random set ¢ does have a membership function g,
we immediately have

wu(z) =Pr{z € &}. (A.100)
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Example A.26: A crisp set A of real numbers is a special random set
&(w) = A. Show that such a random set has a membership function

(A.101)

1, ifzeA
p(w) =

0, fxg A
that is just the characteristic function of A.

Example A.27: Take a probability space (£2,.A,Pr) to be the interval [0, 1]
with Borel algebra and Lebesgue measure. Then the random set

fw)=[-VI-w VI-w (A.102)

has a membership function

w(x) = (A.103)

0, otherwise.

{ 1—2?% ifxel-1,1]

Theorem A.39 A real-valued function p is a membership function if and

only if
0<p(r) <1 (A.104)

Proof: If y is a membership function of some random set &, then p(z) =
Pr{z € £} and 0 < pu(x) < 1. Conversely, suppose y is a function such that
0 < p(z) < 1. Take a probability space (€2, A,Pr) to be the interval [0, 1]
with Borel algebra and Lebesgue measure. Then the random set

§w) = fo | ux) > w) (A.105)
has the membership function .

Theorem A.40 Let £ be a random set with membership function u. Then
its complement £ has a membership function

AMz) =1— p(z). (A.106)

Proof: In order to prove 1 — pu is a membership function of £¢, we must verify
the two probability inversion formulas. Let B be a Borel set. It follows from
the definition of membership function that

Pr{BC¢}t=Pr{{C B} =1— sup p(x)= inf (1 — ux)),
z€(Be)e z€B

Pr{¢° Cc B} =Pr{B°C ¢} = ienlgC w(x) =1— sup (1 — p(x)).
x IGBC

Thus £° has a membership function 1 — p.
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Definition A.27 Let £ be a random set with membership function . Then
the set-valued function

p o) ={zeR|pulx) >a}, Vac01] (A.107)

1s called the inverse membership function of &. Sometimes, for each given a,
the set u=1(a) is also called the a-cut of fu.

Theorem A.41 (Sufficient and Necessary Condition) A function p=1(«) is
an inverse membership function if and only if it is a monotone decreasing
set-valued function with respect to « € [0,1]. That is,

p o) cp(B), ifa>pB (A.108)

Proof: Suppose = !(a) is an inverse membership function of some random
set. For any z € p~!(a), we have u(z) > . Since a > 3, we have pu(x) > 8
and then z € p=1(8). Hence u~*(a) C u=1(B). Conversely, suppose pu~*(c)
is a monotone decreasing set-valued function. Then

w(z) =sup{a€0,1] |z €pn " (a)}

is a membership function of some random set. It is easy to verify that p=1(«)
is the inverse membership function of the random set. The theorem is proved.

Theorem A.42 Let £ be a random set with inverse membership function
p= (). Then for each a € [0,1], we have

Pr{p (a) C €} > a, (A.109)
Pr{¢cp (@)} >1-a (A.110)

Proof: For each z € p~!(a), we have u(z) > a. It follows from the proba-
bility inversion formula that

Pr{p~! (o) C &} = po it p@)za

For each x ¢ pu~!(a), we have u(z) < a. It follows from the probability
inversion formula that

Pri¢cpu(a)y=1— sup plx)>1-a.
zZp~ (o)

A.14 Stochastic Process

A stochastic process is essentially a sequence of random variables indexed by
time.
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Definition A.28 Let (2, A,Pr) be a probability space and let T be a totally
ordered set (e.g. time). A stochastic process is a function Xi(w) from T X
(Q, A, Pr) to the set of real numbers such that {X; € B} is an event for any
Borel set B at each time t.

For each fixed w, the function X;(w) is called a sample path of the stochas-
tic process X;. A stochastic process X; is said to be sample-continuous if
almost all sample paths are continuous with respect to ¢.

Definition A.29 A stochastic process X; is said to have independent incre-
ments if

Xigs Xty — Xty Xty — Xy, -+, Xty — Xoy (A.111)
are independent random variables where tg is the initial time and t1,ts, - - -, ty
are any times with tg <ty < --- < tg.

Definition A.30 A stochastic process X; is said to have stationary incre-
ments if, for any given t > 0, the increments Xqs4r — Xs are identically
distributed random variables for all s > 0.

A stationary independent increment process is a stochastic process that
has not only independent increments but also stationary increments. If X; is
a stationary independent increment process, then

Yi=aX:+0

is also a stationary independent increment process for any numbers a and b.

Renewal Process

Let & denote the times between the (i — 1)th and the ith events, known as
the interarrival times, i = 1,2, - -, respectively. Define Sy = 0 and

Su=bit bt b, V1 (A.112)

Then S,, can be regarded as the waiting time until the occurrence of the nth
event after time t = 0.

Definition A.31 Let &,&, -+ be wid positive interarrival times. Define
So=0and S, = & +& + -+ &, for n > 1. Then the stochastic pro-
cess
Ny =max{n|S, <t} (A.113)
n>0

1s called a renewal process.

A renewal process is called a Poisson process with rate [ if the interarrival
times are exponential random variables with a common probability density
function,

o(z) = %exp (—;) x>0 (A.114)
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Wiener Process

In 1827 Robert Brown observed irregular movement of pollen grain suspended
in liquid. This movement is now known as Brownian motion. In 1923 Norbert
Wiener modeled Brownian motion by the following Wiener process.

Definition A.32 A stochastic process Wy is said to be a standard Wiener
process if

(i) Wo = 0 and almost all sample paths are continuous,

(i) Wy has stationary and independent increments,

(iii) every increment Weyy — Wy is a normal random variable with expected
value 0 and variance t.

Note that the lengths of almost all sample paths of Wiener process are
infinitely long during any fixed time interval, and are differentiable nowhere.
Furthermore, the squared variation of Wiener process on [0,t] is equal to ¢
both in mean square and almost surely.

A.15 Stochastic Calculus

Ito calculus, named after Kiyoshi Ito, is the most popular topic of stochastic
calculus. The central concept is the Ito integral that allows one to integrate
a stochastic process with respect to Wiener process. This section provides a
brief introduction to Ito calculus.

Definition A.33 Let X; be a stochastic process and let W; be a standard
Wiener process. For any partition of closed interval [a,b] with a =11 <t <
<o <tgpy1 =0, the mesh is written as

A= tir1 — til.
203, i =t

Then Ito integral of X; with respect to Wy is
b k
/a X dW, = giLnOZ;Xti Wiy — Wa,) (A.115)
provided that the limit exists in mean square and is a random variable.

Example A.28: Let W, be a standard Wiener process. It follows from the
definition of Ito integral that

/ AW, = W,
0
1

S B 1 9
A Wtth = §WS — 58.
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Definition A.34 Let W; be a standard Wiener process and let Z; be a
stochastic process. If there exist two stochastic processes py and oy such that

t t
Zy = 7y +/ sds +/ osdWy (A.116)
0 0

for any t > 0, then Z; is called an Ito process with drift pu; and diffusion oy.
Furthermore, Z; has a stochastic differential

dZt = ﬂtdt+0tth. (A].].?)

Theorem A.43 (Ito Formula) Let W, be a standard Wiener process, and let
h(t,w) be a twice continuously differentiable function. Then X; = h(t, W)
s an Ito process and has a stochastic differential

2
gh(t W)dt + gh (t, Wy)dW; + M(t,Wt)dt. (A.118)

2 Ow?
Proof: Since the function h is twice continuously differentiable, by using
Taylor series expansion, the infinitesimal increment of X; has a second-order
approximation

dX; =

oh oh 10%h
AXy = o (WAL + oo (8 W) AW, + 5 (1. W) (AW)?
19%h 2 Oh
+5 5 (6 W) (A + S (8 W) ALA.

Since we can ignore the terms (At)? and AtAW, and replace (AW;)? with
At, the Ito formula is obtained because it makes

* oh * Ok 92h
XSfX0+/O 2 Wt)dtJr/O o 0, W) + 2/0 &t W

for any s > 0.

Example A.29: Ito formula is the fundamental theorem of stochastic cal-
culus. Applying Ito formula, we obtain

d(tWt) = Wtdt + tth7

d(W?) = 2W,dW; + dt.

A.16 Stochastic Differential Equation

In 1940s Kiyoshi Ito invented a type of stochastic differential equation that
is a differential equation driven by Wiener process. This section provides a
brief introduction to stochastic differential equation.
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Definition A.35 Suppose W, is a standard Wiener process, and f and g
are two functions. Then

dX; = f(t, X¢)dt + g(t, X;)dW; (A.119)

1s called a stochastic differential equation. A solution is an Ito process X
that satisfies (A.119) identically in t.

Example A.30: Let W; be a standard Wiener process. Then the stochastic

differential equation
dX; = adt + bdW;

has a solution
Xt =at + bWt

Example A.31: Let W; be a standard Wiener process. Then the stochastic
differential equation
dXt = ClXtdt + bXtth

b2
X; =exp ((a— 2>t+bWt> .

Theorem A.44 (Ezistence and Uniqueness Theorem) The stochastic differ-
ential equation

has a solution

has a unique solution if the coefficients f(t,x) and g(t, x) satisfy linear growth
condition

lf(t,z)| + gt 2)| < L(1+z|), VeeRt>0 (A.121)
and Lipschitz condition
F(t2) = F(ty)] + |g(t,0) — g(t,y)| < Lz —yl, Va,ye Rt >0 (A.122)
for some constant L. Moreover, the solution is sample-continuous.

Theorem A.45 (Feynman-Kac Formula) Consider the stochastic differen-
tial equation

dX: = f(t, X3)dt + g(t, X3)dW,. (A.123)
For any measurable function h(x) and fixred T > 0, the function
Ut,r)=F VT h(X,)ds | X, = x] (A.124)
t
is the solution of the partial differential equation
a—g(t,x) + f(t,x)aa—g(t,:r) + %92(@ z)g%(t,x) +h(z)=0  (A.125)

with the terminal condition

U(T,z) = 0. (A.126)



Appendix B

Chance Theory

Uncertainty and randomness are two basic types of indeterminacy. Chance
theory was pioneered by Liu [149] in 2013 for modeling complex systems with
not only uncertainty but also randomness. This appendix will introduce the
concepts of chance measure, uncertain random variable, chance distribution,
operational law, expected value, variance, and law of large numbers. As ap-
plications of chance theory, this appendix will also provide uncertain random
programming, uncertain random risk analysis, uncertain random reliability
analysis, uncertain random graph, uncertain random network, and uncertain
random process.

B.1 Chance Measure

Let (', £,M) be an uncertainty space and let (2, A,Pr) be a probability
space. Then the product (T, £, M) x (Q,A,Pr) is called a chance space.
Essentially, it is another triplet,

(T'x2,LxAMx Pr) (B.1)

where I" x Q is the universal set, £ x A is the product o-algebra, and M x Pr
is the product measure.

The universal set " x € is clearly the set of all ordered pairs of the form
(v,w), where v € T and w € Q. That is,

I'xQ={(y,w)|yeTl weN}. (B.2)

The product o-algebra £ x A is the smallest o-algebra containing mea-
surable rectangles of the form A x A, where A € £ and A € A. Any element
in £ x A is called an event in the chance space.

What is the product measure M x Pr? In order to answer this question,
let us consider an event © in £ x A. For each w € (Q, the set

O, ={yeTl[(y,w) €O} (B.3)

© Springer-Verlag Berlin Heidelberg 2015 409
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is clearly an event in £. Thus the uncertain measure M{0,,} exists for each
w € ). However, unfortunately, M{©,} is not necessarily a measurable
function with respect to w. In other words, for a real number z, the set

0F = {we Q| M{O,) >} (B.4)

is a subset of £ but not necessarily an event in A. Thus the probability
measure Pr{©%} does not necessarily exist. In this case, we assign

inf Pr{A if inf Pr{A .
in r{A}, i AeAl,I}LDG);. r{A} < 0.5

A€A,ADO*
Pr{@:} = sup Pr{A}, if sup Pr{4}>05 (B.5)
A€eA,ACO} AEA,ACO;
0.5, otherwise

in the light of maximum uncertainty principle. This ensures the probability
measure Pr{©%*} exists for any real number z. Now it is ready to define
M x Pr of © as the expected value of M{O,,} with respect to w € Q, i.e.,

/1 Pr{©}}dx. (B.6)

Note that the above-mentioned integral is neither an uncertain measure nor
a probability measure. We will call it chance measure and represent it by

Ch{®}.

Figure B.1: An Event © in £ x A

Definition B.1 (Liu [149]) Let (T, L, M) x (2, A, Pr) be a chance space, and
let © € L x A be an event. Then the chance measure of © is defined as

Ch{@}:/o Pr{we Q|M{yeT|(y,w) € O} >z }dx. (B.7)

e

x
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Theorem B.1 (Liu [149]) Let (T', L, M) x (2, A, Pr) be a chance space. Then
Ch{A x A} = M{A} x Pr{A} (B.8)

for any A € £ and any A € A. Especially, we have

Ch{0} =0, Ch{I'xQ}=1. (B.9)
Proof: Let us first prove the identity (B.8). For each w € 2, we immediately
have

{vell(y,w) e Ax A} =A
and

M{yeT|(y,w) e Ax A} = M{A}.
For any real number z, if M{A} > z, then
Pr{we Q|M{yeT|(y,w) € A x A} >z} =Pr{A}.
If M{A} < z, then
Pr{we Q|M{y eT|(y,w) € A x A} >z} = Pr{0} = 0.

Thus

1
Ch{A x A} :/ Priwe Q| M{y el |(y,w) € A x A} > o} da
0

M{A} 1
_ / Pr{A}ds + / 0dz = M{A} x Pr{A}.
0 M{A}

Furthermore, it follows from (B.8) that
Ch{0} = M{0} x Pr{0} =0,
Ch{l' x Q} = M{T'} x Pr{Q} = 1.
The theorem is thus verified.

Theorem B.2 (Liu [149], Monotonicity Theorem) Let (T, £, M) x (2, A, Pr)
be a chance space. Then the chance measure Ch{©} is a monotone increasing
Sfunction with respect to ©.

Proof: Let ©; and O3 be two events with ©®; C ©5. Then for each w, we
have

{vell(vw) e} C{yeT|(y,w) € Oz}

and
My el[(y,w) €O} <M{y eT'[(7,w) € O2}.
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Thus for any real number x, we have
Pr{we Q|M{ye'|(y,w) € O1} = z}
<Pr{we Q|M{yel'|(y,w) € O2} > z}.

By the definition of chance measure, we get
1
Ch{6:} :/ Priwe Q| M{y el |(y,w) € 01} > o} de
0
1
< / Pr{we Q| M{y eT'|(7,w) € O2} > z} dx = Ch{O3}.
0

That is, Ch{©} is a monotone increasing function with respect to ©. The
theorem is thus verified.

Theorem B.3 (Liu [149], Duality Theorem) The chance measure is self-
dual. That is, for any event ©, we have

Ch{©} + Ch{O°} = 1. (B.10)

Proof: Since both uncertain measure and probability measure are self-dual,
we have

Ch{@}:/O Pr{we Q|M{yeTl|(y,w) €O} >z}dx
:/1Pr{w€Q|M{'yEI‘|('y,w)G@C}<1—x}dx
0
/1(1Pr{wGQM{'yEF|('y,w)€@C}>1x})dz
0

1
:1—/ Pr{we Q| M{y eT|(vy,w) € ©°} > z}dx
0

=1- Ch{©°}.
That is, Ch{®} + Ch{O©°} = 1, i.e., the chance measure is self-dual.

Theorem B.4 (Hou [63], Subadditivity Theorem) The chance measure is
subadditive. That is, for any countable sequence of events ©1,09, -+, we

have
Ch{U @1} <) Ch{e;}. (B.11)

Proof: For each w, it follows from the subadditivity of uncertain measure
that

M{W el (y,w) € U @i} < ZM{V el (y,w) € ©;}.

i=1
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Thus for any real number x, we have

Pr{wéQM{vEF(y,w)EG@i}zx}

=1

SPr{wGQiM{’yGFH’y,w)G@i}zx}.

i=1
By the definition of chance measure, we get

Ch{[j@i} :/1Pr{w€QM{'y€1"(’y,w)efj@l}>x}dx
i=1 0 i

i=1

S/OlPr{weQiM{VEFH%w)E@i}zx}dx

i=1

+oo >
S/ Pr{wGQZM{’yéFH’y,w)G@i}Zx}dx
0

i=1

0 o1
:Z/ Pr{iwe Q| M{y eT'|(v,w) € ©;} >z} dx
i=170

=Y Ch{e;}.
i=1
That is, the chance measure is subadditive.

B.2 Uncertain Random Variable

Theoretically, an uncertain random variable is a measurable function on the
chance space. It is usually used to deal with measurable functions of uncertain
variables and random variables.

Definition B.2 (Liu [149]) An uncertain random variable is a function &
from a chance space (I', L, M) x (2, A,Pr) to the set of real numbers such
that {£ € B} is an event in L x A for any Borel set B.

Remark B.1: An uncertain random variable £(v,w) degenerates to a ran-
dom variable if it does not vary with «. Thus a random variable is a special
uncertain random variable.

Remark B.2: An uncertain random variable (v, w) degenerates to an un-
certain variable if it does not vary with w. Thus an uncertain variable is a
special uncertain random variable.
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Theorem B.5 Let &1,&s, -+, &, be uncertain random variables on the chance
space (I'; L, M) x (Q,A,Pr), and let f : R" — R be a measurable function.
Then & = f(&1,&2,- -+ ,&n) is an uncertain random variable determined by

5(’77‘*’) - f(gl(’)/vw)a£2(’77w)7 T ,gn(f}/’w)) (B12)
for all (y,w) € T x Q.

Proof: Since &1,&,- -+ ,&, are uncertain random variables, we know that
they are measurable functions on the chance space, and £ = f(&1,&2,- -+ , &)
is also a measurable function. Hence ¢ is an uncertain random variable.

Example B.1: A random variable n plus an uncertain variable 7 makes an
uncertain random variable &, i.e.,

§(y,w) =nw) +7(7) (B.13)
for all (y,w) € T' x Q.

Example B.2: Let 71,173, ,n, be random variables, and let 7,70, - , 7
be uncertain variables. If f is a measurable function, then

ng(n177727"' sMms T1, T2, 7Tn) (B14)

is an uncertain random variable determined by

f(v,w) = f(nl(w)7n2(w)v tee 7nm(w)77—1(7)77—2(’7)a T an(’Y)) (B'15)
for all (y,w) € T x Q.

Theorem B.6 (Liu [149]) Let £ be an uncertain random variable on the
chance space (I', L, M) x (Q, A,Pr), and let B be a Borel set. Then {£ € B}
is an uncertain random event with chance measure

Ch{geB}z/O Priwe Q|M{yeT|&(y,w) € B} > a}de.  (B.16)

Proof: Since {¢ € B} is an event in the chance space, the equation (B.16)
follows from Definition B.1 immediately.

Remark B.3: If the uncertain random variable degenerates to a random
variable n, then Ch{n € B} = Ch{I' x (n € B)} = M{T'} x Pr{n € B} =
Pr{n € B}. That is,

Ch{n € B} = Pr{n € B}. (B.17)

If the uncertain random variable degenerates to an uncertain variable 7, then
Ch{r € B} = Ch{(r € B) xQ} = M{7 € B} x Pr{Q} = M{r € B}. That is,

Ch{r € B} = M{r € B}. (B.18)
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Theorem B.7 (Liu [149]) Let & be an uncertain random variable. Then the
chance measure Ch{¢ € B} is a monotone increasing function of B and

Ch{€¢ € 0} =0, Ch{¢eR}=1. (B.19)

Proof: Let B; and By be Borel sets with By C By. Then we immediately
have {¢ € By} C {¢ € Bs}. It follows from the monotonicity of chance
measure that

Ch{¢ € By} < Ch{¢ € B,}.

Hence Ch{¢ € B} is a monotone increasing function of B. Furthermore, we
have

Ch{¢ € 0} = Ch{0} =0,
Ch{¢ € R} = Ch{T x Q} = 1.

The theorem is verified.

Theorem B.8 (Liu [149]) Let & be an uncertain random variable. Then for
any Borel set B, we have

Ch{¢ € B} + Ch{¢ € B°} = 1. (B.20)

Proof: It follows from {{ € B}® = {{ € B°} and the duality of chance
measure immediately.

B.3 Chance Distribution

Definition B.3 (Liu [149]) Let & be an uncertain random variable. Then
its chance distribution is defined by

®(x) = Ch{¢ < x} (B.21)

for any x € R.

Example B.3: As a special uncertain random variable, the chance distri-
bution of a random variable 7 is just its probability distribution, that is,

®(z) = Chi{n < 2z} = Pr{n < z}. (B.22)

Example B.4: As a special uncertain random variable, the chance distri-
bution of an uncertain variable 7 is just its uncertainty distribution, that
is,

®(z) = Chi{r <z} = M{r < z}. (B.23)

Theorem B.9 (Liu [149], Sufficient and Necessary Condition for Chance
Distribution) A function ® : R — [0, 1] is a chance distribution if and only if
it is a monotone increasing function except ®(x) =0 and &(x) = 1.
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Proof: Assume @ is a chance distribution of uncertain random variable &.
Let 21 and x5 be two real numbers with 21 < x5. It follows from Theorem B.7
that

Hence the chance distribution ® is a monotone increasing function. Further-
more, if ®(z) =0, then

1
/ Pr{we Q| M{y eT'|{(y,w) <z} >r}dr=0.
0

Thus for almost all w € €2, we have
M{yeTl|&(y,w) <z} =0, VreR

which is in contradiction to the asymptotic theorem, and then ®(z) # 0 is
verified. Similarly, if ®(z) =1, then

1
/ Pr{iwe Q| M{y eT|{(y,w) <a} >r}dr=1.
0

Thus for almost all w € Q, we have
M{yeT|&(y,w)<z}=1, VeeR

which is also in contradiction to the asymptotic theorem, and then ®(x) # 1
is proved.

Conversely, suppose @ : # — [0, 1] is a monotone increasing function but
O(z) £ 0 and &(x) # 1. Tt follows from Peng-Iwamura theorem that there is
an uncertain variable whose uncertainty distribution is just ®(z). Since an
uncertain variable is a special uncertain random variable, we know that ® is
a chance distribution.

Theorem B.10 (Liu [149], Chance Inversion Theorem) Let & be an uncer-
tain random variable with chance distribution ®. Then for any real number
x, we have

Chi{¢ <z} =®(z), Ch{{>z}=1-(x). (B.24)

Proof: The equation Ch{{ < z} = ®(z) follows from the definition of chance
distribution immediately. By using the duality of chance measure, we get

Ch{¢ >z} =1-Ch{¢ <z} =1-(x).
Remark B.4: When the chance distribution ® is a continuous function, we

also have
Ch{¢ <2} = ®(z), Ch{¢>a}=1-d(). (B.25)
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B.4 Operational Law

Assume 71,72, ,Nm are independent random variables with probability
distributions ¥, ¥y, --- W, and 71,79, -+, 7T, are independent uncertain
variables with uncertainty distributions Y1, Yo, .-, T, respectively. What
is the chance distribution of the uncertain random variable

é-:f(nlv"'777m77—17"'77—n)? (B26)
This section will provide an operational law to answer this question.

Theorem B.11 (Liu [150]) Let n1,n2, -+ ,Nm be independent random vari-
ables with probability distributions Wy, Wy, --- W, respectively, and let 71, T2,

-, Tn be uncertain variables (not necessarily independent). Then the uncer-
tain random variable

fzf(nlf"anmaTlv"'»Tn) (B27)

has a chance distribution
(I)(‘T) = M{f(ylaayWHTh?Tn) Sx}dq]l(yl)d\ym(ym) (BQS)
§an
for any number x.

Proof: It follows from Theorem B.6 that the uncertain random variable &
has a chance distribution

D(x) :/0 Pr{we Q| M{y €T |{(y,w) <z} >r}dr
:/O Pri{w e Q[M{f(m(w), - mm(w), 71, ,7) S @} 2 r}dr

- M{f(yh s Ymy T, '77—71) < £C}d\:[/1(y1) o d\Ilm(ym)
Rrm

The theorem is verified.

Theorem B.12 (Liu [150]) Let n1,m2,- -+ ,Mm be independent random vari-
ables with probability distributions U1, Vo, --- W, respectively, and let Ty, 7o,

-, Tn be uncertain variables (not necessarily independent). Then the uncer-
tain random variable

fzf(nla"'anm7717"'7Tn) (B29)

has a chance distribution
O(z) = [ Flzsyr, - ym)d¥i(yr) - AV (ym) (B.30)

§R7n
where F(x;y1, -+ ,Ym) 18 the uncertainty distribution of the uncertain vari-

able f(y1,-* yYm,T1,"** ,Tn) for any real numbers y1, - , Ym.
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Proof: For any given numbers y1, - - - , Ym, it follows from the operational law
of uncertain variables that f(y1,--+ ,Ym, 71, - ,7n) IS an uncertain variable
with uncertainty distribution F(x;y1,- -+, ym). By using (B.28), the chance
distribution of € is

(I)(:}j) = %mM{f(ylv oy Ymy T, 7Tn) < w}d\I}1<y1) o 'dq/m(ym)

- / P g1,y AT (1) - A ()

that is just (B.30). The theorem is verified.

Remark B.5: Let 7,7, - ,7, be independent uncertain variables with
uncertainty distributions Y1, Yo, -+, T, respectively. If the function

f(nla"' sy T1y 0 7Tn)

is strictly increasing with respect to 7y, -+, 7, and strictly decreasing with
respect to Tpi1,* ,Tn, then F~1(a;y1, -+ ,ym) is equal to
-1 -1 -1 -
f(yla e aymaTl (Oé)7~ o aTk (a)7Tk+1(1 - Oé), e aTnl(l - Oé))

from which we may derive the uncertainty distribution F(z;y1, - ,Ym)-
Exercise B.1: Let 91,192, - ,n, be independent random variables with
probability distributions ¥y, o, --- ,¥,,, and let 7,7, -+ , 7, be indepen-
dent uncertain variables with uncertainty distributions Y1, Yo, -+, T, re-

spectively. Show that the sum
E=m+m+-Fnm+ntrt+T, (B.31)

has a chance distribution

“+oo
o) = [ Y- y)au) (B.32)
where
W= [ i) da) (B3

is the probability distribution of 9y + 12 + - - - + 7, and

T(z) = sup T1(z1) A Ya(z) A AT (20) (B.34)
z1tzot+ - tzn=2

is the uncertainty distribution of 7 + 79 + + -+ + 7y,

Exercise B.2: Let 11,72, -+ ,n, be independent positive random vari-
ables with probability distributions Wy, Wo,--- ,W,,, and let 71,70, -+ , Ty
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be independent positive uncertain variables with uncertainty distributions
Ty,Yo,---, T, respectively. Show that the product

E=mnNa - NmT1iTa " Tn (B.35)

has a chance distribution

“+oo
B(x) = / (/) AW (y) (B.36)

where
U(y) = / AT (41)d T3 () - - ATy () (B.37)
Y1Y2 Ym <y

is the probability distribution of 1172 - - - 9, and

YT(z)= sup Ti(z1) AYo(z2) A~ AT (20) (B.38)

2122 2Zn==2
is the uncertainty distribution of 775 -« - 7,.

Exercise B.3: Let 11,792, - ,n, be independent random variables with
probability distributions ¥, ¥y, --- ¥, and let 7,7, -+ , 7, be indepen-
dent uncertain variables with uncertainty distributions Y,, Yo, , Y, re-
spectively. Show that the minimum

527}1/\?72/\"'/\77m/\7'1/\7'2/\"'/\7'n (B39)
has a chance distribution
O(z) =TV(x)+ YT(z) — U(x)Y(x) (B.40)

where
(z) =1—(1=V(2))(1 = ¥a(2)) - (1 = Yy (2)) (B.41)

is the probability distribution of 1 Ana A -+ A 1y, and
T(x) =Ti(z) VY2(x) V-V Ty(2) (B.42)
is the uncertainty distribution of 7 Ao A -+ A 7.

Exercise B.4: Let 11,792, -+ , 7, be independent random variables with
probability distributions Wy, Wy, -+ W, and let 79,72, -+, 7, be indepen-
dent uncertain variables with uncertainty distributions Yy, Yo, -+, Y,, re-
spectively. Show that the maximum

E=mVmV - Viu VT VrV--Vr, (B.43)
has a chance distribution

B(z) = T(x)Y(z) (B.44)
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where

U(x) = U1 (z)P2(z) - V() (B.45)
is the probability distribution of n1 V12 V « -+ V 1y, and
T(x)="Ti(x) ATo(x) A A, () (B.46)

is the uncertainty distribution of 74y V1oV ++-V 7,.

Some Useful Theorems

In many cases, it is required to calculate Ch{f(n1, - ,9m, 71, -+ ,7n) < 0}.
We may produce the chance distribution ®(z) of f(n1, -, Nm, 71, "+ ,Tn) by
the operational law, and then the chance measure is just ®(0). However, for
convenience, we may use the following theorems.

Theorem B.13 (Liu [151]) Let n1,1m2,- -+ ,Nm be independent random vari-
ables with probability distributions Wi, Vy,--- , W, and let 7,70, - , T, be
independent uncertain variables with reqular uncertainty distributions Y1, s,

<Y, respectively. If f(ni,-+ ,Mm,T1, -+ ,Tn) 18 strictly increasing with
respect to Ty, --- , T and strictly decreasing with respect to Tg4+1,- -+ ,Tn, then

Ch{f(m, - ,0m,T1, - ,Tn) <0} = ; Gy, Ym)d¥i(y1) - - AV, (Yrm)

where G(y1,- -+ ,ym) 15 the root a of the equation
f(ylv"' ﬂymv’rfl(a)7"' 7’rlzl(a)7rrl;—&1(1 _a)v"' ’TT_Ll(]' - a)) =0.

Proof: It follows from the definition of chance measure that for any numbers
Y1, »Ym, the theorem is true if the function G is

G(yla"' 7yWL) :M{f(yla sy Ymy Ty " an) SO}

Furthermore, by using Theorem 2.20, we know that G is just the root a. The
theorem is proved.

Remark B.6: Sometimes, the equation may not have a root. In this case,
if

f(yla s Yms T;l(a)7 U alel(a)le;ll(l - O‘)a T ’T’I’_Ll(l - a)) <0
for all o, then we set the root a = 1; and if

f(yla"' 7ymaT1_1(a)7"' alel(a%T];j-l(l - a)a"' aTgl(l —Oé)) >0
for all o, then we set the root a = 0.

Remark B.7: The root a may be estimated by the bisection method because
f(yb s Yms Tl_l(a)a T 7T];1(a)7 T}Z_A,l_ (1 70‘)3 e 7T:11(1 70‘)) is a StI‘iCtly
increasing function with respect to a. See Figure B.2.
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Figure B.2: f(y1,--- 7ym,Tl_l(oz),~~~ ,T;l(a),’f;_il_l(lfa),'~' LM (1—-a))

Theorem B.14 (Liu [151]) Let n1,12,- -+ ,Nm be independent random vari-
ables with probability distributions Wi, Wy,--- W, and let 7,72, - , 7, be
independent uncertain variables with reqular uncertainty distributions Y1, s,

<Y, respectively. If f(n1,+ ,Mm,T1, "+ ,Tn) 18 strictly increasing with
respect to Ty, -+ , T and strictly decreasing with respect to Tg+1, - ,Tn, then

Ch{f(Tll"" s my Ty - aTn) > O} = 5 G(yl;"'aym)dll’l(yl)"'d\pm(ym)

where G(y1,- - ,ym) 18 the root a of the equation
Ty, aym>T;1(1 —a), 7Tl;1(1 _O‘)’Tl;ll(a)f" 7T;1(a)) =0.

Proof: It follows from the definition of chance measure that for any numbers
Y1, ,Ym, the theorem is true if the function G is

G(y17"' aym) :M{f(y17 s Ymy Ty " 7Tn) >O}

Furthermore, by using Theorem 2.21, we know that G is just the root a. The
theorem is proved.

Remark B.8: Sometimes, the equation may not have a root. In this case,
if

f(yh e ayma'rl_l(l - Oé), e 7T];1(1 - a)vT]:Jll(a)f o 7T;1(a)) <0
for all a, then we set the root o = 0; and if

f(y17 sy YUms, Tl_l(l - Oé), e 7T];1(1 - a)vT];il(a% e 7T;1(a)) >0
for all o, then we set the root o = 1.
Remark B.9: The root a may be estimated by the bisection method because

f(yb s Yms, Tl_l(]- 70‘)3 T 7T/;1(1 7@), TI;—&l-l(a)a e 7T:11(O‘)) is a StI‘iCtly
decreasing function with respect to a. See Figure B.3.
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Figure B.3: f(y1,--- ,ym,Tfl(l—a),--- ,T;l(l—a),T;il(a),n- )

Operational Law for Boolean System

Theorem B.15 (Liu [150]) Assume n1,12,- -+ ,Nm are independent Boolean
random variables, i.e.,

1 with probability measure a;
i = . . (B.47)
0 with probability measure 1 — a;
fori = 1,2,--- m, and 11,72, -+ , T, are independent Boolean uncertain
variables, i.e.,
1 with uncertain measure b;
Tj = ) . (B.48)
0 with uncertain measure 1 — b;
forj=1,2,--- n. If f is a Boolean function (not necessarily monotone),
then
€:f(nla"'7nm7Tl7"'7Tn) (B49)

is a Boolean uncertain random variable such that

Ch{f = 1} = Z ( :ul(xl)> f*(l‘h T 7$m) (B'5O)
i=1

(z1,2m)€{0,13™

where
Sup min v;(y;)
f(zl’“"zm»yl,“',yn):l 1<j<n ’
v sp min v, (y,) < 0.5
Flase @ y1, yn)=1 SIS0
Fr@n e am) = . (B.51)
1= sup min Vj yj
F(@1, T Y1, yyn)=0 15T ’
4 Sup min v;(y;) > 0.5,
flz1, o Tm,y1, s yn)=1 1<j<n
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Qj, fol:]- .
() = —1,2,... B.52
.uz(xz) { 1—ai, ife; =0 (Z y 4y 7m)7 ( )
bj, fy;=1 .
(y;) = —1,2,--.n). B.53
vi(y;) { by, ify; =0 (J n) (B.53)
Proof: At first, when (z1,- - ,zy,) is given, f(z1, -, Tm,T1, "+ ,Tn) IS es-

sentially a Boolean function of uncertain variables. It follows from the oper-
ational law of uncertain variables that

M{f(xh sy Ty T1, """ aTn) = 1}:f*(m1a 71'771)

that is determined by (B.51). On the other hand, it follows from the opera-
tional law of uncertain random variables that

Chi{¢=1}= Z (HM(%‘)) M{f(z1, s Tm, 71, ,Tn) = 1}.

(@1, ,zm)€{0,1}™ \i=1
Thus (B.50) is verified.

Remark B.10: When the uncertain variables disappear, the operational
law becomes

Pr{¢ =1} = > ( ,ui(xi)> f@1, 20, ,2m).  (B.54)

(z1,x2, ,xm)€E{0,1}™

Remark B.11: When the random variables disappear, the operational law
becomes
sup min v;(y;)
F(y1,y2, yn)=115J5n ’
if sup min v;(y;) < 0.5
F(y1,y2, e yn)=115J<n
Me=1h= (B.55)
b Supb min v;(y;),
Flyyz, yn)=015I5n

it sup min v;(y;) > 0.5.
Fy1,ya, yn)=1 15751

Exercise B.5: Let 11,72, -+ ,nm, be independent Boolean random variables
defined by (B.47) and let 71,72, -+, 7, be independent Boolean uncertain
variables defined by (B.48). Then the minimum

E=mAMmNA A ATLAT2 N ATy (B.56)
is a Boolean uncertain random variable. Show that

Ch{¢ =1} = arag---am(by Aba A--- Aby). (B.57)
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Exercise B.6: Let 11,72, -+ ,n, be independent Boolean random variables
defined by (B.47) and let 71,72, -+, 7, be independent Boolean uncertain
variables defined by (B.48). Then the maximum
E=mVnV - VNN, VTV V- VT, (B.58)
is a Boolean uncertain random variable. Show that
Ch{f = ].} =1- (1—&1)(1—&2)"'(1 —am)(l—l)1 \/bg\/\/bn) (B59)
Exercise B.7: Let 01,72, -+ ,nm be independent Boolean random variables

defined by (B.47) and let 74,72, ,7, be independent Boolean uncertain
variables defined by (B.48). Then the kth largest value

gzk'max[nlvn%"' s Nmy T1, T2, 0 7Tn} (B60)
is a Boolean uncertain random variable. Show that

Chi¢=1}= Z ( Mi(gji)> f(x1,22, -+ ,2m) (B.61)
(z1,22, ,@m)€{0,1}m \i=1

where

f*(xlvx%"' ,mm) = k‘InaX[xl,mQa"' 7xm>blab2,"' abn}a (B62)

a;, lf.’EZ =1 )
wi(z;) = ) (i=1,2,---,m). (B.63)
1—a;, ifz;=0

B.5 Expected Value

Definition B.4 (Liu [149]) Let & be an uncertain random variable. Then
its expected value is defined by

+o00o 0
E¢] = / Ch{¢ > z}dx — / Ch{¢ < z}dzx (B.64)
0 —o0
provided that at least one of the two integrals is finite.

Theorem B.16 (Liu [149]) Let & be an uncertain random variable with
chance distribution ®. Then

+oo 0
e :/0 (1—<I>(x))d33—/ B(z)da. (B.65)

— 00
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Proof: It follows from the chance inversion theorem that for almost all
numbers x, we have Ch{{ > 2} = 1 — ®(z) and Ch{{ < z} = ®(z). By using
the definition of expected value operator, we obtain

400 0
E[¢] :/O Ch{EZx}dm—[ Ch{¢ < z}dx

:/O+Oo(1—<1>(w))dx—/0 ®(x)dz.

— 00

Thus we obtain the equation (B.65).

Theorem B.17 Let £ be an uncertain random variable with chance distri-
bution ®. Then

+oo
E[¢] = / xd®(x). (B.66)

— 00

Proof: It follows from the change of variables of integral and Theorem B.16
that the expected value is

Ele] :/(:Oo(l—q)(a:))dx—/o (a)dz

— 00

_ /0 T dd () + [ OOO 2dP(z) = [ :O 2dP(z).

The theorem is proved.

Theorem B.18 Let & be an uncertain random variable with reqular chance
distribution ®. Then

1
E[¢] = /0 & Ha)da. (B.67)

Proof: It follows from the change of variables of integral and Theorem B.16
that the expected value is

Ele] :/O+oo(1—<I>(x))dx—/o (z)da

— 00

1 »(0) 1
:/ q)_l(a)da—i—/ <I)_1(a)da:/ & a)da.
<(0) 0 0

The theorem is proved.

Theorem B.19 (Liu [150]) Let n1, 12, -+ ,nm be independent random vari-
ables with probability distributions Wi, Wy, --- W, respectively, and let Ty, 1o,
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-, Tn be uncertain variables (not necessarily independent), then the uncer-
tain random variable

fzf(nla"'anm7717"'77n) (B68)
has an expected value
El= | Elf(y, Ym0 m)|dWi(y1) - AW (ym)  (B.69)
M
where E[f (Y1, yYm,T1, " ,Tn)] is the expected value of the uncertain vari-
able f(y1, -+ yYUm,T1," " ,Tn) for any real numbers y1, - , Ym.
Proof: For simplicity, we only prove the case m = n = 2. Write the

uncertainty distribution of f(y1,y2, 71, 72) by F(z;y1,y2) for any real numbers
y1 and y2. Then

+00 0
E[f(yhyz,ﬁﬁz)]:/o (1—F(x;y1,yz))d$—/ F (w591, y2)da.

— 00

On the other hand, the uncertain random variable £ = f (71,72, 71, T2) has a
chance distribution

B(o) = [ | Pl (n)dVa(oe)

It follows from Theorem B.16 that

+o00 0
E[¢] = /0 (1-®(z))dz —/ O(z)dx

— 00

- /0+Oo (1 - /9?2 Fla; y1,y2)d\111(y1)d\1;2(y2)> dz
- /_OOO /m F(z;y1,y2)d¥1 (y1)d¥2(y2)da

— /%2(/0%0(1 — F(z;y1,92))dx —/_OOOF(x;ylayz)de) AWy (y1)d¥2(y2)

- /SR B[ (g1, o, 71, 72} (1) AW o).

Thus the theorem is proved.

Example B.5: Let n be a random variable and let 7 be an uncertain variable.
Assume 7 has a probability distribution W. It follows from Theorem B.19 that
the uncertain random variable n + 7 has an expected value

Ely+1] = /% Ely + 7]d¥(y) = /% (v + Elr])d%(y) = El] + Elr].
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That is,
E[n+ 7] = E[n] + E[7]. (B.70)

Exercise B.8: Let 7 be a random variable and let 7 be an uncertain variable.
Assume 7 has a probability distribution . Show that

Ent] = En]|E[7]. (B.71)

Theorem B.20 (Liu [150]) Let n1,12,- -+ ,nm be independent random vari-
ables with probability distributions Vi, Wo,--- W, and let 71,72, ,Tn be
independent uncertain variables with uncertainty distributions Y1, Yo, -+, Ty,
respectively. If f(ni, - sNm, 1, ,Tn) @S a strictly increasing function or
a strictly decreasing function with respect to Ty, ,Tn, then the uncertain
random variable

E=fm, - Mm,T1, 5 ) (B.72)

has an expected value

B = [ [ S T @) Y (@)W () d 3).

Proof: Since f(y1, -+ ,Ym,T1, " ,Tn) is a strictly increasing function or a
strictly decreasing function with respect to 7, -+ ,7,, we have

1
E[f(ylv s Ymy Ty 77-”)] = / f(yla sy Ym, Tl_l(a)7 e aT"El(O‘))da'
0
It follows from Theorem B.19 that the result holds.

Remark B.12: If f(ny, - ,09m, 71, -, Tp) i8 strictly increasing with respect
to 11,---, 7, and strictly decreasing with respect to 741, , 7, then the
integrand in the formula of expected value E[€] should be replaced with

P g X (@) T (@), Y (1= a) - X (1~ ).

Exercise B.9: Let 1 be a random variable with probability distribution ¥,
and let 7 be an uncertain variable with uncertainty distribution Y. Show
that

E[an]z/%/O (y vV T~} (a)) dad ¥ (y) (B.73)
and

E[nAT]:[R/O (y AT (a)) dad¥(y). (B.74)

Theorem B.21 (Liu [150], Linearity of Expected Value Operator) Assume
m and 12 are random variables (not necessarily independent), T and T2 are
independent uncertain variables, and fi and fo are measurable functions.
Then

Elfi(m,m) + f2(n2, 72)] = Elfi(m1,m1)] + E[f2(n2, 72)]. (B.75)
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Proof: Since 7 and 75 are independent uncertain variables, for any real
numbers y; and ya, the functions fi(y1,71) and fa(ye, 72) are also independent
uncertain variables. Thus

E[fi(y1, m1) + fo(y2, 72)] = E[f1(y1, 71)] + E[f2(y2, 72)].

Let Wy and ¥, be the probability distributions of random variables 7; and
72, respectively. Then we have

Elfi(m,n) + f2(n2, 72)]

Ef1 (y1,71) + f2(y2, 72)]d¥ 1 (y1)d W2 (y2)

2

E[f1(y1, 7)) + Elfa(y2, 72)])d¥1(y1)dVa(y2)

I
\

%2
Efi(y1,7)]d¥1(y1) + /%E[f2(y2,72)]d‘1/2(92)

= E[fi(n, m)] + Elfa(n2, T2)].

The theorem is proved.

I
%\

Exercise B.10: Assume 7; and 75 are random variables, and 7 and 7 are
independent uncertain variables. Show that

E[m\/ﬁ +772/\T2]:E[T]1 V71]+E[772 /\’7’2]. (B76)

B.6 Variance

Definition B.5 (Liu [149]) Let & be an uncertain random variable with finite
expected value e. Then the variance of € is

Vel = Bl(§ - e)?). (B.77)

Since (£ — e)? is a nonnegative uncertain random variable, we also have

oo
Vgp:A Ch{(¢ — ¢)2 > z}da. (B.78)

Theorem B.22 (Liu [149]) If £ is an uncertain random variable with finite
expected value, a and b are real numbers, then

Viaé +b) = a2V[¢]. (B.79)

Proof: Let e be the expected value of £. Then a{ + b has an expected value
ae +b. Thus the variance is

Viaé 4+ b] = E[(a& + b — (ae +b))?] = E[a®(¢ — €)?] = a*V[£].

The theorem is verified.
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Theorem B.23 (Liu [149]) Let £ be an uncertain random variable with ex-
pected value e. Then VI[E] =0 if and only if Ch{¢ = e} = 1.

Proof: We first assume V[¢] = 0. It follows from the equation (B.78) that

+oo
/ Ch{(¢ —e)*>z}dz =0
0
which implies Ch{(¢ —e)? > 2} = 0 for any = > 0. Hence we have
Ch{(¢ —e)*> =0} =1.
That is, Ch{¢ = e} = 1. Conversely, assume Ch{¢ = e} = 1. Then we

immediately have Ch{(¢ —¢e)? = 0} = 1 and Ch{(¢ —e)? > 2} = 0 for any
x > 0. Thus

+oo
Vie] = /O Ch{(¢ — €)2 > 2}dz = 0.

The theorem is proved.

How to Obtain Variance from Distributions?

Let & be an uncertain random variable with expected value e. If we only
know its chance distribution ®, then the variance

+oo
Vie = / Ch{(£ — ¢)? > 2}da
+oo
- [ eniezervaue e v
+oo
< /0 (Ch{¢ > e+ T} + Ch{€ < e — Va})da

+oo
- / (1 - B+ V) + Be — v/))da

Thus we have the following stipulation.

Stipulation B.1 (Guo and Wang [57]) Let £ be an uncertain random vari-
able with chance distribution ® and finite expected value e. Then

+o0
Ve = /0 (1—®(e+ Vx) + d(e — ))da. (B.80)

Theorem B.24 (Sheng and Yao [211]) Let £ be an uncertain random vari-
able with chance distribution ® and finite expected value e. Then

+oo
Vie] = / (z — €)dd(z). (B.81)

—00
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Proof: This theorem is based on Stipulation B.1 that says the variance of ¢
is

+oo +oo
Ve = / (1 - @(e + 7))y + / D(e — /p)dy.

Substituting e + /y with 2 and y with (z — e)?, the change of variables and
integration by parts produce

+oo +oo oo
— [ = — T 1'762: chez €T).
/0 (1 - ®(e + vi))dy / (1 - ®(x)d(z — ) / (x — ¢)2dd(x)

2

Similarly, substituting e — ,/y with  and y with (z — e)?, we obtain

+oo —o €
/O (e — )y = / B(z)d(z — ¢)? = /m@; _ )2dd(z).
It follows that the variance is
+00 e +oo
V¢ = / (z — e)?d®(z) + [ (x —e)?dd(z) = [ (z — e)?d®(z).

The theorem is verified.

Theorem B.25 (Sheng and Yao [211]) Let & be an uncertain random vari-
able with reqular chance distribution ® and finite expected value e. Then

Vie] = /O (@ (a) - )2da. (B.82)

Proof: Substituting ®(x) with @ and = with ®~1(«), it follows from the
change of variables of integral and Theorem B.24 that the variance is

“+o0 1
Vg = [ (x — e)2d<1>(x) = /0 (@ (a) - e)2doz.

The theorem is verified.

Theorem B.26 (Guo and Wang [57]) Let n1,m2,- - ,m be independent
random variables with probability distributions Wy, Wy, --- , W, and let 7, T2,

-, Tn, be independent uncertain variables with uncertainty distributions Y1,
Yo, -, T, respectively. Then

ng(7717772»"' yNMmy T1, T2, 7 aTn) (B83)

has a variance

vid = [ [0 Rt V)

+F(e = VT3 g1, y))dzdy (y1) -+ Vo ()

where F(x;y1, -+, Ym) is the uncertainty distribution of the uncertain variable
Fyis Ym, T, +, Tn) and is determined by Y1, Yo, -+, Tp.

(B.84)
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Proof: It follows from the operational law of uncertain random variables
that £ has a chance distribution

Ba) = [ Pl AV () Yy,

Thus the theorem follows Stipulation B.1 immediately.

Exercise B.11: Let n be a random variable with probability distribution
W, and let 7 be an uncertain variable with uncertainty distribution Y. Show
that the sum

E=n+7 (B.85)

has a variance

+o0 e8]
V= [ [T E ) 4 T VE - v (B0

B.7 Law of Large Numbers

Theorem B.27 (Yao and Gao [251], Law of Large Numbers) Let n1, 1z, - -
be iid random wvariables with a common probability distribution ¥, and let
T1,Ta, -+ be iid uncertain variables. Assume f is a strictly monotone func-
tion. Then

Sp = f(n,m1) + f(2,72) + -+ f(n, Tn) (B.87)

18 a sequence of uncertain random variables and

+o00
% [ rwmar) (B.55)

in the sense of convergence in distribution as n — oo.

Proof: According to the definition of convergence in distribution, it suffices
to prove

lim Ch{S" < /%o f(y,z)d‘lf(y)}

n—00 n o

h N (B.89)
el [ s < [ s oevm)}

— 00 — 00

for any real number z with

lim M {/ﬂo Sy, m)d¥(y) < /M f(%w)d‘lf(y)}

w—z —00 —00

-/ Trwmarw s [ ()}

— 00 — 00
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The argument breaks into two cases. Case 1: Assume f(y,z) is strictly
increasing with respect to z. Let T denote the common uncertainty distri-
bution of 71, 7o, --- It is clear that

M{f(y, 1) < f(y,2)} = T(2)
for any real numbers y and z. Thus we have
+oo +oo
o [T rwmerw < [ rwaeewm}-1e. @)

In addition, since f(n1, 2), f(n2, z), -+ are a sequence of iid random variables,
the law of large numbers for random variables tells us that

fon ) S bt flmd) [

n

f(yaz)dq/(y), a.s.

—0o0

as n — oo. Thus

lim Ch{S" < /m f(y,z)d\ll(y)} = T(2). (B.91)

n—o0 n oo

It follows from (B.90) and (B.91) that (B.89) holds. Case 2: Assume f(y, z)
is strictly decreasing with respect to z. Then —f(y, z) is strictly increasing
with respect to z. By using Case 1 we obtain

lim Ch{—ST: < —z} = M{—/+OO fly,m)d¥(y) < —z}.

n—00 0o

That is,

“+oo
nli_{r;oCh{i; > z} :M{/oo fly,m)d¥(y) > z}

It follows from the duality property that

lim Ch{i" < z} = M{/+OO Fly, m)dT(y) < z}

n— 00 o
The theorem is thus proved.

Exercise B.12: Let 71,72, - be iid random variables, and let 71,75, -- be
iid uncertain variables. Define

Sp=m+7)+M+7)+ + On+) (B.92)

Show that g
Wn — E[nl] + 71 (B93)
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in the sense of convergence in distribution as n — oc.

Exercise B.13: Let 11,79, -+ be iid positive random variables, and let
Ty, Ty, -+ be iid positive uncertain variables. Define

Sp=mT1+mT2+ -+ NnTn. (B.94)
Show that g

in the sense of convergence in distribution as n — oc.

B.8 Uncertain Random Programming

Assume that « is a decision vector, and £ is an uncertain random vector.
Since an uncertain random objective function f(x, £) cannot be directly min-
imized, we may minimize its expected value, i.e.,

min E[f(x, £)]. (B.96)
€T
Since the uncertain random constraints g;(«,§) < 0,5 = 1,2,--- ,p do not
make a crisp feasible set, it is naturally desired that the uncertain random
constraints hold with confidence levels aq, a2, -+, ap. Then we have a set of
chance constraints,
Ch{g;(x,€) <0} >«a;, j=1,2,---,p. (B.97)

In order to obtain a decision with minimum expected objective value subject
to a set of chance constraints, Liu [150] proposed the following uncertain
random programming model,

min B{f (z. &)
subject to: (B.98)
Ch{g;(z,&) <0} >«aj, j=1,2,---,p.

Definition B.6 (Liu [150]) A wvector x is called a feasible solution to the
uncertain random programming model (B.98) if

Ch{g;(z,&) <0} > a; (B.99)
fOTj = 1727"' yD-

Definition B.7 (Liu [150]) A feasible solution x* is called an optimal solu-
tion to the uncertain random programming model (B.98) if

Elf(x",§)] < Elf(=,8)] (B.100)

for any feasible soluti